
1906 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

Multikernel Data Partitioning With Channel
on OpenCL-Based FPGAs
Zeke Wang, Johns Paul, Bingsheng He, and Wei Zhang

Abstract— Recently, field-programmable gate array (FPGA)
vendors (such as Altera) have started to address the program-
mability issues of FPGAs via OpenCL SDKs. In this paper, we
analyze the performance of relational database applications on
FPGAs using OpenCL. In particular, we study how to improve
the performance of data partitioning, which is a very important
building block in relational database. Since the data partitioning
causes random memory accesses, it is time-consuming, and then,
it has been the major bottleneck for database operators, such as
partitioned hash join. In particular, we import the state-of-the-
art OpenCL implementation of data partitioning from OmniDB,
which was originally designed and optimized for CPUs/GPUs,
and we find that this implementation suffers from both lock
overhead and memory bandwidth overhead. Accordingly, we
present a multikernel approach to address the lock overhead by
leveraging two emerging features (task kernel and channel) from
Altera OpenCL software development kit. In order to reduce
the memory bandwidth overhead, on-chip buckets are used to
reduce the number of random global memory transactions.
We further develop an FPGA-specific cost model to guide the
parameter configuration. We evaluate the proposed design on
a recent OpenCL-based FPGA. We have applied our optimized
partitioning method to a number of data processing tasks, includ-
ing hash join, histogram, and hash search. Our experimental
results demonstrate that our cost model can accurately guide the
user to determine the optimal parameter combination for data
partitioning and the optimal parameter combination can achieve
16.6× speedup over the default multithreaded implementation.

Index Terms— Channel, data partitioning, database, field-
programmable gate array (FPGA), high-level synthesis, OpenCL.

I. INTRODUCTION

RECENTLY, FPGAs have become an effective means of
accelerating relational database applications due to their

high-throughput and low-power consumption. Meanwhile,
It has been a fruitful research direction to leverage FPGAs
to improve the performance of database applications [3], [4],
[6], [11], [12], [14]. Furthermore, more and more efforts have
been devoted to this direction. However, those previous studies
suffer from the programmability issues, which raise serious

Manuscript received August 12, 2016; revised November 17, 2016; accepted
December 30, 2016. Date of publication February 15, 2017; date of current
version May 22, 2017. This work was supported in part by the NUS
startup grant and in part by MoE AcRF Tier 1 grant in Singapore under
Grant T1 251RES1610. The work of W. Zhang was supported by
HKUST startup grant in Hong Kong under R9336.

Z. Wang and B. He are with the National University of Singapore,
Singapore 119077. (e-mail: wangzeke638@gmail.com).

J. Paul is with Nanyang Technological University, Singapore 639798.
W. Zhang is with The Hong Kong University of Science and Technology,

Hong Kong.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TVLSI.2017.2653818

concerns on the long learning curve and code maintenance.
Fortunately, high-level synthesis (HLS) has been used to
address the programmability issues. For example, field-
programmable gate array (FPGA) vendors, such as Altera [7],
have provided OpenCL SDKs for much better programma-
bility of FPGAs. There have been some initial studies on the
performance of OpenCL programs on such FPGAs [16]. At
the same time, OpenCL-based relational databases [9], [10],
[19] have already designed and implemented on CPUs/GPUs.
Therefore, a natural question to be asked is how those
OpenCL-based databases perform on such FPGAs, whose
architecture is significantly different from that of CPUs/GPUs.

The research of relational databases on OpenCL-based
FPGAs is still a largely open and challenging problem.
As a start, on OpenCL-based FPGAs, we study the perfor-
mance of data partitioning, which is an important building
block of relational databases and other data processing tasks.
Given an input table, the data partitioning operation is used to
divide the input table into a number of partitions according to
the input partitioning criteria (e.g., hash function).

We import the state-of-the-art OpenCL implementation of
data partitioning from OmniDB [9], [19], which utilizes a lock-
based implementation; more details regarding this implemen-
tation can be found in Section III. Though it can achieve good
performance on CPUs/GPUs, we find that its performance on
OpenCL-based FPGAs is far from ideal due to the severe lock
overhead and memory bandwidth overhead.

To reduce lock overhead, we leverage two emerging features
(namely task kernel and channel) to develop an efficient
multikernel approach, which follows a producer–consumer
paradigm, where producer stage and consumer stage are con-
nected via channel. In particular, the consumer stage contains
multiple processing units to do the partitioning concurrently,
and each processing unit, which is responsible for a portion
of partitions requires multiple cycles to handle one tuple.
Furthermore, the producer stage can dispatch one tuple per
cycle to one of processing units, as shown in our previous
work [15]. Therefore, it can achieve much better performance
than the original multithreaded implementation.

On the tested FPGA board in our experiment, the practical
memory bandwidth of random memory accesses is linear to
the data access unit size, as shown in Section III-B, since
there is no cache hierarchy on FPGAs. Due to the random
memory accesses, data partitioning is very time-consuming
on OpenCL-based FPGAs. To reduce memory bandwidth
overhead, on-chip buckets are employed to combine multiple
single-tuple memory transactions into one multituples trans-
action, thus significantly improving the memory performance.

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

WANG et al.: MULTIKERNEL DATA PARTITIONING WITH CHANNEL ON OpenCL-BASED FPGAs 1907

After employing the above-mentioned two optimizations,
there is still space for the further performance improvement
of the above producer–consumer design. For example, when
the number of processing units (e.g., 16) is large enough at
the consumer stage, the issue rate of the producer stage of our
previous work [15] can be the new performance bottleneck.
Therefore, we present a converging technology (i.e., Converge
kernel) to collect tuples simultaneously from multiple channels
and then send one tuple per cycle to the output channel.

Since each of the above-mentioned optimizations (for
example, multiple processing units at consumer stage) requires
the FPGA resources to implement, an FPGA-specific cost
model is required to determine the optimization combi-
nation to maximize the data partitioning performance on
OpenCL-based FPGAs, given the budget of FPGA resources.

We evaluate the proposed multikernel design on an Altera
Stratix V GX FPGA. Our experimental results demonstrate
that: 1) our cost model can roughly predict the perfor-
mance of data partitioning with different parameter combina-
tions and 2) our optimal parameter combination can achieve
16.6× speedup over the existing lock-based implementation.

