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Abstract—A lot of research efforts have been devoted to accel-
erating relational database applications on FPGAs, due to their
high energy efficiency and high throughput. Most of the existing
studies are based on hardware description languages (HDLs).
Recently, FPGA vendors have started to develop OpenCL SDKs
for much better programmability. In this paper, we investigate
the performance of relational database applications on OpenCL-
based FPGAs. As a start, we study the performance of data
partitioning, a core operation widely used in relational databases.
Due to random memory accesses, data partitioning is time-
consuming and can become a major bottleneck for database
operators such as hash join. We start with the state-of-the-
art OpenCL implementation which was originally designed for
CPUs/GPUs, and find that it suffers from lock overheads and
memory bandwidth overheads. To reduce lock overheads, we
develop a simple yet efficient multi-kernel approach to leverage
two emerging features of Altera OpenCL SDK, namely task
kernel and channel. Moreover, on-chip buckets are employed to
reduce the number of memory transactions. We further develop
a cost model to guide the parameter configuration. We evaluate
the proposed design on a recent Altera Stratix V FPGA. Our
results demonstrate 1) our cost model can accurately predict
the performance of data partitioning under different parameter
settings; 2) our proposed multi-kernel approach can achieve
10.7X speedup over the existing OpenCL implementation. Also,
the experiments with three case studies show that the optimized
implementations can achieve 4-12X performance improvement
over the original implementations.

I. INTRODUCTION

FPGAs have become an attractive and effective mean-

s of accelerating relational database applications, due to

their high energy efficiency and high throughput. A lot of

fruitful research efforts have been devoted to this direction

(e.g., [2], [3], [5], [6], [7], [9], [12], [16], [21]). However,

most of those previous studies are programmed with low-

level hardware description languages (HDLs) like Verilog and

VHDL. The programmability issues of HDLs raise serious

concerns on code development and maintenance. High level

synthesis (HLS) is to address the programmability issues.

For example, FPGA vendors such as Altera [7], [8] and

Xilinx [14] have started to develop OpenCL SDKs for much

better programmability. On the other hand, OpenCL-based

design and implementation for relational databases [10], [11]

have been emerging on CPUs/GPUs. A natural question is how

those OpenCL implementations perform on such OpenCL-

based FPGAs.

The research of relational databases on OpenCL-based

FPGAs is still a largely open and challenging problem. As

a start, we study the performance of data partitioning with

the OpenCL features supported by Altera OpenCL SDK. Data

partitioning is a core operation widely used in relational

databases and other data processing tasks. Given an input

table, the data partitioning operation is used to divide the input

into a number of partitions according to some partitioning

criteria (for example, a hash function). Due to random memory

accesses, data partitioning is time-consuming and can become

a major bottleneck for database operators, such as hash

joins [15], [18] on CPUs/GPUs. Thus, with the consideration

of various design features of OpenCL SDK, we explore the

design and implementation space of data partitioning and

investigate whether and how we can improve the performance

on FPGAs.

We start with the state-of-the-art OpenCL implementation

for data partitioning [10], [11] on FPGAs. We find that, the

performance is far from ideal, because of the severe lock

overheads and memory bandwidth overheads. To reduce lock

overheads, we develop a simple yet efficient multi-kernel

approach to leverage two emerging features in Altera OpenCL

SDK, namely task kernel and channel (FIFO buffer). With

the channel, data partitioning is designed with a producer-

consumer paradigm. Since the throughput of producer kernel

is much higher than that of the consumer kernel, the scheme

with one producer kernel and multiple consumer kernels is

proposed, where each consumer kernel is responsible for

some particular partitions. Besides, another consumer kernel

is added for efficient skew handling. To reduce memory band-

width overheads, on-chip buckets are employed to combine

multiple memory transactions into a single transaction. Since

each of the above optimization methods (for example, the

number of consumer kernels) requires the FPGA resource to

implement, a cost model is developed to guide the effective

parameter configuration to maximize the data partitioning

performance on FPGAs, given the FPGA resource constraint.

