
Graph Sampling with Fast Random Walker on
HBM-enabled FPGA Accelerators

Chunyou Su∗, Hao Liang†, Wei Zhang‡, Kun Zhao†, Baole Ai†, Wenting Shen†, Zeke Wang§
∗‡Department of Electronic and Computer Engineering,

Hong Kong University of Science and Technology, Hong Kong SAR, China
†Alibaba Group, China

§Collaborative Innovation Center of Artificial Intelligence, Zhejiang University, China
∗csuae@connect.ust.hk, ‡wei.zhang@ust.hk, §wangzeke@zju.edu.cn

Abstract—Graph Neural Networks have gained increasing
popularity among researchers recently and been employed in
many applications. Training GNNs introduces a crucial stage
called graph sampling. One of the most important sampling
algorithms is Random Walk. Along with many of its variants,
they share and suffer from the same performance problem caused
by random and fragmented memory access pattern, leading to
significant system performance degradation.

In this work, we present an efficient graph sampling engine
on modern FPGAs integrated with in-package High Bandwidth
Memory (HBM), which brings data closer and faster to the
core logic. The hardware walker design is modular and easily
scalable for massive parallelism, to fully utilize the available
HBM channels. Our design also provides flexibility to support
random walk and two of its variants on both homogeneous and
heterogeneous graphs. On real-world graph datasets, we achieve
1.39×-3.74× speedup with 2.42×-6.69× higher energy efficiency
over highly optimized parallel baselines on a Xeon CPU. We also
implement these algorithms on a NVIDIA Tesla V100 GPU and
achieve comparable dynamic power consumption.

Index Terms—graph sampling, random walk, HBM, FPGA

I. INTRODUCTION

Recently, Graph Neural Networks (GNNs) have been ac-
tively studied in both industry and academia [1–7,9,18,22,23].
Unlike image data in the form of tensors or text/speech data
in the form of sequence, graphs are highly flexible and can be
used to describe many real-world datasets like social networks,
academic graphs and knowledge graphs.

The powerful graph models motivate researchers to propose
various graph learning models targeting numerous downstream
applications [1–6, 9]. However, the irregular and randomized
connections in graph impinge concurrent aggregation and
combination of embedding vectors due to the load imbalance
problem, which is truly the Achilles’ heel in this field.

To address the issue, most of the cutting-edge GNN models
choose to extract vectorized and regular data from raw graphs
before later stages of learning [1–6]. That is, to look at the
raw graph in a local point of view at a time and aggregate
information extracted from every local subgraph. In this way,
the graph data for GNN learning is regularized, which reduces
the difficulty for parallel execution.

The pre-processing phase of generating iterable subgraphs
is also known as graph sampling. In some GNN models,
these subgraphs are used for aggregation and combination of

feature vectors on need [1–3], while other models deal with the
sampling phase separately and feed the generated subgraphs
into the subsequent training models [4–6].

Despite the success of sampling-based GNNs, implementing
graph sampling is far from perfectness regarding both through-
put and energy efficiency. The main reasons are threefold.
Firstly and most importantly, traditional DDR memory is weak
at concurrent memory accesses due to limited number of
independent memory channels, which leads to the throughput
mismatch between the memory system and parallel processing
units. Secondly, the irregular graph structure entails a unpre-
dictable memory access pattern, which restricts the available
memory bandwidth as the DDR memory is best at massive
consecutive accesses. Last but not the least, when large amount
of data is shared off-chip, the classic cache-based memory
hierarchy cannot help due to poor locality and invalid data
exchanged frequently in and out of the cache.

Such observations reveal the limitations of the conventional
cache-based Von-Neumann architecture for graph sampling
tasks. Instead, domain-specific architectures are believed to be
promising since flexible memory accesses are enabled through
customized design. Specifically, FPGA platforms are favored
by developers due to their post-fabrication reconfigurability
and short time-to-market. Moreover, with the emergence of
HBM-enabled FPGA platforms, breaking the memory wall
through concurrent memory accesses becomes possible.

