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Abstract—The release of OpenCL support for FPGAs rep-
resents a significant improvement in extending database appli-
cations to the reconfigurable domain. Taking advantage of the
programmability offered by the OpenCL HLS tool, an OpenCL
database can be easily ported and re-designed for FPGAs. A
single SQL query in these database systems usually consists of
multiple operators, and each one of these operators in turn con-
sists of multiple OpenCL kernels. Due to the specific properties
of FPGAs, each OpenCL kernel can have different FPGA-specific
optimization combinations, in terms of CU (compute unit) and
SIMD (kernel vectorization), which are critical to the overall
performance of query processing. Due to the resource limitation
of an FPGA image, our query plan also considers the possibility
of using multiple FPGA images. In this paper, we propose an
FPGA-specific cost model to determine the optimal query plan
in less than one minute. In particular, the FPGA synthesis time
is significantly reduced by avoiding the need to evaluate all the
feasible query plans on real FPGAs. Our cost model has two
components: unit cost and optimal query plan generation. The
first component generates multiple (unit cost, resource utilization)
pairs for each kernel. The second component employs a dynamic
programming approach to generate the optimal query plan which
considers the possibility of using multiple FPGA images. The
experiments show that 1) our cost model can accurately predict
the performance of each feasible query plan for the input query,
and can guide the optimal query plan generation, 2) our optimized
query plan achieves a performance speedup 1.5×–4× over the
state-of-the-art query processing on OpenCL-based FPGAs.

I. INTRODUCTION

FPGAs have become an attractive and effective hardware
accelerator for many relational database applications. Many of
the previous studies, e.g., [6, 17, 18, 20, 24], have demonstrat-
ed significant performance improvement and superb energy
efficiency. However, those systems are mostly implemented in
low-level hardware description languages (HDLs) like Verilog
and VHDL. The programmability issues of HDLs call for
advanced high level synthesis (HLS). Recently, FPGA vendors
such as Altera [7, 8] and Xilinx [21] have started to develop
OpenCL SDKs. Since OpenCL explicitly exposes the data-
level parallelism in the kernel programming, it is very suitable
for developing database applications that inherently have ex-
tensive data parallelism. As a fact, a few database systems have
been re-designed for CPU/GPU in OpenCL (e.g., [14, 15, 36]).
In this study, we investigate whether and how we can improve
the query processing performance on OpenCL-based FPGAs.

An SQL query in OpenCL-based database systems usu-
ally consists of multiple operators, each of which consists
of multiple OpenCL kernels. Due to the specific properties
of FPGA, each OpenCL kernel has different optimization
combinations, in terms of CU (compute unit) and SIMD
(kernel vectorization). Each optimization combination then

requires a different amount of FPGA resources in LUTs,
REGs, RAMs, and DSPs. Furthermore, if we enable a more
aggressive optimization, which requires more FPGA resources,
for one kernel, other kernels in the same query may not be
able to implement desired optimizations due to the resource
constraints or we may have to generate another FPGA image to
hold these kernels. In the latter case, the FPGA switches from
one image to another during query processing, which requires
FPGA reconfiguration and buffer transfer via PCI-e. Therefore,
finding an optimal query plan (optimization combination for
each kernel) for the input query is essential to achieve good
performance on OpenCL-based FPGAs.

In order to efficiently generate the optimal query plan for
the input query, we present an FPGA-specific cost model, so
that we do not need to iteratively evaluate all feasible query
plans on FPGAs to determine the optimal query plan. Since
there are many optimization combinations for each kernel, the
number of feasible query plans is large. What makes search
space even larger is that we also consider another dimension
of multiple FPGA images to implement the input query.
Since each FPGA image takes hours to synthesize, it is very
time-consuming to evaluate all feasible query plans directly
on FPGAs. Fortunately, our FPGA-specific cost model can
generate the optimal query plan by estimating the execution
time of feasible query plans such that no feasible query plan
is evaluated on real FPGAs.

In particular, our cost model has two components: unit
cost and optimal query plan generation. First, we implement
each operator kernel with different optimization combinations,
each of which has multiple (unit cost, resource utilization)
pairs. Second, based on (unit cost, resource utilization) pairs
for each kernel, we present the dynamic programming based
algorithm to determine the optimal query plan, which consists
of the proper optimization combination for each kernel and the
number of FPGA images.

One advantage of this layered approach is that we only
need to re-run the dynamic programming based algorithm
to determine the new query plan for the input query when
one operator kernel is further optimized to have one better
implementation. In particular, the implementation has smaller
unit cost and relatively low resource utilization.

We integrate our the FPGA-specific cost model into Om-
niDB [14, 15, 36], and evaluate the proposed design on an
Altera Stratix V GX FPGA. The experiments show that 1) our
cost model is able to accurately predict the performance of
each feasible query plan for the input query, and to guide
the generation of the optimal query plan, 2) the proposed
cost model achieves a 1.5×–4× performance speedup in the
database query processing over running OmniDB on FPGA.
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Fig. 1: Architecture Overview of Altera OpenCL SDK

The main contributions of this work are summarized as
follows:

• We explore the implementations of each operator ker-
nel using different FPGA-specific optimization com-
binations (such as CU and SIMD).

