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Understanding and Optimizing Conjunctive
Predicates under Memory-efficient Storage

Layouts
Zeke Wang, Xue Liu, Kai Zhang, Haihang Zhou, Bingsheng He

Abstract—Database queries can contain multiple predicates. The optimization of conjunctive predicates is still vital to the overall
performance of analytic data processing tasks. Prior work proposes several memory-efficient storage layouts, e.g., BitWeaving and
ByteSlice, to significantly accelerate predicate evaluation, as circuit-level intra-cycle parallelism available in modern CPUs can be
exploited such that the total number of instructions can be dramatically reduced. However, the performance potential of conjunctive
predicates has not been harvested yet under such storage layouts as there is no accurate cost model to provide necessary insights
that guide the optimization process. In this paper, we propose a hybrid empirical/analytical cost model (Understanding) to unveil the
performance characteristics of such storage layouts when applying to predicate evaluation. Our cost model takes into account effect of
non-linear factors, e.g., cache miss and branch misprediction, and easily applies to different CPUs. The main finding from our cost
model is to distinguish high-cost instruction (which suffers from cache miss and/or branch misprediction) from low-cost instruction
(which enjoys cache hit and correct branch prediction) in the context of predicate evaluation under these storage layouts. Guided by
such a finding, we propose a simple execution scheme Hebe (Optimizing), which is order-oblivious while maintaining high
performance. Hebe is attractive to the query optimizer (QO), as the QO does not need to go through a sampling process to decide the
optimal evaluation order in advance. The intuition behind Hebe is to significantly reduce the number of high-cost instructions while
keeping low-cost instructions unchanged. Our finding from Hebe sheds light on the importance of accurate cost model that guide us to
derive an efficient execution scheme for query processing on modern CPUs.

Index Terms—Database, Conjunctive Predicates, Storage Layout, CPU.
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1 INTRODUCTION

Decision support queries often contain conjunctive predicates in
data warehouses. For example, most TPC-H queries contain at
least two predicates. The optimization of queries with conjunctive
predicates is challenging since the exploration space is large. Take
the conjunction p(1)

∧
p(2) of two predicates p(1) and p(2)

as an example. They are evaluated with either logical-and &
or branching-and && [33]. The conjunction outputs the result
bit vector, where one bit indicates the result of one tuple. The
former evaluates the two predicates independently to generate
one-bit result for each predicate. It then performs the logical
and operation on the two one-bit results. Suppose branching-and
will evaluate p(1) first. If its outcome is false, the final result
(false) is determined and there is no need to evaluate p(2). If it is
true, p(2) is evaluated and then its outcome determines the final
result. In sum, logical-and is oblivious to the evaluation order but
it has to evaluate all the involving predicates, without exploring
any cut-off condition (i.e., short-circuit) among predicates (the
cut-off condition among predicates is called inter-predicate cut-
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off condition). In contrast, branching-and explores inter-predicate
cut-off condition and thus is sensitive to predicate order.

In order to accelerate predicate evaluation, several memory-
efficient storage layouts [11], [22] are proposed to reduce the
number of required instructions by exploring intra-predicate cut-
off condition, which exploits the cut-off condition within a pred-
icate. Intuitively, the final result of a code evaluating a predicate
can be determined after evaluating its partial bits (not all the bits).
These storage layouts vertically partition the codes of one column,
resulting in several memory regions to store the column, where
the codes are generated from the column values using dictionary
compression [10], [22]. The memory region (MR) denotes a data
structure that stores data in a sequence. Under these storage
layouts, the early stopping technique has been proposed to fully
exploit the intra-predicate cut-off condition when evaluating a
predicate. To illustrate, consider two 7-bit codes (v1 = 0000101,
v2 = 0100100) try to evaluate the predicate p̂ : v < 0110110,
where p̂ indicates that the predicate p is evaluated under memory-
efficient storage layouts. We can observe that v1 (or v2) can
terminate its evaluation after evaluating the first two (or three)
bits, with the last evaluated bit underlined. Therefore, there is
no need to evaluate the remaining bits. Through these memory-
efficient storage layouts, the execution of scan with one single
predicate can achieve high CPU efficiency with the help of the
early stopping technique, which significantly reduces the number
of evaluated instructions and the amount of memory traffic.

When evaluating conjunctive predicates p̂(1)
∧
p̂(2) under

these storage layouts [11], [22], the state-of-the-art approach is the
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Fig. 1: Discrepancy between time and instruction reductions: 30%
instruction reduction only leads to 13% time reduction.
column-first execution model (denoted by p̂(1)&&p̂(2)), where
the tuples that do not satisfy p̂(1) do not need to evaluate p̂(2). In
other words, the evaluation of p̂(2) can take advantage of the inter-
predicate cut-off condition stemming from p̂(1). Meanwhile, both
p̂(1) and p̂(2) can fully explore their own intra-predicate cut-off
conditions. In sum, the column-first execution model has explored
cut-off conditions in two dimensions (i.e., intra-predicate and
inter-predicate) to improve the overall evaluation performance.

Despite the effectiveness of exploiting inter-predicate cut-off
condition (from the column-first execution model) and exploiting
intra-predicate cut-off condition (from early stopping technique
and memory-efficient storage layouts), we still identify two issues.

S1: Mystifying Performance Characteristics of Conjunctive
Predicates. The performance characteristics under the combining
effect of inter-predicate and intra-predicate cut-off conditions are
still unclear yet. Obviously, we leverage both cut-off conditions to
reduce the number of evaluated instructions to make the computa-
tion faster. However, we observe that the amount of performance
gain is not strongly coincident with the amount of the reduction
of instructions. Figure 1 depicts the trend of “BS best”, in terms
of elapsed time and instruction, when the selectivity decreases.1

In particular, the instruction reduction by 30% only increases the
performance by 13%. Therefore, the throughput is not strongly
correlated with the number of instructions (as a linear factor), as
non-linear factors, e.g., branch misprediction and cache miss, are
critical to the overall performance.
S2: Difficult to Decide Evaluation Order of Predicates. Since
database predicates can be very selective, there is plenty of related
work [18], [25], [33], [34], [43] on how do the short-circuit
evaluation (i.e., branching-and &&) to explore inter-predicate cut-
off condition. Its approach is to try to guess the optimal predicate
order using different metrics, e.g., selectivity and rank. Since the
selectivity of each predicate is unknown for ad-hoc queries, the
query optimizer (QO) needs to calculate them via sampling [3],
[18]. Based on the estimated selectivity, the QO produces the
query execution plan (QEP) with an optimal evaluation order.
Since the selectivity estimation itself can have errors, the quality
of QEP cannot be guaranteed to be optimal after sampling. To
make things more challenging, we also take the effect of memory-
efficient storage layouts into account when evaluating conjunctive
predicates on modern CPUs.

Therefore, the burden of optimizing conjunctive predicates
under memory-efficient storage layouts still falls on the user
without any rule-of-thumb guidelines. In this paper, our goal is
to answer the following question:

1. “BS best” represents the implementation with an optimal evaluation order
under the ByteSlice memory layout. The exact experimental setup is shown in
Subsection 6.1. Figure 1a is part of Figure 10a, while Figure 1b is part of
Figure 10c.

Can we fully explore potentials of conjunctive predicates under
memory-efficient storage layouts on modern CPUs?

We make the following two contributions to answer this ques-
tion. First, we present a hybrid empirical/analytical cost model
(C1) to unveil the performance characteristics (S1) of conjunctive
predicates under memory-efficient storage layouts. Second, we
propose an order-oblivious execution scheme (C2) to optimize
conjunctive predicates to address the issue (S2).

C1: Hybrid Empirical/Analytical Cost Model (Understand-
ing). We propose the hybrid empirical/analytical cost model to de-
mystify the performance characteristics of conjunctive predicates
under memory-efficient storage layouts on modern CPUs. First,
we highlight two basic execution patterns which can constitute any
form of conjunctive predicates. Second, we propose an empirical
model to capture the performance characteristics of each basic
execution pattern. The benefit of the empirical model is to be
aware of CPU characteristics, e.g., branch mispredication and
cache miss, while abstracting away the complexity from modeling
the effect of branch mispredication and cache miss. Therefore, our
model can be easily applicable to other CPUs. Third, we propose
an analytical model to bridge the gap between overall performance
and instantiated basic execution patterns introduced by the targeted
conjunctive predicates. The benefit of the analytical model is to
easily adapt to various number of conjunctive predicates. The key
finding is that our cost model distinguishes high-cost instructions
from low-cost instructions such that it becomes possible to harvest
full performance potential when evaluating conjunctive predicates
under memory-efficient storage layouts.