In this work, we propose a novel graph sampling accel-
erator based on the HBM-enabled FPGAs. We will focus on
walker-based graph sampling methods (will be described later)
since their performance suffers the most from the fragmented
memory access pattern. Our main contributions are:
• We propose a graph sampling accelerator targeting three

walker-based sampling algorithms with hardware optimiza-
tions and implement it on a HBM-enabled FPGA platform.

• We evaluate the proposed accelerator on real-world graphs
and achieve 1.39×-3.74× speedup with 2.42×-6.69× higher
energy efficiency over parallel baselines implemented on a
Xeon CPU. We also present evaluation on the V100 GPU
with HBM for comparison.

• We test the design on randomly generated graphs with
varying graph size and alter the restart probability (will be
explained later) to show the performance robustness.



II. BACKGROUND

A. Walker-based Graph Sampling

Graph sampling algorithms can be generally categorized
into walker-based sampling and neighborhood-based sam-
pling. As the name implies, the basic way of neighborhood-
based sampling is to sample a subset of nearby nodes reach-
able in a few number of hops from the target node, which is
widely adopted in Graph Convolutional Network (GCN) based
models [1–3]. Walker-based sampling normally traverses the
graph randomly from a starting node and terminates when
a pre-defined path length (number of hops) is reached. In
general, walker-based sampling is more commonly adopted in
GNN models derived from the Natural Language Processing
(NLP) field, as can be found in [4–6].

Generally, a specific walker-based sampling algorithm takes
a graph G=(V,E) as the input, where V is the vertex set and
E is the edge set. It also takes a subset of vertices from
V, each one of which would serve as the starting node of
an independent random walk path. During the execution, the
algorithm is typically also given another two user-defined
parameters, namely the number of walks w from each starting
node and the length (#hops) l for each walk path.

The randomness of walker-based sampling is defined in
each specific algorithm, which can be formalized as the tran-
sition probability describing the likelihood of transition from
the current residing node to the next-hop node. Generally, the
transition probability could be either independently distributed
or conditionally distributed. In the former case, the probability
at each hop is not affected by any previous state. In the
latter case, the probabilistic decision is jointly decided by both
current and previous states. Here we represent the transition
probability in the form of first-order conditional probability
Pe(ni|ni−1), where e is the outgoing edge from the ith
visited node ni (i.e, e=(ni, ni+1)) and Pe(·) is the transition
probability defined by the sampling algorithm. Note that here
the condition variable ni−1 should be treated as a comprehen-
sive representation that carries composite information of the
previous node, possibly including the node index, node type,
the number of hops that has been covered and so forth.

B. Random Walk Sampling and its Variants

This section covers the classic Random Walk and two of its
variants that we implement in this work. The interested readers
can refer to [7] for more variants and their descriptions.
Random Walk (RW): The RW method refers to the classic
random walk sampling used in DeepWalk [4]. We formalize
it as the following transition probability:

Pe(ni) =
1

|N(ni)|
(1)

Here N(ni) is the set of vertices neighboring to current
residing vertex ni and | · | returns its cardinality. The transition
probability simply navigates a walker to a uniformly randomly
selected neighbor in the next hop.
Random Walk with Restart (RWR): The RWR method has
been widely used in Personalized Page Rank (PPR) to generate

personalized importance vectors [8]. It is also adopted as the
sampling algorithm in some GNN models like [9]. As the
name implies, a random walker in RWR is associated with a
restart probability c. At each hop, a walker either returns to its
starting node with probability c, or visits one of its neighbors
with probability 1-c. The transition probability is:

Pe(ni) =


c, if ni+1 = n1

(1− c) · 1

|N(ni)|
, if ni+1 ∈ N(ni)

(2)