We evaluate the proposed design on an Altera Stratix V GX

FPGA. Our results demonstrate that 1) our cost model can

accurately predict the performance of data partitioning under

different parameter settings; 2) our proposed approach can

achieve 10.7X speedup over the existing OpenCL implemen-

tation. We study three cases for data partitioning, including

hash join, histogram and hash search, and demonstrate the

efficiency of our optimized data partitioning scheme.

The remainder of the paper is organized as follows. In

Section II, we introduce the background of OpenCL-based
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Fig. 1. Architecture of Altera NDRange kernel (adopted from [19])

FPGA and data partitioning. In Section III, we present the

motivation of this study, followed by the proposed design

and the cost model in Section IV. We present the experiment

results in Section V and conclude in Section VI.

II. BACKGROUND

A. Altera’s OpenCL Architecture

OpenCL [13] has been developed for heterogeneous com-

puting environments, e.g. CPU+GPU. It targets at a host-

accelerator model of program execution, where a host pro-

cessor (e.g. CPU) runs control-intensive task and offloads

computation-intensive code (i.e., kernel) onto an external

accelerator (e.g. GPU).

Recently, Altera provides the OpenCL SDK [19] to abstract

the hardware complexities from the FPGA implementation.

The Altera’s SDK can translate the OpenCL kernel to low-

level hardware implementation by creating the circuits for

each operation of the kernel and interconnect them together

to achieve the whole data path.

From the perspective of OpenCL, the memory component

of OpenCL-based FPGA contains three layers. First, the

global memory resides in DDRs, with long-latency global

memory access. Second, the local memory is low-latency and

high-bandwidth. On our test bed, it is implemented by on-

chip memory with four read/write ports. Third, the private
memory, storing the variables or small arrays, is implemented

using completely-parallel registers. Compared with CPU/GPU,

FPGA has sufficient number of registers, which should be

employed to store intermediate results for efficiency.

The OpenCL kernel [1] has two types: NDRange kernel and

task kernel.

1) NDRange kernel: NDRange kernel is the default Open-

CL kernel model which achieves the pipelined parallelism by

executing the kernel in terms of multiple work items, and

each work item executes an instance of the kernel. Figure

1a shows the pipelined parallelism with the example of a

simplified vector addition example [19], where each work item

executes one addition operation of the total eight addition

operations, with the throughput of one work item finished per

cycle. We can configure multiple Compute Units (CUs) for

the NDRange kernel, as shown in Figure 1b. Then the CUs

can execute in parallel, in terms of different work items. That

is, work items are assigned to CUs for executions in parallel.

Each CU has its own local memory interconnect, while all the
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CUs share the global memory interconnect. Compared with

global memory, the on-chip local memory is low-latency and

high-throughput. Thus, the local and private memory should

be employed whenever possible to reduce global memory

accesses. One main disadvantage is that the atomic operations

are required when multiple work items attempt to update

shared data structures.

2) Task kernel: The task kernel can execute the kernel on

only one CU that contains only one work item. It follows a

sequential model like C programming, and the OpenCL SDK

determines the parallelism at the compilation time [1] based

on the dependency. The task kernel is preferred in the case

that the fine-grained data are shared among many work items,

since expensive atomic operations for the NDRange kernel are

requried to keep the correctness of fine-grained data. Thus,

it is the developer’s responsibility to extract the parallelism

from task kernel, while the parallelism of NDRange kernel is

explicitly achieved via multiple work items.

Another significant feature provided by the Altera OpenCL

SDK is the channel [1], which can be used to efficiently

pass data (at the private memory level) between two OpenCL

kernels (either NDRange or task). In the conventional OpenCL

implementation, the communication between two kernels are

executed via the global memory. In contrast, the channel, wih

a channel ID and buffer depth (e.g. CD), is implemented with

on-chip FIFO buffer. The channel has two types: blocking

channel and unblocking channel. The write/read operation to

blocking channel (using the API: write channel/read channel)

will not return if the operation does not successfully commit,

while the write/read operation to nonblocking channel (using

the API: write channel nb/read channel nb) will return even

when the operation does not successfully commit.