C2: Order-oblivious Execution Scheme (Optimizing). We argue
for an alternative approach for the evaluation of conjunctive
predicates. Instead of using selectivity estimation to guess the
optimal evaluation order of predicates in advance, our approach
explores the inter-predicate cut-off conditions while keeping the
predicate evaluation order-oblivious. We propose Hebe, a sim-
plified execution scheme for conjunctive predicates. It is order-
oblivious while maintaining high-performance. Its order-oblivious
property is attractive to the QO that does not need to estimate
selectivities and then to determine the optimal evaluation order of
predicates. Besides, its raw performance is always better than the
column-first execution model with an optimal evaluation order.

We have conducted the experiments with synthesized and
TPC-H workloads on two Intel CPUs. The experimental result
shows that: 1) our hybrid empirical/analytical cost model cap-
tures the performance characteristics of predicate evaluation under
memory-efficient storage layout, and 2) Hebe can also achieve up
to 269% performance gain for the TPC-H queries over the state-
of-the-art approach.

Limitations. Our work has two limitations. First, Hebe does not
support user defined functions (UDFs) for predicate evaluation,
as memory-efficient storage layout needs us to partition codes
at a finer granularity (e.g., bit or byte) and then to directly
perform operations on such a finer granularity. Typically, UDFs
do not allow such finer-grained operations. Second, Hebe is not
optimal in all the cases. When the selectivity of a predicate is
extremely small, e.g., less than 0.001, the evaluation of conjunctive
predicates can benefit, in terms of memory traffic, from evaluating
this predicate first. However, we still need to identify this predicate
in advance to harvest this benefit.
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Fig. 2: A running example is the transposition of a segment that
contains 32 13-bit codes to three memory-efficient storage layouts.

2 BACKGROUND
2.1 Memory-Efficient Storage Layouts
Prior work [7], [14], [20] stores column values in a compressed
form after using the dictionary encoding technique which is widely
used in commercial products, such as IBM Blink [31] and SAP
HANA [9]. Meanwhile, several other light-weight compression
methods [1], [4], [8], [42] are also used to accelerate main-
memory columnar store. In this subsection, we mainly describe
the characteristics of three memory-efficient storage layouts:
VBP [22], BitWeaving/V [22] and ByteSlice [11]. Literally, all
the above memory layouts can benefit from the early stopping
mechanism [22], with the key idea that it is not necessary to access
all the bits to determine the final result during predicate evaluation.
Vertical Bit Parallel (VBP) Layout. The VBP layout vertically
partitions codes at a bit level [22]. The codes are divided into
segments, each of which contains W codes, where W is the width
of a register which accommodates codes. Inside a segment, W
k-bit codes are transformed into k W -bit register words, where
the most significant bits are stored at the lowest address. The j-
th bit in the i-th word is the same as the i-th bit in the original
j-th code. Figure 2a illustrates the transformation of a segment
of 32 13-bit codes to 13 32-bit words. Such words are stored in
a continuous memory space. The consecutive segments are also
stored continuously. Therefore, it only needs one memory region
MR1 to store transposed codes. The performance of scan can
be enhanced by early stopping technique under the VBP layout.
However, its performance is not optimal. To illustrate, suppose
a cache line consists of eight words. A running example is that
the outcome of comparisons on 32 codes is determined after
evaluating the first five words. Then, the other three words can be
are skipped due to early stopping technique. However, VBP still
loads such three words in CPU cache, wasting precious memory
bandwidth for unnecessary data.
Bitweaving/V. Since VBP cannot full utilize early stopping tech-
nique to reduce memory traffic, Bitweaving/V [22] (built on VBP)
is proposed to leverage both vertical and horizontal partitioning.

Vector register (sv) Cache line (sc)
VBP 1− (1− (0.5)t)W 1− (1− (0.5)t)CL

BitWeaving/V 1− (1− (0.5)t)
W
G 1− (1− (0.5)t)

CL
G

ByteSlice 1− (1− (0.5)t)
W
8 1− (1− (0.5)t)

CL
8

TABLE 1: Access probability after scanning t significant bits on
modern CPUs

Bitweaving/V partitions a code not only at a bit level but also in
a horizontal fashion such that scans need to really read less data
from memory when cut-off condition is satisfied. In particular,
BitWeaving/V divides all the bits of k words in a segment into
dk/Ge bit groups, each of which is associated with a memory
region to store sequential bits, where G is the number of bits in
a bit group. Figure 2b depicts an example with G = 5, where
three memory regions are used to store these words. The running
example only needs to access the first bit group which consists of
the first five bits in the memory region MR1. Thus, compared with
VBP, Bitweaving/V does not need to load the other three words
into CPU cache, so Bitweaving/V has the potential to save memory
bandwidth. Actually, VBP is a special case of BitWeaving/V with
only one bit group and G = k.
ByteSlice. The byte-level columnar layout ByteSlice [11] ver-
tically distributes bytes of a k-bit code across dk/8e memory
regions, as the minimum bank width of a SIMD register is 8-bit in
modern CPUs. ByteSlice is like BitWeaving/V in a sense that both
leverages vertical and horizontal partitioning. However, ByteSlice
uses the basic unit of byte, instead of bits, when vertically
partitioning codes. Therefore, ByteSlice can fully leverage the
data-level parallelism inside SIMD instructions. Figure 2c shows
the transposition under the ByteSlice layout. In particular, each
13-bit code is partitioned into two memory regions.

2.2 Memory Efficient Storage Layouts on CPUs
Figure 3a shows an example with 16 6-bit codes evaluating the
predicate v < 1001112 under BitWeaving/v. The first code is
“100000” in the first column. Its first two bits “10” are evaluated
first. Its outcome has not been determined yet, since they are equal
to the first two bits “10” of the literal. Therefore, it proceeds to the
second two bits. It can safely terminate since they are different,
then the evaluation proceeds to the second code. The bits which are
evaluated are marked gray in the figure. Accordingly, we compute
the access probability s after processing t significant bits for each
code. The calculation is based on the assumption from the previous
work [11]: the probability of a code matching the constant c at any
bit position is 0.5. After scanning the most significant t bits of one
code, its outcome is not determined only when they match the
corresponding t bits of the literal, and then s is 0.5t. Furthermore,
when applying the early stopping technique to modern CPUs,
its access probability is strongly associated with the hardware
characteristics: width of vector register (W ) and cache line size
(CL).
From Vector Register Point of View. The CPU evaluates four
codes at a time in a segment which is implemented with a vector
register (W = 8 bits). So it requires four vector registers ( 1©, 2©,
3© and 4©) to accommodate 16 codes. The evaluation can safely

terminate when all the codes in the same vector register satisfy
the intra-predicate cut-off condition introduced by early stopping
technique. Figure 3a shows that 1©, 2©, 3© or 4© requires two,
three, one or two evaluation rounds, respectively. Accordingly, its
associated access probability sv of each layout is shown in Table 1,
since the number of codes in a vector register is W , W

G or W
8 for

VBP, BitWeaving/V or ByteSlice, respectively.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, JAN 2020 4

1 42 3 5 ...6 7 R.n

u

u * R.n

1 2 ...3 s*R.n

u

u * R.n

s s s

1
0

1
1

1
0

0
0

0
0

1
0

1
1

1
1

1
1

1
0

1
1

0
0

0
0

0
1

1
0

1
1

0
0

1
0

1
0

1
1

0
0

1
0

1
0

1
1

0
1

1
1

1
1

0
0

0
0

1
0

1
0

1
1

0
0

1
0

1
0

1
1

0
1

1
1

0
1

1
0

0
0

1
0

1
0

1
1

0
0

1
0

1
0

1
1MR3

MR1

MR2

1
0

1
1

1
0

0
0

0
0

1
0

1
1

1
1

1
1

1
0

1
1

0
0

0
0

0
1

1
0

1
1

1
0

1
0

1
1

0
0

1
0

1
0

1
1

0
1

1
1

1
1

0
0

0
0

1
0

1
0

1
1

0
0

1
0

1
0

1
1

0
1

1
1

0
1

1
0

0
0

1
0

1
0

1
1

0
0

1
0

1
0

1
1

W CL

MR 3

MR 1

MR 2

0
0

Cut-off① ② ③ ④Cut-off1st code

+

+

Horizontal view

Vertical view

(a) A code-centric view

1 42 3 5 ...6 7 R.n

u

u * R.n

1 2 ...3 s*R.n

u

u * R.n

s s s

1
0

1
1

1
0

0
0

0
0

1
0

1
1

1
1

1
1

1
0

1
1

0
0

0
0

0
1

1
0

1
1

0
0

1
0

1
0

1
1

0
0

1
0

1
0

1
1

0
1

1
1

1
1

0
0

0
0

1
0

1
0

1
1

0
0

1
0

1
0

1
1

0
1

1
1

0
1

1
0

0
0

1
0

1
0

1
1

0
0

1
0

1
0

1
1MR3

MR1

MR2

1
0

1
1

1
0

0
0

0
0

1
0

1
1

1
1

1
1

1
0

1
1

0
0

0
0

0
1

1
0

1
1

1
0

1
0

1
1

0
0

1
0

1
0

1
1

0
1

1
1

1
1

0
0

0
0

1
0

1
0

1
1

0
0

1
0

1
0

1
1

0
1

1
1

0
1

1
0

0
0

1
0

1
0

1
1

0
0

1
0

1
0

1
1

W CL

MR 3

MR 1

MR 2

0
0

Cut-off① ② ③ ④Cut-off1st code

+

+

Horizontal view

Virtical view

(b) A memory-region-centric view

Fig. 3: An example predicate: v < 1001112 from a code-centric view to a memory-region-centric view. Such a transformation is
the key idea of our cost model. Essentially, non-linear factors like cache miss and branch misprediction can be easily expressed in a
memory-region-centric view, in terms of access probability s.