For instance, the restart probability c is set to 0.15 in [8] and
0.5 in [9]. Unlike the case in [8] where the considered graph
is super-large stored in distributed systems, we target mid-
scale graphs in this work. For this reason, there is no need
to break a long RWR path into multiple shorter ones where
each walk is terminated after a returning decision. Instead, we
adopt a fixed-length policy that allows a walker to continue
after revisiting the starting vertex, until it reaches the pre-fixed
walk length.
Meta-path: Unlike the aforementioned methods, the Meta-
path [6] method aims to generate a series of random walks
from a given heterogeneous graph following a pre-defined
meta-path scheme P = T1 → T2 → . . . Ti → Ti+1 → . . . Tl,
where {Ti} is a sequence of node types associated with each
hop. Let φ(·) denote the node type mapping function, the
transition probability can be expressed as:

Pe(ni) =


1

|NTi+1
(ni)|

, if φ(ni+1) = Ti+1

0, otherwise
(3)

NTi+1
(ni) denotes the vertex subset of ni’s (with type Ti)

neighbors that are of type Ti+1. Generally, a complete meta-
path scheme for the entire walk can be obtained by repeating
a short scheme. For example, in a citation graph, the “A-P-A”
scheme indicates that a walker should visit an author node and
a paper node in an interleaved manner.

C. Target Platform
The target platform is the Xilinx Alveo U280 board. It

owns 8 GiB HBM memory comprised of two HBM2 stacks,
each with 8 memory channels (MCs) and 16 pseudo channels
(PCs). It also has two 16 GiB DDR4 DIMM memory modules.
We believe the hybrid memory setting is most suitable for
the walker-based sampling. First, the HBM devices expose
concurrent memory interfaces to facilitate parallel walkers.
Second, the capacity of traditional DDR banks is sufficient
to accommodate sampled paths, and the sequential storing
pattern of generated paths helps to efficiently utilize the DDR
bandwidth.

In the HBM subsystem, every two pairwise PCs share a
memory controller and correspond to 512 MiB storage. From
the user’s side, each PC has an independent AXI3 interface
[10]. To enable flexible HBM access, Xilinx also provides a
built-in switch network IP to facilitate efficient interconnect
across all 32 PCs. In this way, the 8 GiB HBM memory space
is organized as a unified address pool and any AXI interface
can be configured to access data residing in an arbitrary PC.



Fig. 1. Graph Sampling Accelerator with 8 CUs

III. SYSTEM DESIGN

The parallelizable nature of walker-based sampling inspires
us to devise nested parallelism, which aims to fully utilize all
HBM PCs. The outer parallelism comes from multiple Com-
puting Units (CUs) that are allocated with different subsets
of starting vertices. Within each CU, multiple walkers sample
concurrently in one iteration, forming the inner parallelism.

A. System Overview

Fig. 1 shows the system diagram. Without loss of generality,
each CU is connected with 4 AXI interfaces corresponding to
4 consecutive HBM PCs. All PCs operate in read-only mode
and one of the 16 GiB DDR4 banks is responsible for storing
the generated walks from multiple CUs.

A key observation here is that different configurations of
the switch network would greatly affect the scalability and
performance of memory access in HBM. Typical configura-
tions include Point-to-Point (P2P) connection, 4×4 connection,
8×8 connection and all-to-all connection [11]. On one hand, to
avoid access interference among multiple PCs, the input graph
is encouraged to be replicated in a distributed memory manner,
where the extreme case is the P2P configuration. However,
on the other hand, with more fine-grained configuration, the
system scalability would be highly restricted, resulting in a
smaller memory capacity reserved for each copy.

In this design, the 4×4 configuration is adopted as a trade-off
between graph scalability and HBM performance. Specifically,
any read port from a CU is allowed to access data in any one
of the four associated PCs. In this way, the maximum size
of the supported input graph is extended to ∼1 GiB. As for
the influence of 4×4 interconnect on HBM performance, it is
showed that accessing data from any of the four AXI interfaces
is equally fast [12]. In the worst case where simultaneous
read requests from all the four AXI interfaces are served, the
interference among multiple PCs might lead to slightly longer
latency [13]. However, this cost is acceptable for larger graphs
detailed by our sensitivity evaluations.