B. Data Partitioning

The data partitioning operation divides the input table into a

number (P) of disjoint partitions according to the partitioning
function, as shown in Figure 2. Then, each tuple, one row

of input table, will be stored into the corresponding output

partition i (R i), where i ranges from 1 to P.

Data partitioning is widely used as a building block in

relational database applications. For example, partitioned hash

join is one of the most efficient hash join algorithms [10]. In

the partitioned hash join algorithm, both tables are partitioned

into the same number of partitions with the same partitioning

functions. The data partitioning operation is used in this step.

Next, for the corresponding partition pair, it uses simple hash

join algorithm to perform the join on the partitions in that pair.



III. MOTIVATION

In this section, we present the observations from

a NDRange-kernel-based implementation of the data

partitioning on OpenCL-based FPGAs to motivate our multi-

kernel design. We focus on two key aspects, including lock

overhead and memory performance. The detailed experimental

setup can be found in Subsection V-A.

A. Lock Overhead

The conventional implementation of data partitioning using

NDRange kernel achieves the pipelined parallelism in terms of

multiple work items. Since work items could be in contention

for the same partition, the lock mechanisms (implemented

with atomic operations) are used. Therefore, the lock overhead

can be an important factor for the total execution time. The

corresponding implementation is shown in Algorithm 1. The

lock mechanism can be implemented in global memory or in

local memory with the trade-off as discussed below. The locks

implemented in global memory and local memory are referred

as global locks and local locks, respectively. We maintain an

array of locks, and perform acquire/release operations using

the index of the lock in the array.

1) Single-kernel partitioning with global lock: Algorithm

1 shows the single-kernel implementation of partitioning,

where the lock means global lock. Each tuple should firstly

acquire the global lock according to the hash value (Line 6),

secondly write to the corresponding partition (Lines 7-8), and

thirdly release the global lock (Line 9). One corresponding

optimization method is to use multiple CUs. In particular,

dividing the work items into multiple CUs will enable parallel

execution and allow more concurrent accesses to the shared

partitions. However, the shared partitions have to be located in

the global memory and a global lock shared by all the work

items is required, incurring long access latency.

Algorithm 1: LOCK-BASED SINGLE-KERNEL DATA PAR-
TITIONING

Input : data in(the input table in global memory),
counters (the counters in the local memory for each partition),
N (number of input tuples)

Output : data out(tuple output address in global memory)
1 gid = get global id(0);
2 gsize = get global size(0);
3 for (i = gid; i < N ; i += gsize ) do
4 tuple = data in[i];
5 index = hash(tuple.key);

/* wait until having global/local lock[index]. */
6 get lock(index);
7 counter index = counters[index]++;
8 data out[counter index] = tuple;

/* release the global/local lock[index]. */
9 release lock(index);

2) Single-kernel partitioning with local lock: Since the

atomic operation on global memory may be the bottleneck

for the partitioning implementation, we try to relocate the

atomic operation from global memory to local memory. Since

the local memory is private to each work group, only one

work group, containing all the work items, can be launched

to execute the partitioning algorithm, with the lock in local

memory. In particular, each tuple acquires the local lock
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according to the hash value, writes out to the corresponding

partition, and then releases the corresponding local lock.

We compare the performance of data partitioning with

global locks and local locks. Figure 3 demonstrates the per-

formance of single-kernel partitioning implementations with

global and local locks, where global xCU means the par-

titioning implementation (with x CUs) using global lock

and x = {1, 2, 4, 8}. local 1CU means the partitioning

implementation with local lock, and local dummy means the

microbenmark which only acquires and releases local locks

without executing the tuple-related instructions (Lines 4 and

7-8). Two observations can be obtained from Figure 3.

Observation 1: performance of partitioning with global
lock is worse than that with local lock. In particular, the

global 8CU (best case with global lock) is slower than the

local 1CU, since the performance of local lock is much better

than that of global lock. The overhead of global locks cannot

be compensated by the parallelism by using more CUs.

Observation 2: performance of local dummy is roughly
the same as that of local 1CU. Lock overhead can be the

performance bottleneck for data partitioning. Therefore, lock

overhead should be significantly improved to accelerate the

performance of partitioning.