From Cache Line Point of View. The memory is loaded into
the cache hierarchy in cache-line-sized chunks.2 Suppose the size
(CL) of one cache line is 16 bits. Analogously, only when all
the codes in one cache line can be skipped, a reduction in memory
bandwidth can be achieved. The corresponding number of codes in
a cache line is CL, CL

G or CL
8 for VBP, BitWeaving/V or ByteS-

lice, respectively. Therefore, the associated access probability (sc)
is calculated accordingly, as shown in Table 1.

3 HYBRID EMPIRICAL/ANALYTICAL MODEL

In this section, we propose a hybrid empirical/analytical perfor-
mance model, which demonstrates the underlying performance
characteristics of conjunctive predicates under memory-efficient
storage layouts.3 We start with the design methodology, followed
by basic execution patterns and the design details of the hybrid
model. The detailed experimental setup can be found in Subsec-
tion 6.1.

3.1 Design Methodology

In this subsection, we summarize two concrete challenges and then
present the overall design methodology of our hybrid cost model
about how to address two challenges H1 and H2.

H1: Unclear Compound Effect of Cut-off Conditions. The
performance characteristics of conjunctive predicates under the
compound effect of inter-predicate and intra-predicate cut-off
conditions are still unclear due to its flexible execution model.
For example, one segment (e.g., 1©) in Figure 3a) of codes is eval-
uated, and then we proceed to the next segment (e.g., 2©). Within a
segment, the evaluation result on one memory region (e.g., MR1)
determines whether the evaluation on the next memory region
(e.g., MR2) is required or not under early stopping technique that
explores the intra-predicate cut-off condition. Moreover, the input
filter (e.g., 1011) can provide inter-predicate cut-off conditions.
Thus, the whole segment 2© does not need to be evaluated.
To make things worse, the input filter varies with conjunctive
predicates.

H2: Various CPU Platforms. We want to apply our cost model
to predict the performance of conjunctive predicates on various
CPUs, whose hardware characteristics (e.g., branch misprediction

2. Modern cache hierarchy is more aggressive due to the impact of hardware
prefetcher. Instead of fetching a 64 bytes cache line each time, it loads data and
instructions into the cache in blocks of 128 bytes, indicating that the adjacent
cache line is loaded automatically. Take the execution pattern stpr on MR2

as an example. One accessed code can cause more than two cache lines (1024
bits) loaded into CPU cache.

3. We mainly focus on BitWeaving/V and ByteSlice. VBP is omitted since
VBP is a special case of BitWeaving/V (only one bit group).
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Fig. 4: Basic execution pattern: stpr(MR,u, s)

and cache miss) have not been well analyzed due to their non-
linear factors. Due to the fact that CPU vendors like Intel do not
unveil its hardware details, we are not able to know how aggressive
the hardware prefetcher is and how smart the branch predictor is.

Our Approach. We propose a hybrid empirical/analytical per-
formance model to address the above challenges. The key idea
behind our hybrid model is to change the angle of view: from a
code-centric view in Figure 3a to a memory-region-centric view
in Figure 3b.4 Therefore, the compound effect of two cut-off
conditions (H1) on a memory region can be explicitly expressed
in terms of access probability on the memory region. As such,
the cost of conjunctive predicates is modeled as the sum of
the cost on each involved memory region, where the cost on
each memory region is measured when running in a standalone
way (Subsection 3.4). The a-priori knowledge behind the sum
comes from the sequential execution between any two consecutive
memory regions due to their dependency within a segment, and
the standalone way comes from the independence between any
two segments.

The performance characteristics on each memory region can
be covered by two basic execution patterns (Subsection 3.2) such
that the performance of the interested conjunctive predicates can
be the sum of the cost of the instantiated basic execution pattern on
each interested memory region. Since the basic execution pattern
has only one variable, we can employ the black-box approach (i.e.,
running microbenchmark on the targeted CPU) to sufficiently learn
the relationship between the performance and the input variable
(i.e., access probability s) for each basic execution pattern. As
such, we can accurately model the compound effect of branch
misprediction and cache miss, which are two non-linear factors
on the targeted CPU. Besides, our cost model can easily apply to
other CPUs (H2), as we only need to re-run the microbenchmark
on other CPUs. The related notations are summarized in Table 2.

3.2 Basic Execution Patterns
Inspired by the generic database cost model [5], [24], [27], we
highlight two basic execution patterns as building blocks of our
hybrid analytical/empirical cost model, which is dedicated for
conjunctive predicates under memory-efficient storage layouts.

4. It is analogous to the transformation from time domain to frequency
domain.
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Model Parameter Definition Source
stpr One basic execution pattern: sequential traversal with probable read Basic execution pattern
sts One basic execution pattern: sequential traversal with store Basic execution pattern
MR Memory region. (sts operates only on MR0, while stpr operates on memory region MRi, where i ≥ 1) Basic execution pattern
u Memory access granularity (bits). For ByteSlice, u = 8; For BitWeaving, u = G (number of bits in one bit group). Basic execution pattern
s Access probability. In each memory region, both cut-off conditions are explicitly expressed in terms of s. Basic execution pattern

Ucomp
wr Unit cost of computation of sts(MR0, 1b, 1) on MR0, e.g., 0.006 ns/code on the Haswell CPU Empirical Model

Umem
wr Unit cost of memory of sts(MR0, 1b, 1) on MR0, e.g., 0.0083 ns/code on the Haswell CPU Empirical Model

TPCrd Peak read bandwidth from external memory, e.g., 30GB/s on the Haswell CPU Empirical Model
TPCwr Peak writing bandwidth from external memory, e.g., 15GB/s on the Haswell CPU Empirical Model
UC(s) Unit cost of computation of stpr with varying access probability s Empirical Model
UM(s) Unit cost of memory of stpr with varying access probability s Empirical Model
Crd(s) Number of memory bits required by each code for stpr Empirical Model

T , T comp, Tmem The estimated value of total time, computation time, memory access time Analytical Model
Nc Number of CPU cores used Analytical Model
Ux The total unit cost of computation or memory, x ∈ {comp,mem} Analytical Model

Ux
rd(j) The unit cost of computation or memory for the j-th memory region, j ≥ 1, x ∈ {comp,mem} Analytical Model
sf Selectivity of input filter, used to explore inter-predicate cut-off condition Analytical Model

Px[j] Unit cost of computation or memory of the j-th predicate of conjunctive predicates, x ∈ {comp,mem} Analytical Model

TABLE 2: Summary of parameters

Sequential Traversal with Probable Read (stpr). It sweeps over
the memory region MR and each time reads u bits with the
access probability s, abbreviated to stpr(MR,u, s), as shown
in Figure 4. The memory region is traversed in order so that
no item is referenced more than once, and its access probability
s is determined by inter-predicate and intra-predicate cut-off
conditions. ByteSlice (or BitWeaving/V) is equivalent to the case
with u = 8 (or G), where G is the number of bits of each code in
one bit group.5

Sequential Traversal with Store (sts). The basic execution pat-
tern sts is dedicated for the result bit vector stored in the memory
region MR0. After the outcome of each code is determined,
its result bit is sequentially written to MR0, where each code
has one bit to indicate whether the code satisfies the predicate
(1) or not (0). Thus, u is 1 bit and s is 1. It is abbreviated to
sts(MR0, 1b, 1).

3.3 Empirical Model
The empirical model estimates the cost of each basic execution
pattern on various CPUs. Such an empirical approach can easily
capture all the non-linear dynamics and relations from two cut-off
conditions on various CPUs, while keeping the effort reasonably
small. In particular, we focus on estimating the unit cost of each
basic execution pattern, where the unit cost represents the average
cost, in terms of computation and memory traffic, required by each
code. In the following, we estimate the unit cost for sts and stpr.