B. CU Architecture

As shown in Fig. 2, a CU is consisted of the processing
logic, AXI read/write engines and memory primitives. The
processing logic mainly includes the Pseudo Random Number
Generator (PRNG) and the Degree-aware Sampler (DAS). We
implement an RTL version of the Complementary Multiply

Fig. 2. Computing Unit (CU) Architecture

With Carry (CMWC) PRNG introduced in Xilinx’s examples
[14]. Each PRNG can generate an unsigned 32-bit random
number at a time and update the random seed in the mean-
while. As for a DAS, it receives a generated random number,
together with the degree of current residing node and outputs
a remainder indicating which neighboring node to jump to in
the next hop. To reduce the resource cost, multiple walkers
share one PRNG while each walker is associated with an
independent DAS since normally their degrees are different.

The AXI read engine is responsible for interfacing with 4
associated PCs. Within the engine, each master retrieves the
data requested by its corresponding walkers (walkers served
by the same master are in one group) through merged multi-
thread AXI read transactions. When the walkers from the same
group finish the current sampling iteration, the walk paths will
be read out from on-chip walk buffer and transferred to the
global DDR bank through the AXI write engine.

The memory primitives include on-chip BRAM, URAM and
registers for temporal data storage. In our parallel settings, the
hardware resources required by each walker are identical while
the modular design does not prevent flexible resource sharing.
For example, two walkers may share a BRAM by visiting its
two true dual-port interface with non-overlapping addresses.

C. Parallel Walkers Mapping

The most straightforward way of placing multiple walkers
inside a CU is to assign each walker to a AXI read master,
which brings 4 walkers in a CU. However, such arrangement
cannot guarantee high throughput since the HBM device and
AXI protocol encourage burst-based massive consecutive data
access. In our case, each walker merely requests one or two
items at a time, which results in extremely low memory
bandwidth since the clock cycles spent for receiving data
cannot amortize the handshake cost. To address the problem,
we leverage the multi-thread AXI read master to mitigate the
communication overhead.

For a multi-thread AXI read transaction, the master firstly
transfers the read addresses and their corresponding thread IDs
in the read address channel. When the memory slave is ready,
it returns the requested data together with thread IDs in the



read data channel. Ultimately, the read last signal indicates
the termination of one transaction.

Fig. 3. Graph Sampling Control Flow

In this design, we map each walker to an AXI read thread,
thus a batch of read requests from multiple walkers can be
merged into a single AXI read transaction (with different
IDs), which significantly amortizes the handshake cost and
increases the effective bandwidth obtained. In this way, the
number of concurrent walkers within a CU is #threads× 4.
The exact thread number is decided by many factors, one
of which is the width of the ID signals (arid and rid).
According to the Xilinx AXI HBM Controller documentation
[12], the supported ID signal width can be up to 6 on the
target platform, which entails maximum 26 = 64 threads in
total. However, this upper-bound is not achieved in actual
implementation considering the overall hardware resources
cost and timing difficulties. We will present a brief exploration
of design space later.

D. Control Flow
The control flow of the proposed accelerator is depicted by

Fig. 3. As can be seen, the control flow is handled through
six FSMs. Specifically, state stands for the main FSM state,
r state serves as the FSM state for PRNG and g state[0-3]
are the FSM states for four walker groups, respectively.

We adopt a 3-stage pipeline and double buffering design to
hide clock cycles and enhance the system throughput. Here the
shaded boxes are used to indicate the data accesses to different
ping-pong buffer groups to remove the data dependency.

To launch the pipeline, the PRNGs firstly generate a stream
of random numbers (RNG) and put them in the on-chip buffer.
After that, four walker groups start sampling (RW SAMP) and
the PRNG block start generating another stream of random
numbers for the next sampling iteration. When all the walker
groups finish the current iteration, the main FSM activates the
writing logic (WRITE) and the generated walks are written
back to the DDR memory to spare the on-chip walk buffer.
Meanwhile, the next sampling iteration is not stalled because
of the ping-pong walk buffers. Such arrangement not only
hides the clock cycles for RNG and WRITE, but also keeps
the AXI Read Engine busy almost all the time, which ensures
high utilization of the HBM bandwidth.