The remainder of this paper is organized as follows.
In Section II, we introduce the backgrounds about OpenCL-
based FPGA and data partitioning. In Section III, we present
the motivations of this paper, followed by the design method-
ology in Section IV, the proposed design in Section V, and the
cost model in Section VI. We present the experiment results
in Section VII and the conclusion in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Altera’s OpenCL Architecture

Recently, Altera provides the OpenCL software
development kit (SDK) [7] to abstract the hardware
complexities from the FPGA programmer. In particular, the
Altera’s SDK can translate the OpenCL kernel to low-level
hardware implementation by creating the dedicated circuits
for each instruction of the kernel and pipeline them together
to achieve the complete data path.

From the perspective of OpenCL, the memory component of
OpenCL-based FPGAs contains three layers. First, the global
memory resides in DDRs with long-latency global memory
access. Second, the local memory is low latency and high
bandwidth. On our tested FPGA board, it is implemented by
on-chip memory with four read/write ports. Third, the private
memory, storing the variables or small arrays, is implemented
using completely parallel registers. Compared with CPU/GPU,
FPGA has a sufficient number of registers, which should be
employed to store intermediate results for each work item
(executing an instance of the kernel) for efficiency.

The OpenCL kernel [1] has two types: NDRange kernel and
task kernel.

1) NDRange Kernel: NDRange kernel is the default
OpenCL kernel model, which achieves the pipelined paral-
lelism by executing the kernel in terms of multiple work
items. Fig. 1(a) shows the pipelined parallelism with the
example of a simplified vector addition example [7], where
each work item executes one addition operation out of the total
eight addition operations, with the throughput of one work

Fig. 1. Architecture of altera NDRange kernel. (a) One CU with eight work
items. (b) One kernel with two CUs.

item finished per cycle. We can configure multiple compute
units (CUs) for the NDRange kernel to increase overall kernel
throughput, as shown in Fig. 1(b). In particular, all the CUs can
execute in parallel, and each CU is dispatched by the hardware
scheduler with different work groups, where work items can
share the local memory and make progress in the presence of
barriers. Each CU has its own local memory, while all the CUs
share the global memory. The on-chip local memory is low
latency and high throughput. Thus, the local memory should
be employed whenever possible to reduce global memory
accesses. One main disadvantage of NDRange kernel is that
the atomic operations are required when multiple work items
attempt to update shared data structures.

2) Task Kernel: It can execute the kernel on only one CU
that contains only one work item. It follows a sequential model
like C programming, and the OpenCL SDK determines the
degree of parallelism at the compile time [1] based on the
inner dependence. The task kernel is preferred in cases where
the fine-grained data are shared among many work items, since
expensive atomic operations from the NDRange kernel are
required to keep the correctness of fine-grained data. Thus,
it is the developer’s responsibility to extract the parallelism
from task kernel, while the parallelism of NDRange kernel is
explicitly achieved via multiple work items.

a) Channel: Provided by the Altera OpenCL SDK [1],
the important feature (channel) can be used to efficiently
pass data (at the private memory level) between two
OpenCL kernels (either NDRange or task), while in tradi-
tional OpencL-based systems, the communication between
two kernels are executed via the global memory in the
conventional OpenCL implementation. The channel, with a
channel ID and buffer depth [e.g., channel depth (CD)],
is implemented with on-chip first-in-first-out (FIFO) buffer.
The channel has two types: blocking channel and nonblock-
ing channel. The write/read operation to blocking channel
(using the API: write_channel/read_channel) will not return
if the operation does not successfully commit, while the
write/read operation to nonblocking channel (using the API:
write_channel_nb/read_channel_nb) will return even when the
operation does not successfully commit.

With the HLS on FPGAs, the recent studies [5], [16]–[18]
have gained a lot of attention in accelerating different kinds
of applications.

B. Data Partitioning

Its functionality is to divide the input table into a number of
disjoint partitions according to the input partitioning function.

1908 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

Algorithm 1 Lock-Based Data Partitioning

Then, each tuple (one row of the input table) will be stored
in the corresponding output partition.

Data partitioning is widely used as a building block in
relational database applications. For example, the partitioned
hash join is one of the most efficient hash join algorithms [9].
There have been optimizations for data partitioning on
the CPU/GPU. He et al. [8] proposed optimized scatter and
gather operations to improve the locality of data partitioning
on the GPU. This paper goes beyond our previous work
in three major ways. First, we further proposed a new
multikernel approach to adapt the throughput among producer
and consumer kernels. Second, we have studied the data
partitioning in three case studies, including hash join,
histogram, and hash search. Third, we have conducted more
robust experiments including cost model evaluations.

III. MOTIVATION

In this section, we begin with an NDRange-kernel-based
implementation of the data partitioning on OpenCL-based
FPGAs. We focus on analyzing two key overheads, including
lock overhead and memory bandwidth overhead, with the
detailed experimental setup in Section VII-A.

A. Lock Overhead

The conventional single-kernel implementation of data par-
titioning achieves the pipelined parallelism via multiple work
items. Since work items could be in contention for the same
partition at the same cycle, the lock mechanisms (imple-
mented with atomic operations) are used to guarantee the
consistency among work items. In particular, we maintain an
array of locks, and perform acquire/release lock operations
on the index of the lock in the array. The lock array can be
implemented in global memory or in local memory with the
tradeoff as discussed in the following. The locks implemented
in global memory (or local memory) are referred as global
locks (or local locks). The detailed implementation is shown
in Algorithm 1.

1) Single-Kernel Partitioning With Global Lock:
Algorithm 1 shows the single-kernel implementation of
partitioning, where the lock means global lock. Each tuple
should first acquire the global lock according to the hash
value (Line 6), second, write to the corresponding partition
(Lines 7 and 8), and, third, release the global lock (Line
9). One potential optimization technology is to employ

Fig. 2. Performance of single-kernel partitioning with global/local locks.

multiple CUs. In particular, dividing the work items into
multiple CUs will enable parallel execution and allow more
concurrent accesses to the shared partitions. However, the
shared partitions are located in the global memory and global
locks are required by all the work items to guarantee the
consistency, incurring long access latency. This implemen-
tation (with minor modification to avoid deadlock due to
lockstep execution) can achieve good performance on GPU,
since GPU contains powerful memory hierarchy to support
multiple processing units. However, the memory hierarchy of
our FPGA board is not as powerful as that of GPU.