3.3.1 Estimating Unit Cost for Sts
Since the execution pattern of sts(MR0, 1b, 1) is fixed and has no
variable, its unit cost of computation U comp

wr (or memory Umem
wr )

is constant. They can be easily determined from calibrations.
Estimating U comp

wr . We benchmark the sequential memory writing
operations, using 64-bit store instruction which is used in real
implementation. U comp

wr is 0.006 ns/code on the Haswell CPU,
while 0.0063 ns/code on the Broadwell CPU.
Estimating Umem

wr . Umem
wr is calculated to be u divided by

TPCwr , where TPCwr is the peak writing external memory
traffic handled by the memory subsystem per ns. TPCwr is
determined by the calibrations. In our experiments, we measure
the elapsed time of the sequential memory writing operations
(using 256-bit AVX2 instruction), and then calculate the peak

5. Though the bits of each code are stored separated under the BitWeaving/V
layout, we use the sequential case to approximate for convenience. For
example, the example predicate in Figure 3a can be used to approximate the
BitWeaving/V layout with G = 2.
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Fig. 5: Unit cost of stpr with varying s on the two targeted CPUs.
Broadwell is a bit slower than Haswell under stpr. Two CPUs
have different prefetching policies. Haswell is more aggressive
when s is less than 0.002. Broadwell is more aggressive when s is
larger than 0.003. Note, different CPUs with the same generation
can have slightly different unit cost due to frequency difference,
while CPUs across generations have obviously different curve
trends.

memory bandwidth accordingly: 15GB/s on the Haswell CPU and
30GB/s on Broadwell CPU. Therefore, Umem

wr is estimated to be
0.0083 ns/code (or 0.0041 ns/code) on the Haswell (or Broadwell)
CPU.

3.3.2 Estimating Unit Cost for Stpr
Though stpr has only one variable (i.e., access probability s), it
is difficult to develop an analytical model to accurately predict its
accurate performance with varying probability s on various CPUs,
due to the non-linear interference between branch mis-predication
penalty and cache miss latency. To make things worse, the CPU
vendors, e.g., Intel, do not unveil their implementation details.
Therefore, we resort to develop a microbenchmark to quantita-
tively examine the relationship between unit cost and s, which
varies from 0 to 1 with the step 0.001. Such a microbenchmarking
method takes into account all the hardware characteristics (e.g.,
branch misprediction and cache miss) of the targeted CPU via
running the real microbenchmark on it. Therefore, it is simple yet
accurate, while maintaining effort reasonably small.
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vector v_sum = {0, 0,..., 0};//Initialize to 0
vector v_con = {7, 7,..., 7};//For comparison

for (i = 0; i < MR.n/32; i++) {
if (sel[i%16K] <= C){ //Control selectivity
vector v_data = ((vector*)R)[i];
vector v_cmp = vec_cmpgt(v_data, v_con);
v_sum = vec_or(v_sum, v_cmp);
}

}

Listing 1: Microbenchmark stpr with vector instruction

Microbenchmarking. Suppose a data region MR contains MR.n
items, each of which contains u bits. Its cardinality R.n is 232, so
the MR is out of last level cache and the initialization overhead
becomes trivial. Suppose the microbenchmark is implemented
with W -bit vector instructions with u-bit bank, as shown in List 1.
In order to accommodate varying selectivity s, we introduce an
inner array sel and one parameter C . The array sel contains
16*1024 chars, each of which is uniformly distributed random
value from 0 to 255. The array can stay in L1 cache after the first-
round reference, so its overhead is trivial, in term of computation
time and external memory access. The parameter C is used to
control the input selectivity s. Note C controls whether a memory
chunk (containing 32 items) is accessed or not. Due to the fact
that all the banks of a vector register are processed simultaneously
when only one bank (code) needs to be processed, the relationship
between C and s is illustrated in Equation 1.

C = d255× (1− (1− s)32)e (1)

Estimating Unit Cost of Computation UC(s). We run the
microbenchmark and then measure the relation between s and
UC(s) on both CPUs, as shown in Figures 5a, 5c. When s is
larger than 0.12, UC(s) is stable since it almost evaluates all
the elements in this memory region due to the impact of SIMD
instructions. Therefore, we omit this range in Figures 5a, 5c. Now
we employ the curve fitting to capture the relation between s
and UC(s) on the Haswell CPU.6 We choose to approximate
the UC(s) by a cheaper piecewise approximation, as shown in
Equation 2. The fitting result shows that the approximation works
well with the metric (goodness of fit R2) larger than 0.97 for each
curve.

UC(s) =


388114s3 − 7041.8s2 + 40.68s + 0.027, 0 ≤ s ≤ 0.01
2390.5s3 − 277.2s2 + 8.85s + 0.038, 0.01 < s ≤ 0.08
−12.37s3 + 5.9175s2 − 0.94s + 0.116, 0.08 < s ≤ 0.12

0.0619, s > 0.12

(2)

Estimating Unit Cost of Memory UM(s). UM(s) is estimated
to be Crd(s) divided by the peak memory read bandwidth
TPCrd, where Crd(s) denotes the number of memory bits
required by each code for stpr in Equation 3.

UM(s) =
Crd(s)

TPCrd
(3)

We estimate TPCrd from calibrations. In particular, we mea-
sure the elapsed time of the sequential memory reading operations
(using 256-bit AVX2 instruction), and then calculate the peak

6. We can easily apply the same curve fitting to the pair obtained on the
Broadwell CPU. In the following, we omit the numbers obtained on the
Broadwell CPU due to page limit.

memory bandwidth accordingly: 30GB/s on the Haswell CPU and
59GB/s on the Broadwell CPU.

We estimate Crd(s) from running the microbenchmark on
real CPUs. In particular, obtain the training pairs (s, Crd(s)),
as shown in Figures 5b, 5d. We employ the Intel Performance
Counter Monitor [36] to obtain the exact amount of data read
from main memory into cache hierarchy, since not only targeted
data are read into memory hierarchy, but also the extra traffic from
hardware prefetcher, page table loads et al. All the memory traffic
competes for the precious memory bandwidth. We also use the
curve fitting method to determine this relationship (s, Crd(s)).
Then, we develop a quadratic regression model to predict the
value of Crd(s) with varying s (from 0 to 0.012), as shown in
Equation 4. The fitting result shows that the regression model
works well with the metric (goodness of fit R2) equal to 0.9991.

Crd(s) =

{
0, s = 0

−70302.4s2 + 1477.84s− 0.0096, 0 < s < 0.012
8, s ≥ 0.012

(4)
3.4 Analytical Model

The analytical model predicts the performance of various con-
junctive predicates under memory-efficient storage layouts in both
single- and multi-threaded scenarios and is applicable to various
CPU platforms. It is calculated to be the maximal value of
computation time T comp and memory access time Tmem, as
shown in Equation 5. The computation time is T comp/Nc when
Nc CPU cores are used to evaluate predicates simultaneously.
Tmem is measured when all the memory transactions are served
with the peak achievable memory bandwidth. It is useful for the
multi-threaded implementation, where the memory bandwidth can
be the main bottleneck, as all the threads can compete for precious
memory bandwidth. The computation (or memory) time is calcu-
lated to be the total unit cost (Ux) multiplied by the number (R.n)
of codes, depicted in Equation 6, where x ∈ {comp,mem}.

T = max (
T comp

Nc
, Tmem) (5)

T x = Ux ×R.n (6)

In the following, we predict Ux for a single predicate (Sub-
section 3.4.1) and conjunctive predicates (Subsection 3.4.2).

3.4.1 Evaluating Ux of One Single Predicate
For a single predicate, we only consider the intra-predicate cut-off
condition introduced by the early stopping technology. Therefore,
Ux is estimated to be the sum of the unit cost of computation
or memory on each involved memory region under the effect of
intra-predicate cut-off condition, as shown in Equation 7. In the
following, we illustrate how to compute the unit cost on each
memory region.

Ux = Ux
wr +

dk/ue∑
j=1

Ux
rd(j) (7)

On MR0, each code writes one bit back to the result bit vector.
Therefore, its unit cost Ux

wr is fixed and directly obtained from the
empirical model, as shown in Subsection 3.3.1.

On MR1, its execution pattern sequentially sweeps over MR1

since the first u bits of each code have to be scanned before its
outcome is determined. Thus, its execution pattern is abbreviated
to stpr(MR1, u, 1) and U comp

rd (1) is UC(1) while Umem
rd (1) is

UM(1), as shown in Subsection 3.3.2.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, JAN 2020 7

On MRj (j > 1), its execution pattern can utilize the early
stopping technique to explore the intra-predicate cut-off condition
and thus it conditionally loads u bits of each code on MRj

with the access probability s = 0.5u∗(j−1).7 The intuition is
that only when the evaluation of the first (j − 1) ∗ u bits does
not have the definite comparison result, it proceeds to the j-th
memory region. Therefore, its execution pattern is abbreviated
to stpr(MRj , u, 0.5

u∗(j−1)) and U comp
rd (j) is UC(0.5u∗(j−1))

while Umem
rd (j) is UM(0.5u∗(j−1)).

To sum up, U comp and Umem are evaluated as shown in
Equations 8, 9.

U comp = U comp
wr +

dk/ue∑
j=1

UC(0.5u∗(j−1)) (8)

Umem = Umem
wr +

dk/ue∑
j=1

UM(0.5u∗(j−1)) (9)

3.4.2 Evaluating Ux of Conjunctive Predicates
We evaluate conjunctive predicates using a column-first execution
model, which evaluates predicates sequentially. Therefore, Ux of
N conjunctive predicates is calculated to be the sum of the unit
cost P x[j] of the j-th predicate, where j is from 1 to N , as shown
in Equation 10.