• We present a dynamic programming-based approach
to generate the optimal execution plan for the input
query, so that the optimal query plan (the proper
optimization combination for each kernel and the
number of FPGA images) can be determined in less
than a minute.

• We evaluate the feasible execution plans with multiple
FPGA images on OpenCL-based FPGAs.

The remainder of the paper is organized as follows. In Section
II, we introduce the background of OpenCL-based FPGA and
database query processing. In Section III, we present two
observations of this study. We present the system overview
in Section IV, and the details on the query plan generation in
Section V. We present the experiment results in Section VI.
We review the related work in Section VII and conclude and
present our future work in Section VIII.

II. BACKGROUND

A. Altera OpenCL SDK
Altera OpenCL SDK [1] abstracts away the complexities

involved in programming FPGAs with HDL, and the FPGA
bitstream file is directly created by compiling the input Open-
CL kernel file. It takes hours to successfully generate a single
bitstream file. With Altera OpenCL SDK, the FPGA is viewed
as a massively parallel architecture and a single OpenCL kernel
can have one or more kernel pipelines (i.e., compute units),
which increases the parallelism of the kernel. An example
kernel with 2 kernel pipelines is shown in Figure 1.

The FPGA memory hierarchy has three layers. a) Global
memory with high latency and low bandwidth which resides
in the DDRs of the FPGA board, b) Local memory with low
latency and high bandwidth, and c) Private memory that stores
data associated with each work item, existing in Pipeline, as
shown in Figure 1. An OpenCL kernel consists of multiple
work groups, and each work group consists of multiple work
items. Both the local and private memories are located within
the FPGA. Local memory has four banks and acts as scratch
pad for one compute unit.

Recent OpenCL frameworks on FPGAs have already ex-
plored the three optimization methods that are originally
proposed for GPUs: thread parallelism (TP), local memory
(SM) and memory coalescing (MC). TP allow users to employ
multiple work items to achieve the thread parallelism. SM
employs local memory to buffer the intermediate data and
then the number of global memory accesses is reduced. MC
combines multiple global memory transactions with small data

size into one coalesced global memory transaction so that the
number of global memory accesses is reduced.

Besides, we also employ two FPGA-specific optimizations
on our OpenCL kernels: CU and SIMD.

CU: If there are sufficient hardware resources available
within the FPGA, then the kernel pipeline can be replicated to
generate multiple compute units to achieve higher throughput.
The inner hardware scheduler automatically dispatches the
work groups among compute units.

SIMD: It can be applied to translate multiple scalar
arithmetic operations to a single vector arithmetic operation.
With SIMD, the number of total work items can be reduced,
while each work item has the same amount of workload.

B. Query Processing
In relational databases, an SQL query is executed based on

a query plan generated by the database system. A query plan is
defined as an ordered set of steps (i.e., operators) that is used to
retrieve and process data from a database. It is represented by a
tree structure. For a database system implemented in OpenCL
(OmniDB in this study), each operator is implemented as one
or more OpenCL kernels.

When an SQL query is submitted to a database system,
the system performs a number of steps for query processing,
including parsing the input query to generate a query plan,
optimizing the query plan and then evaluating the optimized
query plan. In OmniDB, a query is evaluated by executing the
OpenCL kernels for each of the operator in the query plan.

Figure 2 shows the query plan for the following query Q4,
where ‘key’ (or ‘payload’) is an attribute of both the relations
R and S, and ‘Lo’ (‘Hi’) is the lower (upper) bound for the
selection.

Q4: SELECT R.key, R.payload, S.payload FROM R, S
WHERE Lo <= S.key <= Hi AND R.key = S.key
ORDER BY R.key

S R 

Sort 

Join 

Selection 

Fig. 2: A example query (Q4) and its query tree

III. OBSERVATIONS

Our FPGA-specific cost model is motivated by the fol-
lowing two observations. First, for the same operator/query
processing, different optimization combinations can result in
significantly different resource consumptions and different
execution times. Second, FPGA reconfiguration overhead is an
important performance factor for generating the optimal query
plan when multiple FPGA images are considered. The detailed
experimental setup can be found in Subsection VI-A.

A. Impact of Optimization Combination
The scanLargeArrays kernel is one of three kernels belong-

ing to the primitive prefix scan (i.e., prefix sum) [36]. Figure 3
shows the impact of different optimization combinations on the
execution time and resource utilization of the scanLargeArrays
kernel when the input table has 128M tuples. We give the
utilization of LUTs, REGs, RAMs and DSPs, and also present
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Fig. 3: The scanLargeArrays kernel with different optimiza-
tions has different performance and resource utilization.

the execution time, where CU = x stands for x number of CUs
for the kernel scanLargeArrays. The exact meanings of the
scanLargeArrays kernel are not important here, and we present
more details in Section IV-A1. The results clearly show that a
considerable decrease in total execution time can be achieved
by applying more aggregative optimization, which results in
an increase in resource utilization.