B. Data Access Unit Size

Another factor impacting the data partitioning performance

is the global memory bandwidth utilization, since the parti-

tioning is a memory-intensive operation. Therefore, we need

to qualitatively analyze the throughput characteristics of global

memory accesses on FPGAs. On the other hand, we need to

accurately develop the cost model which is used to guide our

design.

Observation 3: The throughput of sequential memory access
is much higher than that of random memory access. Figure

4 shows the throughput ratio of sequential memory access to
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random memory access. The experiment measures the elapsed

time of doing the sequential and random scans on the memory

buffer. And each scan, with different data types (e.g. short

and long4), has four independent read instructions to saturate

the memory subsystem. Almost each random memory access

can cause a row-buffer miss [17], which severely degrades the

overall memory performance.

Observation 4: The random memory access throughput is
more sensitive to the data access unit size than the sequential
memory access. Figure 5 shows the normalized throughput of

different data types over the throughput with data access unit

size of byte for both sequential access and random access.

One finding is that the global memory bandwidth of random

memory access is roughly proportional to the data access unit

size. That is because each random memory access generates

one real transaction to memory subsystem and causes one

row-buffer miss. The number of memory transactions directly

affects the memory performance, and the bandwidth of random

accesses is almost proportional to the data access unit size.

The trend can apply to the random memory transaction whose

access unit size is smaller than the page size of DDR. In

contrast, the sequential access will generate much fewer row-

buffer misses. The speedup trend of sequential access is

much more flat when the data access unit size increases, and

finally approaches the bandwidth limitation of the memory

subsystem. Hence, since the output pattern of data partitioning

is random access, large data size should be used to more

efficiently utilize the global memory bandwidth.

IV. DESIGN AND IMPLEMENTATION

Motivated by the observations, we have developed a multi-

kernel approach by leveraging task kernel and channel. This

section describes the details on the design and implementation.

We present the overall design methodology, followed by the

details on the data partitioning implementation and the cost

model.

A. Overall Design Methodology

In order to address the first challenge of low lock overhead

due to atomic operations in NDRange kernel, task kernel is

considered to eliminate the atomic operation. However, one

producer kernel of the producer stage is much faster than

one consumer kernel of the consumer stage. In our test bed,

the producer kernel achieves one cycle per tuple, while the

consumer kernel can only deliver seven cycles per tuple. To

resolve this performance mismatch, the consumer stage is
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Fig. 6. The architecture of multi-kernel partitioning with channel

implemented by multiple consumer kernels, each of which

uses one dedicated channel to receive the tuples from the

producer kernel of the producer stage, based on the result of

the partitioning function on each tuple. Also, one consumer

kernel dedicated for handling skewed data is required. Using

this design, all the kernels of the consumer stage execute

together to reduce the lock overhead of the consumer stage. In

particular, each kernel handles only a subset of overall disjoint

partitions.

In order to address the second challenge of low global

memory bandwidth utilization, on-chip buffers are employed

in all the kernels of the consumer stage to reduce the number

of global memory transactions. Another potential benefit of

the multi-kernel design is that the required amount of local

memory can be distributed into each consumer kernel. It tends

to achieve a higher frequency than that of one large on-chip

buffer.

Both optimizations require certain amounts of FPGA re-

sources (e.g. on-chip RAMs), and especially the design with

on-chip buffers requires a large number of RAMs. Hence,

how to efficiently utilize the limited FPGA resource is critical.

We present a cost model to guide our design of multi-kernel

partitioning on FPGAs.

B. Implementation of Multi-kernel Partitioning via Channel

As shown in Figure 6, the proposed architecture of multi-

kernel partitioning comprises one Data in kernel of the pro-

ducer stage, and DO Data out and one Skewed handling ker-

nels of the consumer stage to address the throughput imbalance

between producer stage and consumer stage. The Data in
kernel (producer) reads the input tuples from global memory

and then determines which Data out or Skewed handling
kernel to deliver each input tuple based on the partitioning

function, while the Data out and Skewed handling kernels

(consumer) read from their corresponding channels and then

store the received tuples to the corresponding partitions.

In our multi-kernel partitioning architecture, the buffered

channels (C SKEW and C PARTITION), with the buffer depth

(CD), are used to reduce the load imbalance between different

kernels of the consumer stage.