Ux =
N∑
j=1

P x[j] (10)

Evaluating P x[1]. The first predicate does not have any input
filter to explore inter-predicate cut-off condition, so P x[1] is
exactly the same as in Subsection 3.4.1.
Evaluating P x[j](j ≥ 2). The j-th predicate not only exploits its
intra-predicate cut-off condition, as well as inter-predicate cut-off
condition from its input filter. The filter comes from the fact that
codes which do not satisfy the previous predicates do not need
to be evaluated by the current predicate. Suppose the selectivity
of the input filter is sf [j].8 Now we compute Zx[j] of the j-
th predicate under compound effect of two cut-off conditions. As
expected, Zx[j] is estimated to be the sum of the unit cost on each
related memory region.

For MR0, it does not change the access probability s since it
will write one bit per code back to main memory regardless of the
content of the input filter bit vector.

For MRj (j ≥ 1), s becomes sf [j]∗0.5u∗(j−1), where sf [j]
comes from the inter-predicate cut-off condition and 0.5u∗(j−1)

comes from the intra-predicate cut-off condition.9

For sum up, the unit cost of computation (P comp[j]) or
memory (Pmem[j]) is evaluated as shown in Equations 11, 12.

P comp[j] = U comp
wr +

dk/ue∑
i=1

UC(sf [j] ∗ 0.5u∗(i−1)) (11)

Pmem[j] = Umem
wr +

dk/ue∑
i=1

UM(sf [j] ∗ 0.5u∗(i−1)) (12)

7. This is based on one assumption that the input table is uniform. When the
input table is skewed, s can be different in Equations 8, 9, 11, 12. We leave
the calculation of s for the skewed dataset to our future work.

8. sf [j] is equal to the combined selectivity of of j-1 predicates (from 1
to j-1). Based on the independence assumption among predicates, sf [j] =∏j−1

i=1 ps(i), where ps(i) represents the selectivity of the i-th predicate. For
example, sf [2] is the selectivity ps(1) of the first predicate.

9. Similarly, the probability becomes (1− sf ) ∗ 0.5u∗(j−1) for disjunctive
predicates.

4 UNDERSTAND CONJUNCTIVE PREDICATES VIA
HYBRID COST MODEL

In this section, we aim to understand the characteristics of con-
junctive predicates under memory-efficient storage layouts on
modern CPUs via our hybrid cost model. First, we use our
cost model to predict the performance of conjunctive predicates
(Subsection 4.1). Second, we do the performance profiling to
unveil the underlying characteristics so as to motivate the further
optimization of conjunctive predicates on these storage layouts
(Subsection 4.2).

4.1 Evaluation of Hybrid Cost Model

We evaluate our hybrid model under ByteSlice with two cases:
one predicate and two conjunctive predicates. Assume both codes
and constant c are 17-bit, indicating d17/8e = 3 memory regions
are required to store codes.10 The cardinality is 232, so its size is
larger than the capacity of last level cache.
One Single Predicate. The hybrid empirical/analytical cost model
computes the overall unit cost of computation to be the sum of the
unit cost from each memory region, with the unit cost breakdown
shown in Figures 6a, 6c. We observe that the actual unit cost
(“actual”) roughly matches the predicted unit cost (“predicted”)
from our cost model, with relative error of 3%. Another interesting
observation is that a single CPU on the Broadwell CPU is a
bit slower than that on the Haswell CPU, as the frequency of
the Haswell CPU is higher. Additionally, we also compare the
memory traffic, whose breakdown is illustrated in Figures 6b,
6d. “ByteSlice” depicts the memory traffic estimation from the
existing work [11]. The experimental result shows that the relative
error of the hybrid model (3.6%) is significantly less than that of
“ByteSlice” (26.4%), since our hybrid model considers the effect
of modern memory hierarchy, e.g., hardware prefetcher, while the
work [11] only does the theoretical computation.
Two Predicates. The selectivity of the first predicate p̂(1) is
50%, while the selectivity of the second predicate p̂(2) varies,
from 0.5 to 0.0005. Then, the optimal evaluation order represents
the case with p̂(2) evaluated first, while the worst evaluation
order evaluates p̂(1) first. Our hybrid model can well captures the
performance trend of both optimal and worst evaluation orders on
the Haswell CPU, as shown in Figure 7. Specifically, our hybrid
model can predict that when the selectivity of p̂(2) decreases,
the optimal evaluation order increases the overall performance
while the worst evaluation order keeps stable. The performance
difference can reach up to 41.5% with only two predicates.

4.2 Insights from Performance Profiling

To have a better understanding on the performance characteristics
of conjunctive predicates on modern CPUs, we obtain three
insights from the compound effect of intra-predicate and inter-
predicate cut-off conditions based on our hybrid cost model.
Quantitatively, we make three observations that guide the further
optimization of conjunctive predicates.

4.2.1 Insight about Intra-predicate Cut-off Condition

Now we quantitatively analyze the performance characteristics of
the single predicate which only explores the intra-predicate cut-off
condition.

10. It can be easily applied to different code bitwidth that corresponds to
different number of memory regions.
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Fig. 6: Cost model evaluation for one predicate on both CPUs
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Fig. 7: Cost model evaluation of two predicates

Observation 1: Selective Traversal Can Be Slower than Se-
quential Traversal. As depicted in Figure 5a,5c, the unit cost
U comp
rd (2) of computation on MR2 (s = 0.0039) is larger than

that U comp
rd (1) on MR1 (s = 1). U comp

rd (1) is 0.061 ns/code on
MR1, where s is 1 due to the fact that the first byte is always
evaluated. However, U comp

rd (2) is surprisingly 0.096 ns/code on
MR2, where s is only 0.0039 (0.58) due to the effect of intra-
predicate cut-off condition. Its underlying reason is that each real
access on MR2 is very expensive due to high cache miss and
branch mispredication penalties, while each real access on MR1

is cheap due to its correct branch predication and cache hit.

4.2.2 Insight about Inter-predicate Cut-off Condition
Now we quantitatively analyze the performance characteristics of
the inter-predicate cut-off condition on the predicate, which also
explores the intra-predicate cut-off condition. The inter-predicate
cut-off condition is introduced by the input filter whose selectivity
is sf . More specifically, we quantitatively examine its effect on
the execution pattern on each memory region11 and make the
following two observations.
Observation 2: Reduction of Low-cost Instructions can always
Degrade Performance. In particular, the reduction of the access
probability on MR1 can always degrade the performance. From
Figure 5a, we can observe that UC(s) is larger than UC(1),
when 0.001 ≤ s < 1. It means that the input filter can degrade the
performance of the execution pattern on MR1 when its selectivity
sf is larger than 0.001, since each code is evaluated (s = 1)
for the execution pattern on MR1, which are highly optimized
with the help from hardware prefetcher (hit in cache) and branch
predictor (correct predication). The input filter potentially incurs

11. For the execution pattern on MR0, the result bit of each code is stored
back to the memory (s = 1) regardless of the input filter. In other words, the
inter-predicate cut-off condition has no effect on MR0.
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Fig. 8: Average cost for each accessed code of stpr. The average
cost differs by three orders of magnitude among memory regions.

high branch misprediction and cache miss penalties, which can
not be amortized by instruction reduction.
Observation 3: Reduction of High-cost Instructions Signifi-
cantly Increases Performance. In particular, the slight reduction
of its access probability on MRj can result in the significant
reduction of its unit cost, where j > 1. We have similar
observations for all the memory regions MRj , where j > 1.
We use the performance characteristics on MR2 as an example.
In order to quantitatively show the effect of inter-predicate cut-
off condition, we introduce one metric average computation cost
for each accessed code (Ocomp), which is defined to be UC(s)
divided by s. We can observe that Ocomp on MR2 is 417 times
larger than that on MR1, as shown in Figure 8a, since MR2

suffers from high branch mispredication and cache miss penalties
for each access. Similarly, the average memory cost Omem for
each accessed code on MR2 is roughly 153 times larger than that
on MR1, where Omem is defined to be UM(s) divided by s, as
shown in Figure 8b. Each code access on MR2 may load more
than two cache lines (1024 bits) due to the effect of hardware
prefetcher. In contrast, Omem on MR0 (or MR1) only requires
1 bit (or 8 bits) per code. Suppose the predicate has an input filter
(sf = 0.5), s on MR2 shifts from the original 0.58 = 0.0039 to
0.00195. Consequentially, U comp

rd (2) can be reduced from 0.096 to
0.065 ns/code (benefiting single-threaded implementation), while
Umem
rd (2) shifts from 4.88 to 2.56 bits/code (benefiting multi-

threaded implementation).
Put it All Together. The intuition of our findings is that an
instruction has extremely different evaluation cost and then our
optimization direction should focus on reducing high-cost instruc-
tions while leaving low-cost instructions untouched. In particular,
the reduction of low-cost instructions has the potential to degrade
performance due to introducing branch misprediction and cache
miss (Observations 1 and 2). However, the reduction of evaluated
instructions that have high branch misprediction and cache miss
penalties significantly improves performance (Observation 3).
The above three observations serve as the design guidelines of
the further optimization process under memory-efficient storage
layouts on modern CPUs.