It should be noted that each walker group possesses an
independent sub-flow controlled by a separate FSM (g state)
as the 4 AXI interfaces within a CU are stand-alone. However,
since all walker groups share a single AXI write master, they
need to be synchronized at the end of each sampling iteration.
More precisely, the main FSM would switch to WRITE after
g state[0-3] all reach the FIN state.

Fig. 4. Degree-aware Sampler

E. Degree-aware Sampler

The basic sampling operator used in walker-based sampling
is the uniform random sampler, which means selecting one of
the adjacent node from the neighbor list uniformly at random.
In practice, it can be achieved by calculating the remainder,
where the dividend is a random number and the divisor is the
out-degree of current residing node.

In a CPU/GPU based implementation, the remainder calcu-
lation induces the time-consuming integer division instruction.
However, unlike the general-purpose processors that are driven
by instructions, FPGAs are intrinsically data-driven and the
sampling logic can be optimized with customized circuits. We
propose a Degree-aware Sampler based on the classic division
by subtraction algorithm, which is illustrated in Fig. 4.

The key observations behind the DAS are as follows. First
of all, the running time of the sampler is closely relevant to the
bit-width of the dividend, which is a pseudo random number
in our case. Secondly, the running time of a general divider is
long to support the worst case (minimum possible divisor). If
we could have some knowledge about the rough range of the
divisor in advance, the running time could be further reduced.

In the proposed DAS, we first set a degree threshold which
is compared against the actual degree before division. If the
current degree is smaller, the sampling will be handled by the
low degree sampler, otherwise it will be processed by the high
degree sampler. Either one of the two samplers is essentially an
unsigned integer divider, with the output being the remainder.
The difference mainly lies in the bit-width of input operands.

In the low degree sampler, the dividend is a random number
with a shorter bit-width as a small value is enough to guarantee
the randomness and naturally leads to fewer subtractions.
While in the high degree sampler, the dividend is of longer bit-
width to ensure sufficient subtractions. However, since the di-
visor is large, the number of subtractions is noticeably reduced.
Consequently, the running time of the sampler decreases in
both cases thanks to fewer subtractions.

TABLE I: Experimental Parameter Settings

Algorithm Parameter Generated Size
RW w = 32, l = 80 8.35 GiB
RWR w = 32, l = 80, c = 0.15 8.35 GiB
Meta-path w = 1, 024, l = 200 2.98 GiB



IV. EXPERIMENTS

A. Methodology and System Settings

HW&SW Settings: The target platform is a Xilinx Alveo
U280 FPGA plugged in a PCIe slot. The host PC owns a Xeon
Sliver 4110 @2.1GHz CPU with 256 GiB DDR4 memory
running on a Ubuntu 18.04 LTS system. We implement the
proposed design in Verilog HDL by Vitis 2020.2 toolkit.
Input Graph: As most of the real-world graphs are sparse, we
adopt the Compressed Sparse Row (CSR) for graph storage.
Each undirected edge is stored twice to avoid sink nodes. For
efficient data organization, nodes from the AMiner graph are
re-indexed to ensure a compact CSR vertex array. Actually,
the overhead of such pre-processing is neglectable compared
with other commonly used trick like edge sorting.