2) Single-Kernel Partitioning With Local Lock: Since the
atomic operation on long-latency global memory may be the
main performance bottleneck for single-kernel partitioning on
OpenCL-based FPGAs, we try to relocate the atomic operation
from global memory to local memory. Since the local memory
is private to each work group, only one work group can be
launched to execute the partitioning on FPGAs. In particular,
each tuple acquires the local lock according to the hash value,
writes out to the corresponding partition, and then releases the
corresponding local lock.

We compare the performance of single-kernel data parti-
tioning with global and local locks, as shown in Fig. 2, where
global_xCU indicates the partitioning implementation (with x
CUs) using global locks and x = {1, 2, 4, 8}. local_1CU
indicates the partitioning implementation with local lock, and
local_dummy means the microbenmark, which only acquires
and releases local locks (Lines 6 and 9) without executing
the tuple-related instructions. Note, when we choose the local
lock, only one CU and one work group can be used. Otherwise,
the consistency is not guaranteed. From Fig. 2, we obtain two
observations as follows.

Observation 1: Performance of partitioning with global
lock is worse than that with local lock. In particular, the
performance of global_8CU (the best case with global lock)
is slower than local_1CU, since the performance of local lock
is much better than that of global lock and the overhead of
global lock cannot be compensated by using more CUs.

Observation 2: Performance of local_dummy is roughly the
same as that of local_1CU. It means that the lock process-
ing ability dominates the performance of data partitioning,
and the lock processing ability in the original single-kernel
implementation should be significantly improved to accelerate
the performance of partitioning. Therefore, we resort to the
proposed multikernel approach, which follows a producer–
consumer paradigm.

WANG et al.: MULTIKERNEL DATA PARTITIONING WITH CHANNEL ON OpenCL-BASED FPGAs 1909

Fig. 3. Memory bandwidth characteristics. (a) Sequential over random.
(b) Trend with different granularities.

B. Memory Bandwidth Overhead

Since the partitioning is a memory-intensive operation
containing plenty of random memory accesses, we need
qualitatively to analyze the performance characteristics of
sequential and random global memory accesses on FPGAs.
Furthermore, we need to develop an FPGA-specific cost
model to accurately predict the performance of memory
subsystem. Each scan with different data types (e.g., short
and long4) has four independent read instructions to saturate
the memory subsystem. Two observations about the memory
characteristics are shown as follows.

Observation 3: The practical memory bandwidth of sequen-
tial memory access is much higher than that of random
access. Fig. 3(a) shows the throughput ratio of sequential
memory access to random memory access. We can see that
the sequential memory access has the significant throughput
advantage over the random memory access, since almost each
random memory transaction can cause a row-buffer miss [13],
which severely degrades the performance of overall memory
subsystem.

Observation 4: The random memory access throughput is
more sensitive to the data access unit size than the sequen-
tial memory access. Fig. 3(b) shows the throughput ratio
of the sequential (or random) memory access with different
data access unit sizes (e.g., Int and Long8) over that of
the sequential (or random) memory access with byte. One
interesting finding here is that the memory bandwidth of
random memory access is roughly proportional to the data
access unit size. The reason is that each random memory
access can generate one real memory transaction and cause
one row-buffer miss to memory subsystem. Hence, the number
of memory transactions directly determines the global memory
performance. In contrast, the sequential memory access will
generate much fewer row-buffer misses. The speedup trend of
sequential access is much more flat when the data access unit
size increases, and finally approaches the bandwidth limitation
of the memory subsystem. Hence, since data partitioning has
a random memory access pattern, large data unit size should
be used to efficiently utilize the global memory bandwidth on
OpenCL-based FPGAs.

IV. DESIGN METHODOLOGY

In Sections IV–VI, we will present the overall design
methodology for the data partitioning, followed by the imple-
mentation details of the multikernel design for data partition-
ing and the corresponding cost model.

A. Addressing the Challenge From Lock Overhead

In order to address the issue about severe lock overhead due
to atomic operations in the NDRange kernel, the multikernel
approach (with producer–consumer model) is employed to
improve the locking processing performance. However, the
producer stage can deliver multiple tuples to the consumer
stage per cycle, while each consumer kernel requires seven
cycles to absorb one tuple generated at the producer stage.
To resolve this throughput mismatch between producer stage
and consumer stage, we allocate multiple consumer kernels for
the consumer stage. Then, each of consumer kernels handles
the one part of total partitions based on the partitioning
function. Using this design, all the consumer kernels of
the consumer stage execute concurrently to reduce the lock
overhead.

When there are a sufficient number of consumer kernels at
the consumer stage, the issue rate of the producer stage in our
previous work [15] can be the new performance bottleneck,
since it can only deliver one tuple per cycle. In this paper, the
proposed producer stage, integrated with the Converge kernel,
can issue multiple tuples per cycle. Therefore, the performance
of data partitioning on OpenCL-based FPGAs is significantly
improved.

B. Addressing the Challenge From Memory Overhead

In order to address the second challenge of severe global
memory bandwidth overhead, we employ on-chip buffers to
reduce the number of global memory transactions in all the
consumer kernels of the consumer stage. Another potential
benefit of the multikernel design is that the required amount of
local memory can be distributed among the consumer kernels.
This tends to achieve a higher frequency than that of one large
on-chip buffer.

Both optimizations require certain amounts of FPGA
resources (e.g., multiple consumer kernels). Especially, the
design with on-chip buffers requires a large number of block
RAMs. Hence, how to efficiently utilize the limited FPGA
resources is critical. Therefore, we present a cost model to
guide our design of multikernel partitioning on FPGAs, as
shown in Section VI.

V. IMPLEMENTATION DETAILS OF PARTITIONING

Motivated by the above-mentioned design methodology, we
present a multikernel design of data partitioning by leveraging
two emerging features (task kernel and channel).