5 ORDER-OBLIVIOUS EXECUTION
SCHEME HEBE (OPTIMIZATION)
5.1 Design Methodology
Based on the above three observations, we present the motivating
example for the proposed execution scheme Hebe which is order-
oblivious and high-performance. Specifically, we demonstrate its
advantage over the column-first execution model, in terms of
raw performance and order sensitivity. In order to concretely
demonstrate the difference, we import

⊕
[24], [27] to indicate

the sequential execution (not commutative), like &&.
⊙

indicates
the concurrent execution (commutative), like &. Suppose we have
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𝑣[1] ⊕𝑣 2 ⊕ 𝑢 1 ⊕ 𝑢 2

𝒗 ≥ 𝒗𝒄

𝐺𝐹⊕ (𝑣 2 ⊙𝑢 2 )(𝑣[1]⊙𝑢 1 ) ⊕

(𝒗 ≥ 𝒗𝒄) | (𝒖
𝟏 ≠ 𝒖𝒄

𝟏 )

(a) Column-first execution model: order-sensitive
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Fig. 9: Execution schemes: from column-first to Hebe.

a conjunction of two predicates: p̂(1) ∧ p̂(2).

p̂(1) : v < vc p̂(2) : u < uc

v1 = (11111111 11111)2 u1 = (11110000 00000)2
v2 = (10101010 00000)2 u2 = (11111010 11111)2
v3 = (00000000 11001)2 u3 = (00110000 10011)2
v4 = (10101010 00010)2 u4 = (11111111 10101)2

vc = (10101010 00111)2 uc = (11110000 01101)2

5.1.1 Column-first Execution Model
Without loss of generality, suppose p̂(1) is evaluated first in
column-first execution model. After evaluating the first iteration
which compares the first bytes (underlined) of v and vc, v1 and
v3 have the definite result due to v

[1]
1 > v

[1]
c and v

[1]
3 < v

[1]
c .

Therefore, they can skip the next iteration under early stopping
technique. However, v2 and v4 need to proceed to the next
iteration due to v

[1]
2 = v

[1]
4 = v

[1]
c . After evaluating p̂(1), we can

obtain its result bit vector (0, 1, 1, 1), indicating that only v1 does
not satisfy the predicate. When evaluating p̂(2) with the previous
bit vector, the codes u2, u3 and u4 need to compare their first bytes
u[1] with u

[1]
c . To better illustrate, the evaluated bytes are marked

blue. In general, p̂(1)∧ p̂(2) can be expressed in Figure 9a, where
u[1]

⊕
u[2] depicts the sequential evaluation on u[1] and u[2] and

cut-off conditions for each byte are also illustrated.
Order Sensitivity. As indicated by our cost model, the per-
formance of conjunctive predicates is determined by the access
probability s on each involved memory region, and s is deter-
mined by two cut-off conditions. If p̂(2) is evaluated first, the
expression becomes u[1]

⊕
u[2]

⊕
v[1]

⊕
v[2]. As such, cut-off

conditions for each memory region can be significantly changed.
For example, the cut-off condition for u[1] changes from v ≥ vc
to null. We conclude that the overall performance is sensitive to
the evaluation order of predicates.
Raw Performance. We evaluate the total cost (marked blue).
In particular, seven low-cost comparisons are performed on the
first bytes: four in p̂(1) and three in p̂(2), and two high-cost
comparisons on the second bytes are performed.

5.1.2 New Execution Scheme: Hebe
We observe that the predicate evaluation under memory-efficient
storage layout can be broken down into the evaluations on its
associated memory regions. This observation motivates our new
execution scheme Hebe. The key idea of Hebe is to tune the
evaluation order of predicates at memory region level such that we
can reduce the high-cost instructions while keeping the correctness
of predicate evaluation. Figure 9b depicts the abstraction of the
new execution scheme.

The first step is to perform the evaluation on v[1] and u[1]

concurrently, denoted by u[1]
⊙

v[1]. The second step is to ag-
gressively explore the inter-predicate cut-off conditions from the

intermediate statuses of v[1] and u[1] (marked GF in the figure).12

In particular, GF can add one inter-predicate cut-off condition
(u[1] > u

[1]
c ) to the evaluation of v[2], together with (v[1] 6= v

[1]
c )

from its own intra-predicate cut-off condition. Similarly, one inter-
predicate cut-off condition (v[1] > v

[1]
c ) is added to the evaluation

of u[2]. The probability of (v[1] > v
[1]
c ) is roughly the same as

that of (v > vc).13 The third step is to evaluate v[2] and u[2] if
necessary. We find that no code (either v or u) needs to enter
the second iteration. For example, v[2]2 supposes to be evaluated
in column-first execution model. However, Hebe does not need to
evaluate v

[2]
2 since the outcome of the second tuple has already

been determined (0) due to u
[1]
2 > u

[1]
c .

Order Sensitivity. Hebe is oblivious to evaluation order due
to the following two factors. First, the memory region with the
same index is evaluated interchangeably for each predicate at the
same step. For example, the evaluation order of v[1] and u[1] is
not important. Second, after evaluating the first memory region of
each predicate, it proceeds to the second step (i.e., GF ) and then
enters the evaluation of the second memory region if necessary.
So, Hebe is oblivious to predicate order.
Raw Performance. We evaluate its total cost (marked under-
lined). In particular, eight comparisons are performed on the first
bytes, and no comparison is performed on the second bytes.
According to Observation 2, its performance on the first bytes
is better than that of column-first execution model. According to
Observation 3, its performance on the second bytes is also better
due to the reduction of two high-cost evaluations. Therefore, Hebe
produces better performance.

5.2 Design and Implementation of Hebe

In this subsection, we present the implementation details of Hebe,
a simplified execution scheme which is order-oblivious and high-
performance on modern CPU architectures.

The detailed execution flow of Hebe is shown in Algorithm 1.
We use ByteSlice as the default storage layout. N conjunctive
predicates are taken as input and a result bit vector bitvector
is generated to indicate whether each tuple satisfies conjunctive
predicates or not.

In the initialization step, the bytes of literal c(i) of p(i) are
broadcast to dB(i)/8e SIMD registers Dc(i) (Line 3). B(i) is
the number of memory regions where p(i) is evaluated. Dc(i) is
computed once as it is shared by each segment (Lines 1-5).

For each segment, the detailed execution flow (Lines 6-31) is
illustrated in three steps.

First, we initialize three W -bit segment-level status masks
(Lines 7-11) for each predicate: less-than mask Mlt (0W ),
greater-than mask Mgt (0W ) and equal-to mask Meq (1W ),
indicating uncertain status of a predicate.14 Each mask consists
of W/8 8-bit banks, where all the eight bits in a bank are 18 or
08.

Second, codes are examined one byte (i.e., one memory
region) per iteration until the cut-off condition is reached or
max

1≤i≤N
B(i) iterations are finished (Lines 12-28). Before each

iteration, the cut-off condition is checked for each predicate to

12. The detailed description of GF is shown in Subsection 5.2.
13. We assume that the values of 13-bit codes are uniformed distributed in

the range [0, 213), so the probability of (v > vc) is 1 − vc/213 = 33.5%

while the probability of (v[1] > v
[1]
c ) is 1− v

[1]
c /28 = 33.6%.

14. For ease of understanding, we use plain Mlt, Mgt Meq (without i)
whenever we refer to all the predicates (i is from 1 to N ).
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Algorithm 1: PROPOSED EXECUTION SCHEME: HEBE

Input : N : the number of predicates,
c(i): the literal of p(i),
vl(i): the l-th code of p(i),
B(i): the number of bytes of code which evaluates p(i).