B. FPGA Reconfiguration Overhead
According to Altera, the FPGA reconfiguration overhead

includes the following two components for current OpenCL-
based FPGA boards.

The first component of the reconfiguration overhead is the
time taken to fully reconfigure the FPGA, denoted by F O. In
particular, the new bitstream is transferred to FPGA context.
Then, the PCIe bus and DDR controller are re-initialized. Since
this bitstream loading delay is generally stable, we model it as
a constant.

The second component includes the time to transfer the
active contents (memory footprint) of the FPGA memory to
host memory via PCIe before the full reconfiguration and
the time to transfer the active contents from host memory to
FPGA memory after the full reconfiguration. This transfer of
active contents is needed since FPGA memory contents can
be corrupted during the re-initialization of DDR controller.
Also, the Altera FPGA under study does not support runtime
partial reconfiguration when using OpenCL. The time for this
component is linear to the memory footprint, with respect to
the bandwidth of PCI-e bus. The corresponding ratio of the
time to the memory footprint is denoted by U T.

Therefore, the relationship between the FPGA reconfigu-
ration overhead (denoted by reconf overhead) and the FPGA
memory footprint (denoted by buffer size) can be linear, as
shown in Equation 1.

reconf overhead = U T ∗ buffer size+ F O (1)

In order to identify U T and F O, we collect five pairs of
training data sets, each of which is of the form (buffer size,
reconf overhead). We use a linear regression model with the
least square fitting to predict the reconfiguration overhead. The
linear regression model achieves a reasonably high accuracy in
predicting the reconfiguration overhead. And we observe that
U T is 0.993 ms/MB and F O is 1914.6 ms.

IV. SYSTEM OVERVIEW

Two observations in Section III, motivating our study
of query processing on OpenCL-based FPGAs, are 1) more
aggressive optimizations which require more FPGA resources
can have better performance for each kernel which means

Storage Relations Indexes 

Access methods (scan, B+-tree and 
hash index) 

Data-Parallel Primitives (map, 
filter, split etc.) 

Operators (Selection, projection, join, 
sort, aggregation etc. ) 

Fig. 4: The layered design of query processor, adopted from
OmniDB [36]

multiple FPGA images can reduce the execution time of the
input query, 2) the latency for FPGA reconfiguration is a
non-negligible overhead which can impact the performance
of query processing on OpenCL-based FPGAs. Therefore,
there is an FPGA-specific performance tradeoff. Hence, how
to efficiently utilize FPGA resources, by using appropriate
optimization combination for each kernel and multiple FP-
GA images, is critical to achieve the good performance on
OpenCL-based FPGAs. Our FPGA-specific cost model can
generate the optimal query plan by estimating the execution
times of all the feasible query plans for the input query plan
and then choosing the query plan with minimum estimation
time.

In the following, we present the implementation details of
query processor as well as the FPGA-specific cost model.

A. Implementation of Query Processor
As a start, we study OmniDB, state-of-the-art database

designed and implemented in OpenCL [36]. As OmniDB is
originally designed for CPU/GPU, we need to revisit its design
and implementation on the abstraction of OpenCL SDK on
FPGAs, as shown in Figure 4.

The query processor of OmniDB is implemented using a
layered design: storage, data-parallel primitives, access meth-
ods, and operators. The primitives are data-parallel operations
which are used as basic blocks for implementing operators.
We adopt the implementation of primitives and operators from
OmniDB [36], and focus on the impact of FPGA-centric
optimization techniques to the existing implementations. More
details of the design and implementation of individual kernels
can be found in [36]. One advantage of the primitive-based
approach is that all the corresponding operators can have the
speedup when the specific primitive is accelerated. We briefly
describe the primitives and operators on FPGAs.

1) Primitives: The primitives, which form the relational
operators, are implemented using OpenCL kernels with differ-
ent optimization methods for query processing.

Map: The map primitive applies the input map function
to every tuple in the input relation. The implementation, with
only one OpenCL kernel (map), has already explored the two
optimization methods: TP and MC. Both can lead to the good
performance on GPUs and FPGAs. Besides, we also explore
one FPGA-specific optimization method (CU) to accelerate the
kernel performance of map primitive. However, SIMD cannot
work since the memory output address is random.

Scatter and Gather: The scatter primitive performs se-
quential reads from the input relation and indexed writes to



the output relation with input location array, while the gather
primitive performs indexed reads from the input relation with
input location array and performs sequential writes to the
output relation. When the input locations are random, scatter
and gather can both have the property of random memory
access. Therefore, the existing optimal implementations for
GPUs employ multi-pass optimization scheme [13] to effi-
ciently utilize the GPU cache and then improve the temporal
locality of indexed memory accesses. However, as FPGAs do
not possess the cache hierarchy of CPUs/GPUs, we use the
one-pass implementation. The implementation of scatter (or
gather) primitive, with only one OpenCL kernel scatter (or
gather), has already explored the two optimization methods:
TP and MC. Besides, we also explore one FPGA-specific
optimization method (CU) to accelerate their performances.
However, SIMD cannot work since the memory input (or
output) address of gather (or scatter) primitive is random.