A. Overall Architecture

The proposed architecture of multikernel partitioning com-
prises two stages: producer stage and consumer stage, as
shown in Fig. 4. The producer stage reads each input tuple
from global memory and then delivers it (via channel) to
the corresponding intermediate buffer, which connects to one
kernel in the consumer stage. The kernel in the consumer stage
reads the tuple from the intermediate buffer (via channel) and
then do the partitioning task.

The producer stage, containing one Data_in and DO + 1
Converge kernels, can issue I R tuples per cycle. In particular,

1910 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

TABLE I

SUMMARY OF THE PARAMETERS

Fig. 4. Architecture of multikernel partitioning with channel.

the Data_in kernel (producer) requires DO + 1 channels to
dispatch one tuple to the consumer stage per cycle, and each
channel is dedicated to the Skewed_handling kernel or one
of the Data_out kernels (consumer). It means that only one
channel can get the issued tuple and the other channels are
idle, as described in our previous work [15]. For example,
when I R is 1 and DO is 8, there are nine (8 + 1) channels
written by the Data_in kernel at the producer stage and only
one of the nine consumer kernels has the chance to receive the
issued tuple from the producer stage via its dedicated channel
within each cycle.

In order to issue I R tuples per cycle for the Data_in kernel,
I R × (DO + 1) channels are required by the Data_in kernel.
The reason is that it is possible for all the I R tuples to be sent
to the same consumer kernel within one cycle and then each
consumer kernel requires I R channels to receive the potential
I R tuples to avoid the potential conflict. Since all the DO +1
consumer kernels share the I R tuples, each consumer kernel
averagely can receive I R/(DO + 1) tuples within each cycle.
For example, when I R is 2 and DO is 8, there are 2 × (8 + 1)
channels written by the Data_in kernel in the producer stage.

We need to reduce the design complexities of consumer
kernel, so that the consumer kernel can read the tuple from
one input channel, not the default I R channels. Therefore,
the Converge kernel is imported to combine the tuples from
I R input channels (from the Data_in kernel) into the output
channel (to the consumer kernel), as shown in Fig. 4.

The consumer stage contains one Skewed_handling and
DO Data_out kernels. The consumer kernel reads from its
input channel connected the corresponding Converge kernel
at the producer stage, and then stores the received tuples in
on-chip buffers, so that multiple tuples can be stored in global
memory using a large memory transaction.

In our multikernel partitioning, the buffered channels with
the buffer depth (CD) are used to decouple the execution

Algorithm 2 Data_in Kernel

between producer and consumer kernels. The implementation
details of Data_in, Converge, Data_out, and Skewed_handling
kernels are given in the following.

B. Design Details of Data_in Kernel (Producer)

One design goal of the Data_in kernel is to dispatch I R
input tuples to DO +1 consumer kernels per cycle. Therefore,
this kernel contains (DO+1)×I R channels, with I R channels
dedicated to each consumer kernel. The other design goal is
to fully utilize the global memory bandwidth. The Data_in
kernel sequentially loads the tuples from global memory and
then issues each tuple for the further processing, as shown
in Algorithm 2. The Data_in kernel has sequential global
memory access pattern, and hence, it is suitable to efficiently
utilize the global memory bandwidth. Next, we demonstrate
the exact work process of this kernel.

In the beginning, it loads the W tuples for each global
memory transaction (Line 2). In the next W/I R cycles,
I R tuples are issued to the consumer stage within each cycle
(Lines 4–20), with the help of the directive #pragma unroll IR.
Each of I R tuples contains DO+1 dedicated channels to issue
and only one channel can receive the tuple.

For the i th tuple, the index (key) of Data_out kernel and
the index of the partition (parti tion_index) in any Data_out
kernel are computed (Lines 6 and 7), and then, the tuple
is issued to the corresponding Converge kernel by using the

WANG et al.: MULTIKERNEL DATA PARTITIONING WITH CHANNEL ON OpenCL-BASED FPGAs 1911

Algorithm 3 Converge Kernel

dedicated OpenCL channel (API: write_channel) and only one
of DO+1 consumer kernels at the consumer stage can receive
the i th tuple. In particular, when parti tion_index is equal to
the index of the input skewed partition (skewed_index), the
tuple is written to the (i%I R)th channel C_IN_SKEW[i%IR]
dedicated for the skewed partition (Line 10). Otherwise,
the tuple is issued to the keyth Converge kernel via the
(i%I R)th channel C_IN_PAR[key][i%IR] dedicated for the
keyth Data_out kernel (Line 15).

C. Design Details of Converge Kernel (Producer)

Without Converge kernel, the previous work [15] can only
issue one tuple to the consumer stage per cycle. Hence,
it can be the performance bottleneck for many optimization
combinations according to our cost model in Section VI.

Accordingly, in order to issue I R tuples per cycle to the
consumer stage, the Converge kernel is used to read the tuples
from its I R input channels (connected to Data_in kernel) in
a nonblocking fashion, based on the simplifying loop-carried
dependence from Altera [1]. It then writes one tuple per cycle
to the corresponding consumer kernel via the output channel.
Therefore, the consumer kernel only requires to read data from
one input channel, not directly from I R channels connected
to the Data_in kernel.

The working process of the Converge kernel, as shown in
Algorithm 3, can be summarized as follows. This kernel uses
a variable buffer to store BUFF_DEPTH tuples in private
memory (Line 1) and uses the variable tuple_num to keep
track of the number of active tuples stored in buffer (Line 2).
wr_id and rd_id denote the write and read indices of buffer
(Line 3). The kernel keeps working when the number of tuples
(tuples_sent) sent to corresponding consumer kernel is less
than Nx (Line 5). The Converge kernel contains two parts:
reading part and writing part.

Algorithm 4 Data_out Kernel

The reading part is active only when the on-chip buffer has
enough space for receiving I R tuples from all input channels
at the current cycle (Line 6). Otherwise, it will stop receiving
the tuples from input channels. We specify the “#pragma
unroll” directive (Line 7) to fully unroll the loop (Line 8),
and then each iteration generates the custom hardware for one
input channel. In particular, when one tuple arrives at one input
channel with valid == true (Lines 10 and 11), the received
tuple, tuple_in, is stored into the on-chip buffer (Line 12).
During the same cycle, wr_id and tuple_num are updated
(Lines 13 and 14).