The implementation details of Data in, Data out and

Skewed handling kernels are given below.



TABLE I
SUMMARY OF THE PARAMETERS USED IN COST MODEL

Model Parameter Definition Range on our test bed

N Number of tuples for data partitioning Input

P Number of partitions of data partitioning Input

W Number of tuples for each memory read 64/tuple size

I Issue rate of the Data in kernel of the consumer stage 1

CD Depth of buffered channel 0, 2, 4, 8, 16, 32

DO Number of Data out kernels of the consumer stage 1, 2, 4, 8,16

L Number of cycles consumed by one tuple in one Data out kernel 7

SH Number of cycles consumed by one tuple in one Skewed handling kernel 1

S Slot size of tuples for each on-chip bucket 1, 2, 4, 8, 16, 32

B Number of buckets in the Data out kernel P
DO

TPC Number of memory transactions served per cycle ≤ #MemoryBanks

1) Data in Kernel (producer): The Data in kernel exe-

cutes the function as shown in Algorithm 2. Generally, its

memory read order is sequential, and it is relatively easy to

efficiently utilize the global memory bandwidth. In particular,

it loads the W tuples (Line 2) each time. For each tuple,

the key value (key) and the index (partition index) are

computed (Line 4 and Line 5), then the tuple is trans-

ferred to the Skewed handling kernel by using the API

(write channel) to write the tuple to the specific blocking

channel C SKEW (Line 8), when partition index is equal to

the index (skewed index) of the skewed partition. Otherwise,

the tuple is transferred to the key-th Data out kernel via

the corresponding blocking channel C PARTITION[key] (Line

13).

Algorithm 2: DATA IN KERNEL

Input : data in (input table in global memory),
N (number of input tuples),
skewed index (index of partition containing the skewed data),
DO (number of Data out kernels)

1 for (k ← 0 to N /W ) do
/* Load W tuples for efficient DDR utilization */

2 tuples[W ] = data in[k ×W ];
3 for (i← 0 to W ) do
4 key = channel hash(tuples[i]);
5 partition index = partition hash(tuples[i]);
6
7 if (partition index == skewed index) then
8 write channel(C SKEW, tuples[i]));

9 else
10 #pragma unroll
11 for (j ← 0 to (DO − 1) ) do
12 if (key == j) then
13 write channel(C PARTITION[j], tuples[i]));

Algorithm 3: DATA OUT KERNEL

Input : Nx (number of tuples received by the Data out kernel x),
B (number of partitions),
buckets (on-chip buckets for B partitions),
counters (counter (local memory) for each partition).

Output : data out (tuple output address in global memory)
1 for (i← 0 to Nx ) do

/* read one tuple from Data_in kernel. */
2 tuple = read channel(C PARTITION[x]);
3 index = dest hash(tuple.key)%B;
4 counter index = counters[index]++;
5 index slot = counter index & (S-1);
6 buckets[index ∗ S + index slot] = tuple;
7 if (index slot == (S-1)) then

/* Store the whole bucket to data_out. */
8 data out[counter index− index slot] =

buckets[index ∗ S];

2) Data out Kernel (consumer): The Data out kernel exe-

cutes the function as shown in Algorithm 3. In our design, we

choose the OpenCL task kernel, where only one work item

is active and the parallelism is determined at the compilation

time. In particular, the lock overhead of one Data out kernel is

L cycles per tuple in our design (e.g. L = 7); that is, the kernel

would read from its blocking channel every L cycles for the

data partitioning. Since counters, which logs the counters of

B partitions (e.g. B = 1024), are stored in the local memory,

the critical path exists on the read/write updating of counters
(Line 4). In particular, the current tuple and the next tuple

might belong to the same partition.

We resolve the overhead of random accesses by combining

several original one-tuple write transactions into one many-

tuples transaction to the global memory. Thus, the total number

of memory transactions can be significantly reduced. In the

Data out kernel, on-chip buckets (buckets) are allocated in

the local memory, and it can accommodate B∗S tuples, where

B is the number of buckets in the Data out kernel and the

S is the slot size of tuples for each bucket existed in the on-

chip memory. For each bucket, S tuples can be temporarily

buffered on FPGA before they are stored back to the global

memory in one write transaction. That is, the number of global

memory write transactions is reduced by S times.