Prefix scan: It is an important building block for many
parallel database applications [12], such as filter and aggre-
gation. Its parallel implementation [36] contains three Open-
CL kernels (scanLargeArrays, prefixSum and blockAddition),
and they are executed sequentially. The implementations of
scanLargeArrays and prefixSum kernels have already explored
the three optimization methods: TP, SM and MC. Besides,
we also explore one FPGA-specific optimization method (CU)
to accelerate the two kernels. However, SIMD cannot work
since consecutive work items suffer from path divergences. The
implementations of blockAddition kernel have already explored
the two optimization methods: TP and MC. Besides, we also
explore two FPGA-specific optimization methods (CU and
SIMD) to accelerate the kernel. Because the execution time
of kernel prefixSum is very small compared with other kernels
in this primitive, it has only one optimization combination.

Filter: The filter primitive produces a subset of tuples
from an input relation with the input filter condition. Its
implementation contains three primitives (map, prefix scan
and scatter), which are executed sequentially. The detailed
implementation for each primitive has been described above.

Reduce: The reduce primitive computes a value (using the
specific arithmetic function) from input relation, based on the
specific key. Its implementation [36] utilizes the optimization
method SM to reduce the number of global memory accesses.
Besides, we also explore the FPGA-specific optimization
method (CU) to accelerate performance. However, SIMD
cannot work since consecutive work items suffer from path
divergences.

Sort: The sort primitive transforms the input relation of
unordered tuples into the output relation of tuples ordered
based on the specific input key. Based on the implementation
from OmniDB, we further apply the optimization method
SM to improve the temporal locality and then improve the
sorting performance. We also employ optimization method
(kernel fusion) to merge the similar kernels and then only two
OpenCL kernels (bitonicSortShared and bitonicMergeGlobal)
are required in our implementation. They are executed repeat-
edly. The kernel (bitonicSortShared) employs the optimization
method SM. Besides, both kernels can explore the optimization
method (CU), where L CU stands for the number of CUs for
kernel (bitonicSortShared) and G CU stands for the number of
CUs for kernel (bitonicMergeGlobal). However, SIMD cannot
work for two kernels since consecutive work items suffer from

path divergences.

2) Relational Operator: Each relational operator is com-
prised of one or more primitives. We briefly present the
implementation for completeness.

Selection: The relational operator selection is implemented
by the primitive filter, and the predicate evaluation of selection
is corresponding to the filter function of primitive filter.

Order-by: The relational operator Order-by is implemented
by the primitive sorting.

Grouping and Aggregation: The grouping is implement-
ed by the two primitives sort, prefix scan and the kernels
scanGroupLabel, groupByImpl write. We explore the FPGA-
specific optimization method (CU) to accelerate both kernels
(scanGroupLabel and groupByImpl write). The aggregation is
implemented by the primitive reduce.

Joins: The relational operator hash join takes two relations
as input, and finds the matching tuple pairs from the two
relations according to the join predicate. In the paper, we
mainly focus on the simple hash join [36]. It has two kernels,
buildTable and probeTable. We explore the FPGA-specific op-
timization method (CU) to accelerate both kernels. Besides, we
also explore the FPGA-specific optimization method (Local)
to use local memory based lock instead of the default global
memory based lock.

B. FPGA-specific Cost Model
In order to efficiently generate the optimal query plan,

our FPGA-specific cost model needs to estimate the execution
times of feasible query plans for the input query and then
chooses the query plan with minimum execution time. The
cost model, following layered design, has two components:
unit cost and optimal query plan generation. The description
of each component is shown in the following.

1) Unit Cost: Since the specific implementations of Open-
CL kernels are not made available to users, it is very difficult
to accurately develop an analytical model for each database
operator kernel. Therefore, we treat the OpenCL-based FPGAs
as a black box and measure the unit cost of each operator
kernel with different optimization combinations, each of which
requires different amount of FPGA resources. The unit cost of
each kernel is supposed to be the number of total clock cycles
(not the elapsed time) divided by the number of tuples in the
input relation, since the evaluated kernel can have different
frequency when it stays at different FPGA images each of
which may have various other OpenCL kernels in the practical
implementation. We experimentally measured the unit costs
of each kernel with different optimization combinations. We
calculate the total cost of a kernel as the unit cost multiplied
by the number of input tuples for the kernel. Due to the
layered design of OmniDB, we can estimate the cost of each
primitive/operator similarly.

For each primitive, we study the unit cost of applying
different optimization techniques to its implementation. In
particular, we log down each implementation with the format:
(CU, SIMD, LEs, REGs, BRAMs, DSPs, Unit cost). Clearly,
we observe that different optimization techniques result in very
different unit costs, which should be factored into the query
plan generation.