The basic features of the adopted real-world graphs are as
follows. The Google graph [15] used in both RW and RWR
sampling is a homogeneous web graph from the Google prog-
ramming contest 2002. It has 875,713 web-page nodes and
5,105,039 edges indicating the hyperlinks in between. The
AMiner graph [16] used in Meta-path sampling is a hetero-
geneous academic graph, which is comprised of 3,883 con-
ference nodes (C), 1,693,531 author nodes (A) and 3,194,405
paper nodes (P). We directly access it from [6] to keep it
consistent with our evaluation. For Meta-path sampling, a C-
A-C scheme is adopted as the practice in [6]. The original
edges include P-A links and P-C links and each paper node
owns a single P-C link as it belongs to a sole conference.
On this basis, a bipartite graph between conference nodes and
author nodes is built by constructing the C-A CSR and A-C
CSR. The ultimate number of C-A/A-C edges is 9,323,739.
HBM PC Mapping: A static memory mapping policy is
adopted to specify at which PC the input data resides. Consider
the CU0 and its associated PC0 - PC3 as an example. For the
Google graph, the CSR vertex array is mapped to PC0 and the
remaining PC1 - PC3 are reserved for the CSR edge array, as
in most cases |E| � |V |. When the CSR edge array exceeds
the capacity of a single PC, it can be split and distributed in
two or three PCs thanks to the built-in interconnect. As for
the AMiner graph, we notice that the C-A CSR vertex array
is short but frequently visited. Thus we map it to PC0, and
load them to on-chip URAM as static cache. The remaining
A-C CSR vertex array, C-A CSR edge array and A-C CSR
edge array are mapped to PC1, PC2 and PC3, respectively.

B. Experimental Configurations

Parameter Settings: To avoid possible influence brought by
a biased selection of starting vertices, each vertex is equally
likely to be set as the starting vertex by iterating over the
whole vertex set V . For Meta-path sampling, the iteration
was performed on the whole conference vertex set VC . The
algorithm-specific experimental parameter settings are shown
in Table I. For RW and RWR, the walk length l follows the
practice in [7]. To make full use of the available parallelism
and assume the generated walks could fit in one DDR4
memory bank of 16 GiB, we set w to be 32. The parameters

TABLE II: Parallelism Settings and Resource Utilization

Algorithm #CUs×#gps/CU LUT REG BRAM URAM DSP×#wkrs/gp
RW 8×4×16 = 512 25.05% 15.89% 31.60% 20.00% 1.42%
RWR 8×4×16 = 512 27.49% 16.51% 31.60% 20.00% 1.42%
Meta-path 7×4×16 = 448 51.72% 20.40% 41.00% 35.00% 1.24%

for Meta-path are almost identical to [6], except that we set
w to be 1,024 instead of 1,000 to make it a multiple of 32.
Design Space Exploration: Thanks to the modular design, the
accelerator can be easily scaled out and the overall parallelism
is upper-bounded by the hardware resource budget. However,
higher parallelism does not guarantee better performance,
since (1) the throughput of HBM memory controller does not
scale up linearly with increased number of AXI read threads,
and (2) meeting timing becomes more difficult under higher
resource utilization. Specifically, as mentioned in [17], when
the on-chip memory in SLR0 is used up, the URAM/BRAM
cells from SLR1/SLR2 are invoked, which would significantly
increase the critical path. Given the absence of an existing
model and limited design search space, we conduct brute
force search on several design candidates and report the
optimal parallelism settings and their corresponding hardware
utilization in Table II. As can be seen, the best design point is
reached when the induced hardware resources can be roughly
covered by user budget in SLR0. Higher parallelism actually
lead to degraded performance due to lower clock frequency.
The accelerators for RW, RWR and Meta-path run at 187
MHz, 125 MHz and 119 MHz, respectively.

C. Baseline Setup

We implement several baseline implementations of the three
sampling algorithms for comparison, including:
• A parallel CPU baseline implemented in the Pytorch Geo-

metric [18] graph learning framework (marked as PyG).
• A parallel GPU baseline using CUDA (marked as V100).
• A parallel GPU baseline using CUDA with limited 512 cu-

rrent random walkers (marked as V100-512).
The PyG baseline is evaluated on an Intel Xeon E5-2682v4

@2.5GHz CPU with 4-channel 128 GiB DDR4 2400 memory.
We widely test various batch size settings to find the optimal
ones, namely 512, 256 and 16 for RW, RWR and Meta-
path, respectively. The parallelism of PyG lies in multiple
workers/threads in the DataLoader class, each worker loads a
batch and returns it once the data is ready. We use 32 workers
to get the start-of-the-art result, and the number of workers is
equal to the logic core of the target Xeon CPU.