Output : bitvector: result bit vector of conjunctive predicates.
/* Initialization Step. */

1 for i = 1 to N do
2 for j = 1 to B(i) do
3 D[j]

c (i) = v broadcast(c[j](i))
4 end
5 end

/* Iterate each segment. */
6 for (each segment with codes vl+1 . . . vl+W/8) do

/* 1, zero segment-level status masks. */
7 for i = 1 to N do
8 Mlt(i) = 0W

9 Mgt(i) = 0W

10 Meq(i) = 1W

11 end
/* 2, evaluate the j-th byte. */

12 for j = 1 to max
1≤i≤N

B(i) do

/* 2.1, evaluate the i-th predicate. */
13 for i = 1 to N do

/* Evaluate if cut-off condition is not met. */
14 if (Meq(i) 6= 0W )&&(j ≤ B(i)) then
15 D[j](i) = v load(v

[j]
l+1(i) . . . v

[j]

l+W/8
(i))

/* Compute byte-level state masks. */
16 Mlt(i) = v cmp lt(D[j](i), D[j]

c (i))

17 Mgt(i) = v cmp gt(D[j](i), D[j]
c (i))

18 Meq(i) = v cmp eq(D[j](i), D[j]
c (i))

/* Update segment-level state masks. */
19 Mlt(i) = v or(Mlt(i), v and(Meq(i),Mlt(i)))
20 Mgt(i) =

v or(Mgt(i), v and(Meq(i),Mgt(i)))
21 Meq(i) = v and(Meq(i),Meq(i))
22 end
23 end

/* 2.2, compute global pruning factor M. */
24 M = global filter(Meq(1 : N),Mgt(1 : N),Mlt(1 : N))

/* 2.3, use M to prune N predicates. */
25 for i = 1 to N do
26 Meq(i) = v and(Meq(i),M)
27 end
28 end

/* 3, compute bit vector for this segment. */
29 Mfinal = final mask(Meq(1 : N),Mgt(1 : N),Mlt(1 : N))
30 r = v movemask(Mfinal)
31 Append r to bitvector
32 end

explore the cut-off possibility. The j-th byte needs to evaluate p(i)
(Lines 16-22) when its cut-off condition (Meq(i) 6= 0W ) is not
satisfied and when each code of p(i) contains at least j bytes (Line
14). Note, the evaluation order of predicates here does not matter.
The j-th byte in this segment is loaded into a SIMD register (Line
15) to compare with the corresponding j-th byte of literal c(i)
(Lines 16-18), with the comparison statuses stored into three local
masks (Mlt, Mgt and Meq). Then, these local masks are used to
update three segment-level status masks (Lines 19-21). After all
the N predicates are evaluated, their segment-level status masks
are sent to the global filter module (Line 24) which explores the
inter-predicate cut-off conditions for N predicates. In particular,
the filter mask of each predicate is evaluated to be ¬Mgt for
the comparison type < or ≤, ¬Mlt for > or ≥, ¬Mlt|Mgt

for =, and 1W for 6=. Then, M is calculated to be ANDed each
predicate’s filter mask together. Intuitively, M indicates whether
the result of the evaluated tuple has already reached the false state
or not after evaluating j bytes. If the false state is detected, no
further evaluation on this tuple is required. Therefore, M can be
used to further prune the uncertain conditions (Lines 25-27) such
that high-cost instructions, which suffer from branch misprediction
and cache miss, can be significantly eliminated at the expense
of a few low-cost arithmetic instructions (Line 24). As such,

Intel Haswell-E Intel Broadwell
CPU Core i7-5960X Xeon E5-2680 v4

Cores/Threads 8 / 16 14 / 28
Frequency 3.0 GHz 2.4 GHz

SIMD 256-bit AVX2 256-bit AVX2
L3 Cache 20 MB 35MB
Memory DDR4, 68 GB/s DDR4, 76.8 GB/s

TABLE 3: Hardware Platforms

Hebe harvests performance potential of memory-efficient storage
layouts and then achieves better performance on modern CPUs.

Third, after the above iterations, the final result of each tuple
in this segment is determined. ThenMlt,Mgt andMeq of this
segment are sent to the final mask module that computes the final
result mask Mfinal (Line 29) for this segment.15 In particular,
W -bitMfinal is computed to be ANDed the output result mask
of each predicate together, while the output result mask of each
predicate is evaluated to be Mlt for <, Mlt|Meq for ≤, Mgt

for >,Mgt|Meq for≥,Meq for =, andMgt|Mle for 6=. Then,
Mfinal is condensed to a W/8-bit mask r using the v movemask
instruction (Line 30). Lastly, the mask (r) is appended to the result
bit vector bitvector.

6 EXPERIMENTAL EVALUATION OF HEBE
6.1 Experimental Setup
Hardware Configuration. We conduct our experiments on two
Intel CPUs of two generations: Haswell and Broadwell, as shown
in Table 3. All the related programs are compiled using ICC 16.0.3
with the highest optimization effort -O3. In order to accurately
collect the performance profiles, we use the Intel Performance
Counter Monitor [36] to collect the performance counters on the
program of interest.
Workloads. In our experiment, there are two kinds of workloads:
synthesized workload and TPC-H workload. For the synthesized
workload, we create the table with different number of columns,
where each column contains one billion k-bit codes. By default,
values of codes are uniformly distributed in the range [0, 2k),
where k is 17 by default. The corresponding advantage is that the
selectivity of each predicate can be tuned so that we can analyze
the performance characteristics with varying selectivity. For the
TPC-H dataset, we evaluate twelve TPC-H queries (Q1, Q3, Q5,
Q6, Q7, Q8, Q10, Q12, Q14, Q15, Q17 and Q19) with the scale
factor (SF) of 10. The number of predicates varies from 2 to 36.
Comparison Methodology. Five implementations are used for
performance comparison. The first one is Hebe (denoted as
“Hebe”). Two cases come from the state-of-the-art column-first
execution model [11] under ByteSlice memory layout. “BS best”
(or “BS worst”) is the implementation with an optimal (or worst)
evaluation order. The other two approaches come from the SIMD-
scan method [39] with the naive column store, where “Naive best”
(or “Naive worst”) is the implementation with the optimal (or
worst) order.

6.2 Evaluation on Synthesized Workload
We evaluate Hebe using synthesized workload. Suppose there are
four predicates p̂(1) : v1 < c1, p̂(2) : v2 < c2, p̂(3) : v3 < c3

and p̂(4) : v4 < c4, whose selectivities are s(1), s(2), s(3)
and s(4), respectively. We set the selectivity (e.g., s(1)) of each
predicate by controlling the value of literal (e.g., c1). Specifically,

15. The fact that Meq is pruned by M (Lines 25-27) will not violate the
correctness, sinceMeq is pruned only when the result of the tuple has already
been determined. The determination comes fromMlt,Mgt and is oblivious
to M.
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Fig. 10: Evaluation of four conjunctive predicates

s(2), s(3) and s(4) are set to be 50%, and s(1) varies from 50%
to 0.1%. “BS best” is the case with the evaluation order where
p̂(1) is evaluated firstly, while “BS worst” is the case with the
evaluation order where p̂(1) is evaluated lastly.

Now, we study the performance of the conjunctive pred-
icates p̂(1)&&p̂(2)&&p̂(3)&&p̂(4). Figure 10a compares the
throughput of three cases in single-threaded approach, in terms
of tuples/ns. The x-axis (s) stands for the varying selectivity
s(1) of p̂(1). To unveil the underlying reason of performance im-
provement, we also provide three performance metrics (collected
from Intel Performance Counter Monitor [36]): memory read
bytes, instructions, L3 cache misses. We make two observations.
First, when p̂(1) becomes more selective (i.e., 50% to 0.1%),
the performance of “BS best” cannot be significantly better than
that of “BS worst”, since the column-first execution model does
not aggressively reduce high-cost instructions on memory region
MR2. Therefore, “BS best” still has high L3 cache miss ratio
(Figure 10d), although the number of consumed instructions has
already been significantly reduced (Figure 10c). Second, Hebe
can achieve 89%-153% performance gain over “BS best”, since
Hebe aggressively reduces high-cost instructions. Take p̂(2) for
example, three inter-predicate cut-off conditions (v1[1] > c1[1],
v3[1] > c3[1] and v4[1] > c4[1]) are exploited, together with
the intra-predicate condition v1[2] 6= c1[2]. In contrast, “BS best”
only exploits two cut-off conditions (v1 > c1, v2[1] > c2[1]).
Note, Hebe is still faster than “BS best” that requires less memory
traffic when s(1) is 0.1%.
Effect of Inter-predicate Cut-off Conditions. The global filter
module is used to explore the cut-off conditions among predicates.
“No pruning” is the case without global filter module. From Fig-
ure 11a, we make two observations. First, “No pruning” achieves
roughly the same performance when varying the selectivity for
conjunctive predicates since the inter-predicate cut-off condition
is not explored and each predicate can only benefit from its
own intra-predicate cut-off condition. Second, Hebe significantly
benefits from the reduction of selectivity s (from 0.5 to 0.001).
In particular, the low value of s of p̂(1) can reduce the access
probability of the execution pattern on MR2 of the other three
predicates.
Effect of Predicate Number. Figure 11b shows the throughput
of conjunctive predicates, whose number varies from 2 to 4.
The predicate with low index is picked first. For example, “Two
predicates” contains the predicates p̂(1) and p̂(2). We make
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Fig. 11: Performance comparisons