2) Optimum Query Plan Generation: The input query
consists of multiple operators, each of which consists of
multiple OpenCL kernels. Since each kernel has multiple



TABLE I: Summary of parameters
Name Definition

N Number of kernels at the operator kernel array

Ki Kernel i at the kernel array, 1 ≤ i ≤ N

Si Kernel array with kernels (K1, . . . , Ki), 1 ≤ i ≤ N

T one
j...i Minimum execution time for kernels Kj , . . . , Ki in one image

Cone
j...i The optimization combination for kernels Kj , . . . , Ki in one image with minimum execution time

Ri Reconfiguration overhead when kernel Ki has one new image

Tdp
i Minimum execution time to compute the kernel array Si (considering multiple FPGA images), Tdp

0 = 0

Zj Number of candidate implementations with different optimization combinations for kernel Kj

Ci Information (optimization combination for each kernel and number of FPGA images) of kernel array Si

implementations (unit cost, resource utilization), we present
a dynamic programming based approach to determine the
optimal query plan, which consists of the proper optimization
combination for each kernel and the number of FPGA images.
Therefore, the input query can achieve the best performance
on OpenCL-based FPGAs. The implementation details are
described in Section V.

Summary: The layered design of our cost model has
the advantage of effectively adding new optimizations for
each operator. When an operator is further optimized with
any of the FPGA-centric optimizations (discussed in Subsec-
tion IV-A), the cost model only needs to profile new (unit
cost, resource utilization) pairs and then re-run the query
plan generation. People can still keep exploring other FPGA-
specific optimizations, e.g., kernel fusion and loop unrolling,
to further accelerate primitives on FPGAs, and then produce
more efficient (unit cost, resource utilization) pairs.

V. GENERATION OF OPTIMUM QUERY PLAN

In this section, we present the problem formulation, fol-
lowed by the dynamic programming based approach which is
used to generate the optimal query plan. Table I summarizes
the key parameters in the section.

A. Problem Formulation
Given the input query, our goal is to achieve the optimal

query plan which requires the minimum execution time on
OpenCL-based FPGAs. Since the input query, in terms of
operators, is represented using an operator tree, we employ the
topological sorting [19] to generate all the feasible solutions
(operator arrays). We evaluate all the feasible operator arrays
and then select the optimal operator array which requires the
minimum execution time.

The operator array consists of M relational operators (O1,
O2, . . . , OM ), which are executed one by one on OpenCL-
based FPGAs. Since each operator Oi consists of ni OpenCL
kernels the operator array is converted to a kernel array
with N OpenCL kernels (K1, K2, . . . , KN ). In this paper,
we do not consider the case where several operator kernels
execute concurrently, concurrent execution of several kernels
cannot always achieve better performance due to the memory
interference, given the very limited memory bandwidth on
FPGAs. Therefore, the original problem of generating the
optimal query plan is converted to the problem of minimizing

the execution time (denoted as T dp
N ) of the kernel array.

B. Dynamic Programming Approach
Dynamic programming is an efficient algorithmic design

approach for complex problems [3]. In the dynamic pro-
gramming approach, a complex problem (finding the optimal
query plan among all the feasible query plans) is solved

Algorithm 1: DYNAMIC PROGRAMMING ALGORITHM

Input : N , T one
j...i, Cone

j...i and Ri as defined in Table I.

Output : Ci and Tdp
i as defined in Table I.

1 Tdp
0 = 0;

/* Compute optimal substructure Tdp
i at the loop i */

2 for (i ← 1 to N ) do
/* T_min is initialized to be ∞. */

3 T min ← ∞;
4 for (j ← 0 to i − 1 ) do
5 T temp = Tdp

j + T one
j+1...i + Rj+1;

6 if (T temp < T min) then
7 T min = T temp;
8 config tmp = {Cj , j, Rj+1, Cone

(j+1)...i};

9 end
10 end
11 Tdp

i = T min;
12 Ci = config tmp;
13 end

by breaking it down into a series of simpler subproblems
(minimizing the execution time of kernel sub arrays), solving
these subproblems and then using the solution of these sub-
problems to evaluate the result of the complex problem.
The overlap of these sub-problems is used to reduce the

computation time of our program. Now we define T dp
i to be

the minimum execution time for the kernel array with i kernels
(1,. . . , i), where i ranges from 1 to N . The corresponding
implementation is shown in Algorithm 1.

Since the kernel array S0 is empty, T dp
0 is set to 0 (Line

1). T dp
i is computed during the ith iteration of the outer loop

(Lines 2-13). Once T dp
N is computed, the outer loop terminates

and the optimal query plan is generated. Also initially T min
is set to infinity (Line 3) to make sure that all feasible solutions
are considered.

Each iteration of the inner loop (Lines 4-10) evaluates
one feasible solution for the sub-array (K1, K2, . . . , Ki). In
particular, the jth iteration (0 ≤ j ≤ i − 1) of the inner loop
evaluates the execution time of the kernel sub array Si as the
sum of three components (Line 5). The first component is the

minimum execution time (T dp
j ) of the kernel sub-array Sj , the

second component is the minimum execution time (T one
(j+1)...i)

of the kernel array (Kj+1, Kj+2, . . . , Ki) with the optimal
configuration Cone

(j+1)...i in one FPGA image, and the third

component is the reconfiguration overhead (Rj+1) since the
kernel array (Kj+1, Kj+2, . . . , Ki) belongs to one new FPGA
image. The detailed evaluations of T one

(j+1)...i and Rj+1 can be

found in our technical report [34]. This sum is then stored in
T temp. To evaluate T temp in each iteration of the inner
loop j, we employ the concept of dynamic programming by

reusing the value of (T dp
j ) computed in the previous outer loop

j so that the redundant computation can be reduced.