The working process of Data out kernel can be summarized

as follows. First, the kernel reads one tuple (tuple) from the

blocking channel (C PARTITION) connected to the Data in
kernel (Line 2), using the API (read channel). Second, the

index of the partition (index) is calculated (Line 3) and the

corresponding counter is updated (Line 4). Third, tuple is

stored to the corresponding on-chip bucket (Lines 5-6). Fourth,

if the on-chip bucket for the corresponding partition (with

index slot) is full (equal to S− 1), then the bucket is totally

stored to the global memory (Line 8).

Algorithm 4: SKEWED HANDLING KERNEL

Input : Nskew (number of skewed tuples),
bucket skew (on-chip bucket for the skewed partition),
counter skew (counter (private memory) for skewed partition).

Output : data out (tuple output address in global memory)
1 for (i← 0 to Nskew ) do

/* read one tuple from Data_in kernel. */
2 tuple = read channel(C SKEW);
3 counter index = counter skew++;
4 index slot = counter index & (S-1);
5 bucket skew[index slot] = tuple;
6 if (index slot == (S-1)) then

/* Store the whole bucket to data_out. */
7 data out[counter index− index slot] = bucket skew[0];



3) Skewed handling Kernel (consumer): It handles the tu-

ples, belonging to the skewed partition, as shown in Algorithm

4. The working process of Data handling kernel can be

summarized as follows. First, the kernel reads one skewed

tuple (tuple) from the specific blocking channel (C SKEW)

connected to the Data in kernel (Line 2). Second, the ded-

icated counter (counter skew) is updated (Line 3). Third,

tuple is stored to the dedicated on-chip bucket (bucket skew)

(Lines 4-5). Fourth, if the on-chip bucket for the corresponding

partition is full (equal to S−1), then the whole bucket is totally

written to the global memory (Line 7) in one global memory

transaction for the skewed partition.

The main difference between Skewed handling kernel and

Data out kernel lies on the lock overhead. It requires SH

(e.g. 1) cycles for each tuple in the Skewed handling kernel,

since the read/write updating of counter index, stored in the

private memory, can be finished in one cycle. However, it

requires L cycles (e.g. L = 7) per tuple in the Data out kernel.

C. Cost Model

Choosing the optimal configuration for various tuning pa-

rameters is an important and challenging task. In this subsec-

tion, we develop a cost model to estimate the execution time

of multi-kernel partitioning which handles N tuples, with the

corresponding parameters shown in Table I.

Te is the estimated execution time of the multi-kernel

partitioning implementation, as shown in Equation 1, where Ce

is the estimated number of cycles required by the multi-kernel

partitioning and #Freq, which is the synthesized frequency

of the multi-kernel partitioning, is obtained from the Altera

complication report [1].

Te =
Ce

#Freq
(1)

Ce = Max(Ccomp, Cmem) (2)

Since the lock-processing and global memory access cycles

are overlapped, Ce is calculated as the larger value between

the lock overhead cycles (Ccomp) and global memory access

cycles (Cmem), as shown in Equation 2.

1) Cost model for estimating Ccomp: Since the kernels of

the producer and consumer stages are executed in parallel, the

estimation of Ccomp is given in the Equation 3, where Cin is

the estimated number of cycles required by the Data in kernel

of the producer stage and Cout is the estimated number of

cycles required by all the kernels of the consumer stage.

Ccomp = Max(Cin, Cout) (3)

Cin is estimated as shown in Equation 4, where the assumption

is that the global memory has the sufficient memory bandwidth

and can provide W tuples per cycle for the Data in kernel.

I means the issue rate of the Data in kernel (e.g. one tuple

per cycle) to the consumer stage, and N means the number

of input tuples.