The writing part is active when the number of active
tuples is larger than 0 (Line 15). In particular, one tuple,
tuple_out, is written to the corresponding consumer kernel via
the output channel C_OUT_PAR (Line 19). During the same
cycle, tuple_num and rd_id are updated (Lines 16 and 18).

D. Design Details of Data_out Kernel (Consumer)
The Data_out kernel reads from its input channel connected

to the corresponding Converge kernel of the producer stage,
and then combines multiple one-tuple memory transactions
into a single many-tuples transaction to the global memory.

In general, we employ the OpenCL task kernel to implement
Data_out kernel, where the degree of parallelism is deter-
mined at the compile time and only one work item is active.
In particular, its lock processing ability is L cycles per tuple
(e.g., L = 7), since the current tuple and the next tuple might
belong to the same partition and then the critical path exists on
the read/write updating of counters in local memory (Line 4).
Therefore, the Data_out kernel would read one tuple from
its blocking channel every L cycles for the data partitioning.
The lock processing ability can be significantly improved by
running multiple Data_out kernels concurrently.

In this kernel, we resolve the overhead due to random
memory accesses by combining multiple original one-tuple
memory transactions into a single many-tuples transaction to
the global memory. In particular, on-chip buckets (buckets),
allocated in local memory, can accommodate B ∗ S tuples,
where B is the number of on-chip buckets and the S is the slot
number of tuples for each bucket. For each bucket, S tuples
can be temporarily buffered on FPGA before they are stored
back to the global memory in one memory transaction. That
is, the number of random transactions is reduced by S times,
thus significantly reducing the memory bandwidth overhead.

1912 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

Algorithm 5 Skewed_Handling Kernel

In particular, the working process of Data_out kernel can be
summarized, as shown in Algorithm 4.

First, the kernel reads one tuple (tuple) from the blocking
channel (C_OUT_PAR) connected to the Converge kernel
(Line 2) using the API (read_channel). Second, the index
(index) of the partition is calculated (Line 3) and the cor-
responding counter (counters[index]) is updated (Line 4).
According to the above-mentioned analysis, the critical path
lies on this local memory based updating. Third, tuple is
stored to the corresponding on-chip bucket (Lines 5 and 6).
Fourth, if the on-chip bucket for the corresponding partition
(with index_slot) is full (equal to S − 1), then the bucket
is entirely stored in the global memory via a single memory
transaction (Line 8).

E. Design Details of Skewed_Handling Kernel (Consumer)

The design goal of the Skewed_handling Kernel is to handle
the tuples of the skewed partition, as shown in Algorithm 5.

The main difference between Skewed_handling kernel and
Data_out kernel lies on the lock processing ability. The lock
processing requires SH (e.g., 1) cycles for each tuple in
the Skewed_handling kernel, since the read/write updating of
counter_index stored in the private memory can be finished
in one cycle. However, it requires L cycles (e.g., L = 7)
per tuple in the Data_out kernel. The working process of the
Data_handling kernel can be summarized as follows.

First, the kernel reads one skewed tuple (tuple) from
its dedicated channel (C_OUT_SKEW) connected to the
Converge kernel (Line 2). Second, the dedicated counter
(counter_skew) in private memory is updated within one
cycle (Line 3). Third, tuple is stored to the dedicated
on-chip bucket (bucket_skew) (Lines 4 and 5). Fourth, if the
on-chip bucket for the corresponding skewed partition is full
(equal to S − 1), then the whole on-chip bucket is entirely
written to the global memory (Line 7) in one global memory
transaction.

VI. FPGA-SPECIFIC COST MODEL

It is an important and challenging task to choose the optimal
configuration for various tuning parameters, such as I R, DO,
and S. In this section, we develop an FPGA-specific cost
model to estimate the execution time of multikernel data
partitioning with different parameter combinations (I R, DO,
and S), as shown in Table I.

We observe that the number of clock cycles is independent
of the frequency. In particular, one OpenCL kernel can exist
at different FPGA images, and each FPGA image may have
several other OpenCL kernels and then has different frequency.
However, the number of clock cycles required by the kernel is
fixed in different FPGA images. For example, if the OpenCL
kernel takes 1 s in one FPGA image with a frequency of
200 MHz, the kernel needs 2 s in the other FPGA image with a
frequency of 100 MHz. Therefore, it evaluates the execution
time Te of the OpenCL kernel to be the number of clock
cycles divided by the frequency, as shown in (1), where Ce

is the estimated number of cycles required by the multikernel
partitioning, and #Freq is the frequency of the FPGA image
containing the multikernel data partitioning. It is extremely
different to develop an analytical model to accurately predict
the frequency of FPGA image, which may contain several
OpenCL kernels. The impacting factors include the FPGA
resource consumption, size of local memory, and so on.
Therefore, we use the frequency from the Altera compilation
report [1]

Te = Ce

#Freq
. (1)

Since the computation and memory cycles can be over-
lapped, Ce is calculated to be the larger value between
computation cycles (Ccomp) and global memory access
cycles (Cmem), as shown in

Ce = Max(Ccomp, Cmem). (2)

A. Cost Model for Estimating Ccomp

Since the kernels of the producer and consumer stages have
their own custom FPGA resources to implement, they execute
completely in parallel. Therefore, Ccomp is estimated to be the
larger value between Cin and Cout in (3), where Cin is the
estimated number of cycles required by the producer kernel
in the producer stage, Cout is the estimated number of cycles
required by all the kernels of the consumer stage and N is the
number of input tuples

Ccomp = Max(Cin, Cout). (3)

B. Evaluating Cin

It is estimated to be the larger value between the input
cycles (N /W) required to load the tuples and the output
cycles (N /I R) required to issue tuples to the consumer stage,
as shown in (4). Regarding the estimation of input cycles,
the assumption is that the global memory has the sufficient
memory bandwidth and can provide W tuples per cycle for
the Data_in kernel. Since we only consider the estimation of
computation cycles, the assumption is always satisfied

Cin = Max

(
N

W
,

N

I R

)
(4)

I R means the issue rate (e.g., two tuples per cycle) from
the producer stage to the consumer stage. In order to issue
I R tuples per cycle, the producer stage uses one Converge
kernel to combine I R input channels (from Data_in kernel)

WANG et al.: MULTIKERNEL DATA PARTITIONING WITH CHANNEL ON OpenCL-BASED FPGAs 1913

into one output channel, so that the corresponding consumer
kernel can read the tuples from only one channel. With this
Converge kernel, I R can be greater than 1 and the Data_out
kernel at the consumer stage can remain the same as that of
our previous work [15]. However, our previous work [15] can
only support the case I R=1, which can be the performance
bottleneck when there are sufficient consumer kernels.