When T temp is smaller than T min (Line 6), T min



is set to be T temp (Line 7) and the corresponding config-
urations (including Cj , j, Rj+1 and Cone

(j+1)...i) are stored in

config tmp (Line 8). Since the inner loop j iterates through
every possible implementation for the sub-array of i kernels,
T min is guaranteed to be the minimum possible execution

time for these kernels. Finally, T dp
i is set to be T min (Line

11), and Ci to config tmp (Line 12).

VI. EXPERIMENTAL EVALUATION

In this Section, we firstly present the experimental setup,
secondly we evaluate our cost model which generates the op-
timal query plan, and thirdly evaluate the overall performance
speedup of our proposed design.
A. Experimental Setup

Hardware configuration. We conduct our experiments on
a Terasic DE5-Net board with an Altera Stratix V FPGA and
4GB 2-bank DDR3 device memory. We design our kernels
using Altera OpenCL SDK version 14.0. The FPGA board is
connected to the host via a x8 PCI-e 2.0 interface.

Workloads. Four queries (Q1, Q2, Q3 and Q4) are evalu-
ated, as shown in Table II. Those four queries are defined to
be simple enough to cover the evaluated features. We plan to
have a more complete evaluation with TPC-H queries.

We use column stores for query processing on OpenCL-
based FPGAs. Each tuple of input relations R and S has the
format <key, payload>. Both keys and payloads are random
4-byte integers and the number of tuples ranges from 1M
to 128M so that the input can fit into the FPGA memory.
However, the number of input tuples for Q4 ranges from 1M to
64M because input data with 128M tuples cannot fit inside the
FPGA due to the larger memory footprint of Q4 as compared
to the other three queries.

TABLE II: Evaluated Queries

ID Queries

Q1 SELECT * FROM S
WHERE Lo ≤ S.key ≤ Hi

Q2 SELECT S.key, MAX(S.payload) FROM S
GROUP BY S.key

Q3 SELECT S.key, SUM(S.payload) FROM S
WHERE Lo≤S.paylaod ≤ Hi
GROUP BY S.key

Q4 SELECT R.payload, S.payload FROM R, S
WHERE Lo≤S.key≤ Hi AND R.key=S.key
ORDER BY R.payload

B. Cost Model Evaluation
In this subsection, our cost model firstly analyzes the

relationship between optimization combination and unit cost
for each kernel, secondly generates the proper query plan for
each query, thirdly analyzes the break-even points for each
query and finally we present the performance breakdowns.

1) Unit Cost: We exhaustively evaluate all the optimization
combinations subject to two conditions: (i) more aggressive
optimization combinations are considered only if they improve
the performance of the kernel when compared to a less aggres-
sive optimization combination and (ii) the resulted hardware
must be able to fit into one FPGA. In particular, we take
the kernel blockAddition of the prefix scan primitive as an
example. Nine optimization combinations were explored, and
the relationship between resource consumption and unit cost
is shown in Table III. Different optimization combinations
may have different unit costs for the same kernel. More

TABLE III: Unit cost for blockAddition
CU SIMD LUTs REGs RAMs DSPs Unit cost

1 1 7275 10305 80 0 1.05

1 2 7010 10163 80 0 0.53

2 1 13689 19462 160 0 0.66

2 4 7010 10163 80 0 0.53

1 8 7395 10877 80 0 0.14

4 8 26997 40064 320 0 0.12

1 16 8240 12108 80 0 0.11

8 4 50333 74556 640 0 0.11

2 16 15619 23068 160 0 0.19
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Fig. 5: Queries implemented with kernels

SIMDs always yield better performance since the memory
transactions are coalesced and then the total number of
memory transactions is reduced. One interesting finding here
is that more CUs cannot yield better performance since the
kernel blockAddition is memory-intensive and more CUs do
not reduce the number of global memory transactions. For
example, the unit cost of the optimization combination (CU=1,
SIMD=16) is less than that of combination (CU=2, SIMD=16).
Therefore, the first condition is satisfied and we do not need to
try more aggressive optimizations (more CUs) even when the
FPGA has enough resource to support them. The optimization
combination (CU=1, SIMD=16) can roughly achieve the best
performance with reasonable FPGA resource requirement.

Because of page limitation, we cannot analyze all the
eleven kernels used in the four queries. So we only present
the number of optimization combinations (Number field) and
the best optimization combination (with LUTs, REGs, RAMs,
DSPs, UC fields) for each kernel (shown in Table IV).
The Number filed shows the exploration space (optimization
combinations) for each kernel.