Cin =
N

Min(W, I)
(4)

Since all the kernels of the consumer stage work concurrently,

Cout is evaluated as shown in Equation 5, where the assump-

tion is that the global memory has the sufficient memory

bandwidth and all the memory transactions from all the kernels

of the consumer stage can be immediately written to the global

memory. Ni (or Nskew) is the number of tuples processed

by the i-th Data out kernel (or Skewed handling kernel) and

L (or SH ) is the number of cycles consumed by one tuple

in one Data out kernel (or Skewed handling kernel). As a

constraint, the total tuples processed by the consumer stage is

N , as shown in Equation 6.

Cout = Max( max
1≤i≤DO

(Ni × L), Nskew × SH) (5)

N =
∑

1≤i≤DO

Ni +Nskew (6)

2) Cost model for estimating Cmem: Based on observation
4 about the memory subsystems, the number of global memory

transactions is a key performance indicator. Therefore, Cmem

is evaluated in Equation 7, where Mem trans stands for the

total number of global memory read/write transactions, and

TPC is the number of global memory transactions served per

cycle.

Cmem =
Mem trans

TPC
(7)

Mem trans has two resources, one from Data in kernel

(left), and the other from Data out or Skewed handling
kernels (right), as shown in Equation 8. W means that the

number of global memory input transactions is reduced by W
times and S means that the number of global memory output

transactions is reduced by S times.

Mem trans =
N

W
+

N

S
(8)

TPC is estimated as the sum of random and sequential

memory transactions, as shown in Equation 9. TPCseq and

TPCrand are the numbers of sequential and random global

memory transactions handled by the memory subsystem per

cycle. TPCseq and TPCrand are determined by the calibra-

tions, as shown in Subsection III-B. In our experiments, in

order to calibrate TPCseq (or TPCrand), we measure the

elapsed time of the sequential (random) scan, using four load

operations with long8, and calculate the result accordingly.

TPC = TPCseq×Rateseq+TPCrand× (1−Rateseq) (9)

Rateseq is the ratio of sequential memory transactions

among all memory transactions, given in Equation 10.

Rateseq =
S

S +W
(10)

Parameter setting. Given the cost model, we can determine

the suitable setting for a series of parameters, including S
and DO. Since their ranges are reasonably small due to the

limitation of FPGA resource, we consider all the possible

combinations. For each combination, we calculate the cost

model, and choose the setting with the smallest estimation

cost. The parameter (e.g. CD) is not included in the cost
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model, since the performance become stable when its value is

sufficiently large (e.g. CD = 8), as shown in our experiments.

V. EXPERIMENTAL EVALUATION

The experiments are divided into two groups, one on

evaluating the impact of each parameter, and the other on

evaluating the performance of our proposed design, as well

as case studies.

A. Experimental Setup

Hardware configuration. Our experiments were conducted

on a Terasic’s DE5-Net board. It includes 4GB 2-bank DDR3

device memory, and an Altera Stratix V GX FPGA, with the

Altera OpenCL SDK version 14.0. Each DDR3 bank has 64-

bit width. The FPGA has 622K logic elements, 2560 M20K

memory blocks (50Mbit) and 256 DSP blocks. The FPGA

board is connected to the host via an X8 PCI-e 2.0 interface.

Data sets. The input data is a relation (i.e., table) with the

tuple format of <key, payload>. Both keys and payloads are

4-byte integers, where the probability of referencing individual

keys follows a Zipf distribution. The Zipf factor varies between

0 and 1.75, following the previous study [4] and the default

factor is 0. We vary the relation size and the default size is

128MB (i.e., 16 million tuples). The partitioning function is

radix function (least-significant bits). This study focuses on

the performance on the FPGA itself. The input data sets are

initially loaded into the device memory, excluding the cost of

PCI-e data transfer time.

B. Performance with Different Parameter Combinations

Impact of CD. We first study the performance impact of

the channel depth (CD). Figure 7 shows the speedup of data

partitioning with varying CD over the case (CD = 0). Since

the partitioning with different DO values has roughly the same

trend as that of (DO = 8), we fix DO to be 8. The experimental

result shows that the implementation with different S reaches

its best performance when CD is greater than 4. Therefore,

in the following experiments, we set CD to be 8.