The GPU baselines are implemented with CUDA 11.0 on
the NVIDIA Tesla V100 GPU with 16 GiB HBM2 memory
running at 877 MHz. For the V100 baseline, the profiling
summaries report 100%, 100%, 50% theoretical warp occu-
pancy and 92.89%, 92.26%, 48.38% achieved occupancy for
RW, RWR and Meta-path, respectively. It means that the
achieved peak numbers of concurrent threads per Streaming
Multiprocessor (SM) are 2048, 2048 and 1024 for RW, RWR
and Meta-path, respectively, with 84 SMs in total.



To evaluate the CPU power, we leverage the Running
Average Power Limit (RAPL) [19] feature to get estimated
results, as the actual power is difficult to be obtained on a
packed CPU chip. We modified the script from [20] to read
the Model Specific Registers (MSR) once per second and make
sure the measurement could cover a complete lifetime
of the baseline executions, where the precise timestamps are
recorded by the system UNIX time. The run-time GPU power
is captured by the nvidia-smi command every 20 ms.

D. Results

Fig. 5 shows the execution time of the covered three sam-
pling algorithms, where the data transfer time from on-board
FPGA/GPU memory to the host PC memory is excluded. As
can be seen, both V100 and our design achieve significant
speedup over the PyG baseline thanks to higher memory
bandwidth. Concretely, the proposed design achieves 1.39×-
3.74× speedup over PyG. Among all parallel implementations,
V100 achieves the best result. However, when we limit the
overall parallelism of V100 implementation to be 512 con-
current walkers, it is observed that the proposed accelerator
outperforms the GPU baseline (V100-512) significantly. In
fact, when full parallelism is achieved on V100, although
most warps are stalled due to cache miss, divergent control
flow among warps allows overlapping between computation
and memory access and brings more data per unit time on
average. However, the essential memory bottleneck limits the
achievable parallel efficiency and system performance.

Fig. 6 shows the power consumption breakdown of different
implementations on the target three algorithms, where the
static power consumption is estimated by the production of
no-load power and execution time with the dynamic power
consumption being the remaining part. Obviously, the tradi-
tional CPU-DRAM based system solution (PyG) is at great
disadvantage in terms of power efficiency for this kind of
application. Specifically, the proposed accelerator achieves
2.42×-6.69× higher energy efficiency over PyG. Overall, the
V100 implementation achieves the highest power efficiency.
However, the proposed design achieves comparable energy
efficiency in terms of dynamic power. Regardless of the node
technology difference (12 nm for V100 and 16 nm for Alveo
U280), the proposed architecture could still be promising as
our hardware utilization is quite low and a properly tailored
accelerator requires much lower static power.

E. Sensitivity Test

We conduct some sensitivity tests to evaluate design robust-
ness. One of the tests considers the effect of the input graph
size on RW. The graphs for test are generated with a uniform
degree of 6 and the size of vertex set ranges from 1.6M to
25.6M (thus the graph size ranges from 43MiB to 684MiB).
Nodes with index smaller than 800,000 consist the starting
vertex set, thus the amounts of overall workload for different
input graphs are identical. As shown in Fig. 7, the execution
time of PyG climbs rapidly after the input graph size exceeds
a threshold between the 6.4M group and the 12.8M group.

As for the V100 baseline, it shows slightly increased exe-
cution time with the growth of graph size. In fact, we observe
the drop in L2 cache load hit rate from 8.67% to 3.31% in
the report of the NVIDIA Nsight Compute profiling tool. The
increased execution time of our design on large graphs is due
to the access interference among multiple PCs. Particularly,
for the 1.6M, 3.2M and 6.4M groups, the spent time remains
unchanged. However, when the size is increased to 12.8M, the
consumed time increased by around 0.9 seconds, as the CSR
edge array exceeds a single PC’s capacity and is stored in
two PCs, which brings a more complicated operation mode in
the underlying switch network. This also applies to the 25.6M
case, where the execution time is further increased since the
CSR edge array occupies all the 3 allocated PCs.