C. Evaluating Cout

Since all the kernels of the consumer stage work
concurrently, Cout is evaluated to be the number of cycles
required by the slowest consumer kernel, as shown in (5).
Ni (or Nskew) is the number of tuples processed by the i th
Data_out (or Skewed_handling) kernel, and L (or SH) is the
number of cycles consumed by one tuple in one Data_out (or
Skewed_handling) kernel. The assumption here is that all the
global memory transactions generated from all the kernels of
the consumer stage can be immediately written to the global
memory. It is always satisfied, since we only consider the
estimation of computation cycles

Cout = Max
(

max
1≤i≤DO

(Ni × L), Nskew × SH
)
. (5)

As a constraint, the total tuples processed by the consumer
stage are N , as shown in (6)

N =
∑

1≤i≤DO

Ni + Nskew. (6)

D. Cost Model for Estimating Cmem

Based on observation 4 about the memory subsystem of
OpenCL-based FPGAs, there is a significant performance
difference between sequential and random memory accesses.
However, it is very difficult to develop an analytical model to
accurately predict the performance of the memory subsystem.
We evaluate Cmem to be the sum of the clock cycles required
by sequential and random memory accesses, as shown in (7),
where Cseq

mem stands for the number of clock cycles for sequen-
tial memory references, and C rand

mem stands for the number of
clock cycles for random memory references. Our experimental
result shows that our estimation can capture the performance
trend with different optimization combinations and can thus
guide the user to choose the optimal parameter configuration

Cmem = Cseq
mem + C rand

mem . (7)

E. Evaluating Cseq
mem

It is estimated to be N /W (number of sequential memory
transactions) divided by T PCseq (number of sequential global
memory transactions handled by the memory subsystem within
one cycle), as shown in

Cseq
mem = N/W

T PCseq
. (8)

The sequential memory transactions come from the Data_in
kernel, where each memory transaction can read W tuples
from global memory, thus reducing the number of input global
memory transactions by W times. T PCseq is determined by

the calibrations, as shown in Section III-B. In our experiments,
in order to calibrate T PCseq, we measure the number of clock
cycles of the sequential scan, using four load operations with
long8, and calculate the result accordingly.

F. Evaluating Crand
mem

It is estimated to be N /S (number of random memory
transactions) divided by T PCrand (the number of random
global memory transactions handled by the memory subsystem
within one cycle), as shown in

C rand
mem = N/S

T PCrand
. (9)

The random memory transactions come from the consumer
kernels, where each memory transaction can write S tuples
back to the global memory in one memory transaction, and
then the number of generated global memory output transac-
tions is reduced by S times. Like T PCseq, T PCrand is also
determined by the calibrations. In particular, we measure the
number of clock cycles of the random scan, using four load
operations with long8, and calculate the result accordingly.

G. Parameter Setting

In order to achieve good performance of data partitioning
on OpenCL-based FPGAs, we can leverage the cost model
to determine the suitable setting for a series of parameters,
including I R, S, and DO. Since their ranges are reasonably
small due to the limitation of FPGA resources, we can evaluate
all the possible combinations, and then choose the parameter
combination with the minimal estimation time.

Table I also shows the possible range of each parameter
used in our model. The larger I R can have wider issue rate
of the producer stage, and it does not require a lot of FPGA
resources. However, the FPGA frequency is decreased signifi-
cantly when I R increases, since the Converge kernel requires
to combine the potential tuples from I R input channels in
one cycle, and then, the critical path becomes longer when
I R increases. So I R belongs to the set {1, 2, 4}. S (or DO)
is set to be less than 32 (or 16) due to the limited FPGA
resources. In particular, either more consumer kernels or
larger on-chip buffers require FPGA resources to implement.
Both conditions are satisfied to achieve good performance on
FPGAs. Therefore, it requires one cost model to determine the
optimal parameter combination, rather than evaluating all the
possible combinations on real FPGAs.

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

We conduct our experiments on one Terasic’s DE5-Net
board and one full-fledged CPU. The configurations of FPGA
and CPU are summarized in Table II.

B. FPGA Board

It contains 4-GB two-bank DDR3 device memory
(with theoretical bandwidth 25.6 GB/s) and an Altera Stratix V
GX FPGA, with the Altera OpenCL SDK version 14.0.

1914 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

TABLE II

COMPARISON OF EXPERIMENT PLATFORMS

Fig. 5. Speedup of different CDs over zero CD, with varying S.

The FPGA has 622-K logic elements, 256 DSP blocks, and
2560 M20-K memory blocks (50 Mb). The host employs one
X8 PCI-e 2.0 to communicate with the FPGA board.

C. CPU

We use the Intel Xeon E5-2620, which contains six cores
and 15-MB L3 cache. Its frequency is 2 GHz.

The input data are a relation (i.e., table) with the tuple
format of <key, payload>. Both keys and payloads are 4-B
integers. The probability of referencing individual keys follows
a Zipf distribution and the Zipf factor varies between 0 and
1.75 [2]. The default Zipf factor is 0. We vary the relation size
and the default size is 128 MB (i.e., 16 million tuples). The
partitioning function is radix function (least-significant bits).
This paper mainly focuses on the performance on the FPGA
itself, so the input data sets are initially loaded into the device
memory to exclude the time of data transfer via PCI-e.

D. Performance Impact of Each Parameter

1) Impact of C D: We now study the performance impact
of the C D. Fig. 5 shows the speedup of data partitioning with
varying C D over the case (C D=0). Since the partitioning with
different I R and DO values have roughly the same trend as
that of (I R = 1 and DO = 8), I R is set to be 1 and DO is set
to be 8. The experimental result shows that the implementation
with different C D reaches its best performance when C D is
greater than 4. Therefore, in the following experiments, we set
C D to be 8.