2) Query Plan Generation: For each query (Q1, Q2, Q3
or Q4), we choose the kernel array which has the minimum
execution time, as shown in Figure 5.

Each kernel might have different optimization combina-
tions and then have different unit costs. In the following, we
briefly present the details on how to determine the optimization
combination for each kernel and number of FPGA images,
so that the execution time for the input query is minimized.
Overall, our cost model can efficiently guide the optimal
query plan generation for all the tested queries upon different
configurations. Take Q3 for example.



TABLE IV: Summary of unit costs (UCs) for 11 kernels
Kernel Number Best Combination LUTs REGs RAMs DSPs UC

sort 6 L CU = 10 , G CU = 2 99192 291232 2138 0 26.63

buildTable 5 CU = 1 , Local = 1 9032 21341 248 2 9.22

probeTable 4 CU = 8 , SIMD = 1 137973 224924 1728 72 7.74

groupBy write 4 CU = 8 , SIMD = 1 27357 87332 472 32 5.04

GroupLabel 5 CU = 16 , SIMD = 1 96877 187964 1056 64 1.46

ScanLargeArrays 5 CU = 10 , SIMD = 1 111131 223228 1650 80 0.7

gather 4 CU = 8 , SIMD = 1 70757 134268 1040 0 0.55

map 4 CU = 8 , SIMD = 1 31725 55924 304 0 0.4

reduce 4 CU = 8 , SIMD = 1 103803 195320 1572 60 0.2

blockAddition 9 CU = 1 , SIMD = 16 8240 12108 80 0 0.11

prefixSum 1 CU = 1 , SIMD = 1 10598 20726 137 8 0.001

TABLE V: Resource consumptions of FPGA images for Q3
Execution Plan 1

FPGA image LUTs REGs RAMs DSPs Freq.

E 151460 339134 2175 42 198

M 154509 283131 1973 34 233

Execution Plan 2

FPGA image 1 LUTs REGs RAMs DSPs Freq.

E 1 187738 349051 2416 72 182

M 1 184082 334093 2342 72 192.5

FPGA image 2 LUTs REGs RAMs DSPs Freq.

E 2 179428 331045 2538 0 163

M 2 134629 346087 2421 0 182

FPGA image 3 LUTs REGs RAMs DSPs Freq.

E 3 155187 294559 1950 90 223

M 3 171434 348651 2112 90 203

Q3. When the number of input tuples is less than 16M, the
cost model recommends the Execution Plan 1 which contains
only one FPGA image, and the corresponding optimizations
are 1 CU for map, 1 CU for gather, 2 S CUs and 1 G CU for
sort, 1 CU for scanGroupLabel, 2 CUs for scanLargeArrays,
1 CU for prefixSum, 1 CU and 16 SIMDs for blockAddition,
1 CU for gather, and 1 CU for reduce. The estimated and
measured resource consumptions and frequency of the FPGA
image (Execution Plan 1) are shown in Table V. When the
number of input tuples is more than 16M, the cost model
recommends the Execution Plan 2 which contains three FPGA
images. In particular, the first image has five kernels and the
corresponding optimizations are 2 CUs for map, 8 CUs for
scanLargeArrays, 1 CU for prefixSum, 1 CU and 16 SIMDs for
blockAddition, and 4 CUs for gather; the second image con-
tains only one kernel sort, whose optimizations are 10 S CUs
and 2 G CUs. The third image contains six kernels and the
corresponding optimizations are 8 CUs for scanGroupLabel,
2 CUs for scanLargeArrays, 1 CU for prefixSum, 1 CU and
16 SIMDs for blockAddition, 8 CUs for gather and 1 CU for
reduce. The estimated and measured resource consumptions
and frequencies of two FPGA images (Execution Plan 2) are
shown in Table V.

3) Break-even Points for Four Queries: Figure 6 shows the
measured and estimated elapsed times of the input queries (Q1,
Q2, Q3 and Q4), with different numbers of input tuples (1M,
2M, . . . , 128M), where x Measured is the real execution time
for the Execution Plan x, x Estimated is the estimated time
for the Execution Plan x, and x is equal to 1 or 2. However,
128M tuples would not fit inside the global memory for Q4,
and thus Figure 6d does not include the results for 128M.

The experimental result shows that our cost model can
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Fig. 6: Cost model evaluation for four queries

roughly predict the performance for each query with different
number of input tuples under different execution plans.

Our cost model can determine the break-even points be-
tween two execution plans for queries (Q2, Q3 and Q4). When
the number of input tuples is less than 16M, Execution Plan
1 with only one FPGA image is faster than Execution Plan 2
with two (three) FPGA images, since the corresponding FPGA
reconfiguration overhead dominates the total execution time.
That is, it does not have any advantage when multiple FPGA
images are used. When the number of input tuples is larger
than 16M, Execution Plan 1 is slower than Execution Plan 2,
since the kernel execution time dominates the whole execution
time. In summary, our cost model can accurately recommend
the optimal execution plan for queries (Q2, Q3 and Q4) with
different number of input tuples.