two observations. First, as expected, two naive approaches are
the slowest, since each code takes one 32-bit bank of SIMD
register, indicating that naive approaches only achieve 8-way
parallelism while the others achieves 32-way parallelism. Second,
Hebe achieves more performance improvement over the others
when the number of predicates increases, since only Hebe focuses
on reducing high-cost instructions which suffer from high branch
misprediction and cache miss penalties.
Effect of Code’s Bitwdith. We examine the effect of the bitwidth
k of each code when evaluating two conjunctive predicates under
Hebe, where s(1) of p̂(1) is 0.01 and s(2) is 0.5. Figure 11e
illustrates the throughput of Hebe with varying bitwidth. We have
two observations. First, the throughput stays roughly the same
and high when k is less than 9, as Hebe, whose storage layout
is ByteSlice, always pads each k-bit code to a 8-bit code before
evaluation, where 8-bit codes are stored in one memory region that
is entirely scanned. Second, the throughput also stays roughly the
same when k is larger than 8, as evaluating the first two bytes is
almost sufficient to determine the final predicate result, and then
the high-cost instructions on the third and fourth bytes are rarely
needed even when each code has four bytes.
Effect of Skewed Dataset. We examine the effect of the skewed
dataset when evaluating two conjunctive predicates under Hebe,
where p̂(2)’s dataset is always uniform. Figure 11f illustrates the
throughput of Hebe with varying s(1). “Skewed” represents the
case that p̂(1)’s dataset is highly skewed, with Zipf factor z = 1.0,
while “Uniform” represents the case that p̂(1)’s dataset is uniform.
We observe that when s(1) decreases, the skewed dataset leads to
a slight performance fluctuation, while the uniform dataset leads to
roughly the same performance. The underlying reason is that the
skewed dataset provides more inter-predicate and intra-predicate
cut-off conditions that are exploited by Hebe. Essentially, codes in
the skewed dataset always have less probability of being equal to
the predicate literal.
Effect of Multiple Threads. We study the performance of
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Fig. 12: Evaluation of two corner cases.

database scans using eight threads on all the eight hardware cores
on the tested CPU, and find that simultaneous multi-thread (SMT)
cannot improve the overall performance due to the main bottleneck
from memory bandwidth. Paralleling scans on modern CPU is
easy: distributing the codes into eight chunks, each chunk running
on one thread. Figure 11c shows the throughput of conjunctive
predicates implemented with eight threads. The performance of
conjunctive predicates is bounded by the limited memory band-
width, so its performance is inversely proportional to the amount
of memory read bytes per code, as shown in Figure 10b. We ob-
serve that Hebe can achieve up to 57% performance improvement
over “BS best”.
Time Breakdown. We present the time breakdowns for conjunc-
tive predicates with s(1) equal to 20%, as shown in Figure 11d.
“MR x” indicates the aggregative time per tuple spent on the
memory region MRx from all four predicates, where x equals
0, 1 or 2. We omit the time spent on MR3, since it is negligible
compared with the overall execution time. We can observe that
Hebe can significantly improve the performance of conjunctive
predicates, since four inter (or intra)-predicate cut-off conditions
are explored to aggregatively reduce the execution time on mem-
ory region MR2.
Corner Cases. We study two corner cases, the selectivity of
each predicate s = 0 or 1. Figure 12 shows the throughput of
conjunctive predicates, whose number varies from 2 to 4. When
s = 0, the column-first execution model (“BS”) only evaluates
the first predicate. The remaining predicates can benefit from
inter-predicate cut-off condition from the first predicate. The only
overhead is to check the input filter. However, Hebe evaluates
the first byte of each predicate. Therefore, Hebe can be worse
than the column-first execution model in Figure 12a. When s = 1,
neither execution model can benefit from the inter-predicate cut-
off condition. The global filter module in Hebe cannot explore
any inter-predicate cut-off condition, but incurs the extra logical
instructions. We can observe that the overhead becomes smaller
when the number of predicates becomes larger, as shown in
Figure 12b.

6.3 Evaluation on TPC-H

We evaluate Hebe by using twelve queries from TPC-H bench-
mark. To focus on the performance of predicates, we use the
technique from WideTable [23] to flatten a database schema into
several denormalized tables. Then, queries with complex joins
can become simple scans on the denormalized tables. Figure 13
shows the experimental results of twelve queries that contain only
conjunctive predicates, no disjunctive predicates involved.16 We
make two observations.

16. To focus on the performance of scans, we follow ByteSlice [11] that the
performance of the other operators, e.g., order by and group by, are not taken
into account in the overall performance.

First, there are plenty of feasible evaluation orders for each
query under column-first execution model. For example, there are
four predicates in Q8 and the number of evaluation orders for Q8
can reach up to 4!=24. Since the evaluation order is sensitive to the
overall performance [18], [33], we observe that the performance
difference can be from 19% to 62%.

Second, even with the optimal evaluation order under column-
first execution model “BS best”, Hebe can still achieve 39%-
209% performance improvement (in terms of tuples per ns), as
shown in Figure 13a. The underlying reason is that Hebe can
aggressively explore the inter-predicate cut-off conditions so as
to reduce high-cost instructions on the memory region MR2 of
each predicate. Therefore, the access probability on MR2 of each
involved predicate can be significantly reduced by Hebe, and then
Hebe requires significantly less L3 cache misses per tuple for each
query, as shown in Figure 13b. In particular, for the query Q19
that has 36 predicates, Hebe can achieve significant performance
improvement since inter-predicate cut-off possibilities among 36
predicates can be aggressively explored. Another thing to be
mentioned is that Hebe does not need to take into account the
evaluation order of predicates.

7 RELATED WORK

A preliminary version of this manuscript has been published
in [38]. Compared with the preliminary version, this manuscript
has made significant contributions in building a hybrid empirical/-
analytical cost model in understanding the efficiency of different
memory layouts and their execution strategies, and performing
more in-depth and extensive studies on Hebe.
Memory-efficient Storage Layouts. Prior works [11], [21], [22],
[23], [26], [28], [29], [30], [32], [37], [38], [40], [41] leverage
memory-efficient storage layout to partition values at the bit/byte
level such that predicate evaluation can fully utilize intra-cycle
parallelism in modern CPUs and can exploit intra-predicate cut-
off condition to reduce required memory traffic. In contrast,
this work proposes a hybrid cost model to unveil performance
characteristics of predicate evaluation for better understanding
and then proposes an order-oblivious execution scheme Hebe for
conjunctive predicates.
Attribute Groupings. Prior works [2], [12], [13], [15], [16] lever-
age access patterns of queries over tables to do attribute grouping
so as to increase the overall query throughput. In contrast, this
work does not reply on attribute grouping but explores on-the-fly
cut-off possibilities to reduce required memory traffic, as well as
required instructions.
Cost Models for Databases. Previous works [5], [24], [27]
propose generic database cost model to predict operator execution
time. Such a prediction is vital to a query optimizer that determines
query execution plan for the input query. About cost model, Our
work is closest to the work by Pirk et al. [27], which proposes
a new access pattern sequential traversal with conditional reads
to analytically model the performance of selective projections. In
contrast, we resort to an empirical approach (i.e., directly running
microbenchmark on the targeted CPU) to easily capture hardware
characteristics on various CPUs. Besides, our hybrid cost model is
dedicated to predicting the performance of conjunctive predicates
under memory-efficient storage layouts.
Optimization of Predicate Order. Previous works [6], [17], [18],
[19], [25], [33], [35] propose various cost models, which take into
account branch misprediction and cache miss, to determine the
optimal predicate order for the input query. Briefly, predicates can
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Fig. 13: Evaluation of 12 TPC-H queries

be ordered by increasing selectivity or rank. Since the selectivity
estimation itself can be inaccurate for an ad-hoc query, it is hard
for QO to produce an optimal evaluation order. In contrast, Hebe
is order-oblivious, while keeping high performance.

8 CONCLUSION
The optimization of conjunctive predicates is still critical to
database queries. Recently, several memory-efficient storage lay-
outs have been proposed to significantly accelerate database scans.
However, the performance potential of such storage layouts on
conjunctive predicates has not been fully harvested. In this paper,
we propose a hybrid empirical/analytical cost model to fully un-
derstand these storage layouts on modern CPUs. Such understand-
ing enables us to propose an order-oblivious execution scheme
Hebe to evaluate conjunctive predicates, while maintaining high
performance. With Hebe, the QO does not need to go through a
sampling process to guess the optimal evaluation order in advance.
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column selection predicates in main-memory - the elf approach. In ICDE,
2017.

[7] Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed
database systems. In SIGMOD, 2001.

[8] W. Fang, B. He, and Q. Luo. Database compression on graphics
processors. PVLDB, 2010.

[9] F. Farber, N. May, W. Lehner, I. Muller, H. Rauhe, J. Dees, and S. Ag.
The sap hana database: An architecture overview, 2012.

[10] Z. Feng and E. Lo. Accelerating aggregation using intra-cycle paral-
lelism. In ICDE, 2015.

[11] Z. Feng, E. Lo, B. Kao, and W. Xu. Byteslice: Pushing the envelop of
main memory data processing with a new storage layout. In SIGMOD,
2015.
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