2) Impact of S and DO: Since I R is not the bottleneck in
the majority of parameter combinations of I R, S, and DO, I R
is set to be 1 to analyze the impact of S and DO. Besides, we
will present the impact of I R in Section VII-D3. Since the
input relation in the experiment has the Zipf factor (0), the
impact of Skewed_handling kernel is insignificant. Therefore,
we focus on the Data_out kernels.

We study the measured and estimated execution times of
data partitioning with different combinations of DO and S

Fig. 6. Cost model evaluations with different settings for DO and S.
(a) DO = 1. (b) DO = 2. (c) DO = 4. (d) DO = 8. (e) DO = 16.
(f) Relative error.

values, as shown in Fig. 6. Our cost model is able to roughly
capture the performance trend of different parameter combi-
nations. Hence, we are able to find the suitable parameter
settings to achieve the best performance of data partitioning.
We give more details about the performance trend of different
parameter combinations.

For the cases (DO = 1) and (DO = 2), the main bottleneck
is the lock overhead of the consumer stage, due to the lack of
Data_out kernels.

For the cases (DO = 4), when S is equal to 1, the global
memory performance (Cmem) dominates the overall elapsed
time, since there are too many single-tuple random memory
write operations. When S is greater than 1, the number of
memory write operations is reduced by S times, and then, the
lock overhead dominates due to the lack of Data_out kernels.

For the cases (DO = 8) and (DO = 16), Cmem dominates
the total execution time when S is less than 8. When S is larger
than or equal to 8, the Data_in kernel in the producer stage
dominates the execution time. It means that I R is the bottle-
neck and we will talk about these cases in Section VII-D3.
One interesting finding is that the case (S = 16 and DO = 16)
is slower than the case (S = 8 and DO = 16), since they
roughly require the same number of cycles and the frequency
(267 MHz) of the case (S = 16 and DO = 16) is less than
that (296 MHz) of the case (S = 8 and DO = 16).

In order to validate the effectiveness of our cost model,
the relative error is defined in (10), where Tm is the measured
execution time for the data partitioning and Te is the estimated
execution time. The experimental result in Fig. 6(f) shows that
our cost model can roughly predict the performance (in terms
of relative error) of each parameter combination, and the cost

WANG et al.: MULTIKERNEL DATA PARTITIONING WITH CHANNEL ON OpenCL-BASED FPGAs 1915

Fig. 7. Cost model evaluations with different I R. (a) I R = 2 and DO = 8.
(b) I R = 4 and DO = 8. (c) I R = 2 and DO = 16. (d) I R = 4 and
DO = 16.

model has the good enough accurarcy to determine the optimal
parameter combination of data partitioning

relative_error = |Tm − Te|
Tm

. (10)

In summary, the performance bottleneck shifts for different
settings of S and DO, with I R equal to 1. Our cost model
can capture the performance trend when the parameter com-
bination changes.

3) Impact of I R: Based on the discussion on S and DO
(with I R = 1) in Section VII-D2, I R can be the performance
bottleneck of the data partitioning when DO is equal to
8 or 16. Therefore, we study the measured and the estimated
execution time of data partitioning with different combinations
of I R, S, and DO values, where DO is 8 (or 16) and
I R is 2 (or 4), as shown in Fig. 7.

For the cases (I R = 2 and DO = 8) and (I R = 4 and
DO = 8), the global memory performance (Cmem) dominates
the overall elapsed time when S is less than 8, since there are
too many small-granularity random memory write operations.
When S is greater than or equal to 8, the number of memory
write operations is reduced by S times, and then, the lock
overhead dominates due to the lack of Data_out kernels.

For the cases (I R = 2 and DO = 16) and (I R = 4 and
DO = 16), the global memory performance (Cmem) dominates
the overall elapsed time of partitioning with different S values.
However, the elapsed time (34.8 ms) of the case (I R = 2,
S = 16, and DO = 16) is larger than that (42.5 ms) of the
case (I R = 2, S = 8, and DO = 16), since the frequency
(215 MHz) of the case (I R = 2, S = 16, and DO = 16) is
significantly less than that (267 MHz) of the case (I R = 2,
S = 8, and DO = 16).

In summary, we compare the performance of three cases
(I R = 1 and DO = 16), (I R = 2 and DO = 16), and
(I R = 4 and DO = 16) with varying S to demonstrate the
impact of IR, as shown in Fig. 8(a). From the comparison, we
can see that (I R = 1 and DO = 16) has the best performance
when S is less than or equal to 2, since the performance
bottleneck lies on the memory bandwidth overhead and its
frequency is higher than that of (I R = 2 and DO = 16)

Fig. 8. Performance comparison. (a) Varying I R. (b) Varying Zipf factors.

TABLE III

FPGA RESOURCE UTILIZATIONS

and (I R = 4 and DO = 16). When S is larger than 2,
their bottleneck shifts from the memory bandwidth overhead
to the issue rate of producer stage. Therefore, (I R = 2 and
DO = 16) and (I R = 4 and DO = 16) can achieve better
performance than that of (I R = 1 and DO = 16).

4) Impact of Skewed_Handling Kernel: We study the
impact of Skewed_handling kernel with the varying Zipf factor.
The data partitioning without the Skewed_handling kernel
is denoted by “original,” and the data partitioning with the
Skewed_handling kernel is denoted by “skewed_handling.”
Fig. 8(b) shows the performance speedups of “original” and
“skewed_handling” over the baseline, where the baseline is
“original” with z equal to 0. The experimental result shows
the effectiveness of the Skewed_handling kernel when z is
larger than 1, since this kernel has higher throughput.

E. Performance Comparison

In this section, we study the performance of our multik-
ernel partitioning, in comparison with the original algorithm
(denoted by Local_1CU) in Section III, and in comparison
with the state-of-the-art implementation on CPU.