We also investigate the influence of restart probability on
RWR. The restart probability ranges from 0 to 1 with the
interval being 0.1. We set the maximum probability to be
0.996, otherwise there will be no randomness at all and the
generated walks will be meaningless. Detailed results are
shown in Fig. 8. To conclude, the execution time significantly
drops with higher restart probability for PyG, as the chance
of data reuse increases. However, higher restart probability
leads to under-utilization of HBM memory bandwidth in
our design since we directly retrieve data via merged read
transaction. When a restart happens, the data fetched in the
corresponding thread will be omitted and the bandwidth is
wasted. To mitigate this issue, we modify the control logic
to enable divergent progresses for concurrent walkers in the
same group. During a restart of a walker, the hop counter
increments and an extra memory access can be arranged if the
next-hop decision is not return. It is also noticed that V100
is less sensitive to the restart probability, which we believe is
due to the GPU’s SIMT model. Within a warp, if any walker
(thread) refuses to restart, the other returning walkers (threads)
will also be stalled until all the data required by the current
warp is ready.

V. RELATED WORK

HBM on FPGA: Shuhai [13] is a pioneer work for bench-
marking HBM on FPGAs. It showed that HBM favors large
burst size and good memory locality. It also mentioned that the
interference among HBM channels leads to decreased through-
put, which is consistent with our sensitivity evaluation. [17]
studied the benefits of HBM on FPGAs and showed the perfor-
mance improvement on database applications. HBM-Connect
[21] boosted two memory bound platform on the U280 board
by inserting customized interconnect and rearranging memory
access. However, their method is not applicable to our case as
our accesses to the same PC are not sequential.
Graph Learning Frameworks: PyG [18] and DGL [22] are
two of the most popular GNN frameworks, which aim to
provide fast implementation of GNN models for developers.
To deploy GNN on large graphs, Zhu et al. proposed AliGraph
[23], a comprehensive graph learning platform for distributed
systems targeting real-world graphs. For the sampling phase
in GNN models, all the aforementioned frameworks deploy
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it on general-purpose CPUs while GPU implementations for
sampling are not quite ready.
Graph Sampling on CPUs: KnightKing [7] is the most
relevant work to our design while the main differences are
twofold. First, KnightKing targets distributed systems and
large graphs, while our design targets a single-node system
with the potential to scale out. Second, KnightKing utilizes
the rejection sampling method to reduce the computation
complexity, while our work mainly focuses on the throughput
and energy efficiency. Theoretically, the two optimizations are
orthogonal and the combination of both is possible.

VI. CONCLUSION AND FUTURE WORK

To this end, we have presented a graph sampling accel-
erator on an HBM-enabled FPGA. It achieves 1.39×-3.74×
speedup and 2.42×-6.69× higher energy efficiency over highly
optimized CPU baselines on three walker-based sampling
algorithms. We also implement them on an NVIDIA Tesla
V100 GPU and compare the performance of these two HBM-
enabled platforms. Overall, the V100 GPU could provide
a better performance at much higher parallelism. However,
we achieve comparable dynamic power power consumption.
Moreover, under the same parallelism settings, our design
could outperform V100 GPU in terms of system throughput.

In future work, we would like to further optimize the timing
to improve the clock frequency. As reported in [21], the user
logic needs to be run at least at 225 MHz in read-only cases
to saturate the HBM peak bandwidth. We also noticed some
recent work on optimizing the floorplanning and placement
on multi-die FPGA [24] that could potentially help to further
boost the system performance. Furthermore, we would like to
explore the possibility of developing the accelerator from HLS
design flow, which could provide higher flexibility and avoid
time-consuming RTL development.
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