Impact of S and DO. Since the input relation in the exper-

iment has the Zipf factor (0), the impact of Skewed handling
kernel is insignificant. Therefore, we focus on the Data out
kernels. We study the measured and the estimated execution

time of data partitioning with different combinations of DO
and S values, as shown in Figure 8. Our estimation is

able to accurately capture the performance trend of different

parameter combinations. With the accurate prediction, we are

able to find the suitable parameter settings to achieve best

data partitioning performance. We give more details about the

performance trend of different parameter combinations.

For the cases DO = 1 and DO = 2, the main bottleneck

is the lock overhead of the consumer stage, due to the lack of

Data out kernels.

For the case DO = 4, when S is equal to 1, the global

memory performance (Cmem) dominates the overall elapsed

time, since there are too many single-tuple random memory

write operations. When S is greater than 1, the number of

memory write operations is reduced by S times and then the

lock overhead dominates.

For the cases DO = 8 and DO = 16, Cmem dominates the

total execution time when S is less than 8. When S is larger

than 8, the Data in kernel in the producer stage dominates

the execution time. One interesting finding is about the case

DO = 16 and S = 16. It is slower than the case DO = 16 and

S = 8, since they roughly require the same number of cycles

and the achieved frequency (267M) of the case DO = 16 and

S = 16 is lower than that (296M) of the case DO = 16 and

S = 8.

In summary, the performance bottleneck shifts for different

settings on DO and S. Our model can capture the trend when

the parameter setting changes.

Impact of Skewed handling kernel. We study the impact

of Skewed handling kernel with varying the Zipf factor. Figure

9 shows the elapsed time of the data partitioning without the

Skewed handling kernel (“original”) and the data partitioning

with the Skewed handling kernel (“skewed handling”). The

experimental result shows the effectiveness of skew handling

when z is larger than 1, since the number of tuples in the

skewed partition is large and the skewed handling kernel

handles the skew efficiently.

C. Performance Comparison

We study the performance of our multi-kernel partitioning,

in comparison with the original data partitioning algorithm that

has been presented in Section III. The multi-kernel approach

is chosen with the parameters (CD = 8, DO = 16, S = 8,

B = 1024), according to our cost model.

Impact of data size. Figure 10(a) shows the elapsed

time of data partitioning with the input sizes (16MB, 32MB,

64MB, 128MB, 192MB). The number of partitions is 8K.

The performance scales well for increasing data sizes. Our

proposed multi-kernel approach is 10.7X faster than the

original local 1CU implementation.

Impact of the number of partitions. Figure 10(b) shows

the elapsed time of data partitioning with different numbers

of partitions (from 512 to 16384). With varying number of

partitions, the performance of multi-kernel approach is faster

and more stable than the local 1CU implementation.

D. Case Studies for Data Partitioning

We study three case studies for data partitioning, including

hash join, histogram and hash search. Those three operations

are common in relational databases, and all of them use
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data partitioning as a building block. In most cases, data

partitioning is one of the major performance factors for those

operations. We compare the performance between the one

with the proposed data partitioning and one without the

proposed data partitioning. The experiments on three case

studies show that the optimized implementations can achieve

4-12X improvement over the original implementation. Due to

the space limitation, we present the detailed results in our

technical report [20].

VI. CONCLUSIONS

The OpenCL SDKs from FPGA vendors have become a

significant leap on high level synthesis of FPGAs, due to the

portability of OpenCL across heterogeneous platforms. We ar-

gue that existing OpenCL implementations that are specifically

designed and optimized for CPUs/GPUs need to be carefully

revisited on FPGAs. As a start, this paper focuses on data

partitioning, one of the key and basic operations in relational

databases. Our study reveals the significant overheads on locks

and memory accesses of data partitioning on FPGAs. We

develop a new multi-kernel partitioning approach together with

on-chip buckets to address those overheads. Moreover, we

develop a cost model to guide the parameter settings. Our

results demonstrate 1) our cost model can accurately predict

the performance of data partitioning under different parameter

settings; 2) our proposed approach can achieve 10.7X speedup

over the existing OpenCL implementation. The experiments

on three case studies show that the optimized implementations

can achieve 4-12X performance improvement over the original

implementations.
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