4) Performance Breakdowns: Because of page limitation,
we only present the time breakdowns for the query Q3
with 8M and 64M input tuples, as shown in Figures 7a
and 7b, respectively. x Measured means the execution time for
Execution Plan x and x Estimated means the estimated time
for Execution Plan x provided by our cost model, where x is
equal to 1 or 2. filter stands for five OpenCL kernels (map,
scanLargeArrays, prefixSum, blockAddition and gather), and
scan gather reduce stands for the five kernels (scanLargeAr-
rays, prefixSum, blockAddition, gather and reduce).

Time breakdown with 8M input tuples. Execution Plan 1
has the better performance than that of Execution Plan 2 since
the FPGA reconfiguration overhead from Execution Plan 2 is
larger than the benefit from the reduced execution time when
using multiple FPGA images. Since there are three FPGA
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Fig. 7: Time breakdowns for Q3

images, two FPGA reconfigurations are required and hence,
the corresponding reconfiguration overhead takes the majority
of total execution time for Execution Plan 2. In particular,
the time for first FPGA reconfiguration exists at the kernel
sort, since Altera OpenCL SDK [1] counts the reconfiguration
time into the execution time of the first kernel sort in the
second FPGA image. Similarly, the time for the second FPGA
reconfiguration is shown along with the execution time of the
kernel scanGroupLable in the third FPGA image.

Time breakdown with 64M input tuples. Execution Plan
2 has the better performance than that of Execution Plan
1 since the FPGA reconfiguration overhead (Execution Plan
2) is less than the benefit from the reduced execution time
when using multiple FPGA images. With multiple FPGA
images, each operator kernel of the query plan can have more
aggregative optimizations. Our cost model can choose the right
execution plan (with multiple FPGA images) for this case as
well.

In summary, our cost model can roughly predict the
performance for all the kernels with FPGA reconfiguration
overhead and then choose the right execution plan (Execution
Plan 1 (or 2)) for the query Q3 with 8M (or 64M) input tuples.

C. Performance Comparison
Figure 8 shows the performance speedup of each input

query over the original OmniDB implementation (1 CU and 1
SIMD for each kernel), which is also recommended by Altera
Opencl optimization tool [1]. When the number of input tuples
is less than 16M, our cost model recommends the Execution
Plan 1 for each query (Q1, Q2, Q3 and Q4). The performance
speedup (1.5×–4×) is roughly stable for each query over the
original OmniDB implementation. However, our cost model
recommends Execution Plan 1 for query Q1 even when there
are more than 16M input tuples, since the reduced computation
time is limited for Q1.

More interestingly, when the number of input tuples is
larger than 16M, our cost model recommends Execution Plan
2 (which has multiple FPGA images) for queries Q2, Q3 and
Q4. The speed up achieved by our implementation over the
original omniDB implementation increases as the number of
input tuples increases.

VII. RELATED WORK

Although multicore CPUs and GPUs have been the major
research platform for database query processing systems [5,
12], FPGAs are gaining popularity due to technology advances
in programmable devices [23, 28]. The related studies of
accelerating databases on FPGAs can be roughly divided into
two categories: individual operators and queries.

Accelerations of individual operators: There have been a
number of studies on accelerating individual database opera-
tions with FPGAs, such as selection, projection, aggregation,
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Fig. 8: Performance speedup over OmniDB (on FPGA)

sorting and hash table [2, 4, 6, 10, 11, 17, 20, 24, 32],
where FPGA is used as an accelerator. Besides, FPGA can
also act as an additional hardware component in a database
system to support its processing operations [18]. Most of those
studies are based on low-level hardware description lanugages.
Instead, this paper focuses on how the OpenCL framework and
its features can be leveraged to improve the performance.

Accelerating queries: Glacier [25] is a query-to-hardware
compiler with library which can only support streaming op-
erators, not all the database operators. Partial dynamic recon-
figuration [9] is employed to support fast switch from one
query to the next query using RTL. However, our approach
can only support full reconfiguration since our approach is
based on OpenCL which cannot support partial reconfiguration
now. [9] can only support projections and restrictions while our
approach can support all database operators.

With the OpenCL programming support on FPGAs, plenty
of recent works [16, 22, 26, 27, 29–31, 33, 35] have gained
great success in accelerating different a kind of applications.
In contrast, this study focuses on how to optimize existing
OpenCL-based databases on FPGAs.

VIII. CONCLUSION

The recent OpenCL SDKs released by FPGA vendors
have enabled programmers to design and implement database
systems on FPGAs in OpenCL. In this abstraction, database
query processing can be viewed as the execution of a series
of OpenCL kernels. Each kernel can have very different
optimization combinations, which results in very different
resource usages and performances. In this paper, we propose
the FPGA-specific cost model to determine the optimal query
plan for the input query. The experiments show that 1) our
cost model can accurately predict the performance of each
feasible query plan for the input query, and is able to guide
the generation of the optimal query plan, 2) our optimized
query plan achieves a performance speedup 1.5×–4× over the
state-of-the-art query processing on OpenCL-based FPGAs.
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