1) Comparison With Local_1CU: We compare the perfor-
mance of our multikernel design and the original lock-based
design. In order to demonstrate the impact of I R, we choose
the optimal case for different I R values according to our cost
model: (I R = 1, S = 8, DO = 16, C D = 8, and B = 1024)
and (I R = 2, S = 8, DO = 16, C D = 8, and B = 1024).
They are denoted by I R = 1 and I R = 2, respectively.
The resource consumption and achieved frequency for each
implementation are shown in Table III. From Table III, we can
see that Local_1CU requires the minimum FPGA resources
and lowest frequency, since it contains the atomic primitives,
which impede the achieved frequency of the entire FPGA
image [1]. Another thing to be mentioned is that we cannot
improve the performance of Local_1CU via reducing the
number of memory transactions (which requires more FPGA
resource), since its bottleneck lies on the lock overhead.

F. Impact of Data Size

We compare the three data partitioning implementations
with the varying input sizes (16, 32, 64, 128, and 192 MB), as

1916 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

Fig. 9. Performance comparisons between the original and proposed
implementations. (a) Varying tuples. (b) Varying partitions.

Fig. 10. Comparison with CPU.

shown in Fig. 9(a), where the number of partitions is 8 K. We
can see that all the three cases scale well when increasing the
data size. And our proposed multikernel approach (I R = 2)
is 16.6× faster than the original Local_1CU implementation.

G. Impact of the Number of Partitions

Fig. 9(b) shows the elapsed time of data partitioning with
different numbers of partitions (from 512 to 16384). With
varying number of partitions, the performance of multikernel
approach (I R = 1 and I R = 2) is much higher and more
stable than the Local_1CU implementation.

1) Comparison With CPU: Fig. 10 shows the performance
comparison between the state-of-the-art partitioning [2] on
CPU and our multikernel implementation on FPGA with dif-
ferent Zipf factors. The CPU implementation, written in C++,
has already explored the optimization methods, such as 128-
b single-instruction-multiple-data (SIMD), software managed
buffer, and multipass partitioning. Besides, all the hardware
threads (12) are leveraged to accelerate the data partitioning.
The implementation on CPU is denoted by “CPU” and the
implementation on FPGA, denoted by “FPGA,” uses the case
(I R = 2, S = 8, DO = 16, C D = 8, and B = 1024). The
experimental result shows that our multikernel partitioning has
better performance than the CPU implementation, since the
CPU version suffers from cache misses and TLB misses due
to random memory accesses. Another interesting observation
is that the performance speedup of our implementation over
the CPU implementation becomes larger when Zipf factor is
larger than 1, since skewed data cause the load unbalances
among CPU cores in the CPU implementation.

H. Case Studies for Data Partitioning

We perform three case studies in relational databases to
show the importance of data partitioning, including hash
join, histogram, and hash search. All of them employ the

Fig. 11. Performance comparisons for three applications. (a) Hash join.
(b) Histogram. (c) Hash search.

data partitioning as a building block. In most cases, data
partitioning is one of the major performance factors. We
compare the performance of the proposed data partitioning
method (denoted as optimized) against the one without
the multikernel data partitioning (denoted as original).
Overall, for all the three case studies, the optimized version
is 6×–12× faster than the original version, thanks to the
proposed multikernel data partitioning.

1) Hash Join: The partitioned hash join [2] is an efficient
implementation for hash joins, and is widely used in relational
databases. The hash join takes two relations as input, and
finds the matching tuple pairs from the two relations according
to the join predicates. The algorithm has two major phases:
partitioning and build_probe. In the partitioning phase, each
relation is divided into a predefined number of partitions. The
number of partitions is determined, so that each partition can
fit into the on-chip memory. Then, the build_probe phase is
to perform a simple hash join algorithm on each partition pair
with the same partition ID. For the simple hash join algorithm,
it first scans one partition to build one hash table (“build”).
Next, for each tuple of the partition, a search is performed
(“probe”) on the hash table to find the matching tuples. The
Local_1CU implementation (original) is used as the baseline.
Fig. 11(a) shows the elapsed time of partitioned hash joins.
Each of the input relations has 16 million tuples (with a 4-B
key and a 4-B value). The optimized implementation (I R = 1)
is roughly 6.4 times faster than the original one. The reason
why (I R = 1) is chosen for the optimized implementation is
that the build_probe phase dominates the total execution time
and (I R = 2) with the same optimization level for build_probe
cannot fit into one FPGA image.

2) Histogram: The histogram is a crucial part of query
planning and it is memory-intensive operation. The histogram
divides the input tuples into a number of bins. Then, each
tuple of the input relation will be collected into the bin i ,
where i ranges from 1 to B_N and B_N is the total number
of bins. One important issue lies on the write conflict to
the bins, where more than one work items try to add their
values into the same location of the same bin concurrently.

WANG et al.: MULTIKERNEL DATA PARTITIONING WITH CHANNEL ON OpenCL-BASED FPGAs 1917

Then, the basic implementation with NDRange model will
employ the atomic operation to protect each bin. If any work
item wants to update any bin, the corresponding bin should
be updated atomically. The bins are implemented using either
global memory or local memory. The bin using global memory
is slow but visible to all work groups, while the bin using
local memory (original) is fast but only visible to one work
group.

With the multikernel data partitioning scheme, several
task kernels (optimized) work concurrently to compute the
histogram, and then, each kernel computes on a fraction
of bins. The input relation has 32 million tuples and B_N
is 4 K. The optimized implementation (I R = 2) is roughly
7.6 times faster than the original implementation, as shown
in Fig. 11(b). Since there are still sufficient FPGA resources
available, (I R = 2) can be chosen to further improve the
performance of histogram, compared with (I R = 1).

3) Hash Search: The hash table consists of multiple hash
headers, each of which contains a pointer to the corresponding
bucket. Each bucket stores the records that have the same hash
value. Since the hash table is usually so large that the entire
hash table and buckets cannot reside on the local memory
of FPGAs, the hash table and buckets reside on the global
memory. The hash search takes as input a number of search
keys, performs probes on the hash table with these keys, and
outputs the matching records. In the original implementation,
each search key directly searches the global memory for
matching, resulting in bad global memory performance. The
conventional optimization method is to use multiple CUs.
However, the performance improvement is limited, since the
global memory bandwidth is the main bottleneck. In our
optimized implementation, the search keys are divided into a
predefined number of partitions, so that the corresponding hash
headers and buckets can fit into the local memory of FPGAs
for each partition. Then, for each partition of search keys, the
corresponding hash headers and buckets are first loaded into
local memory, and the corresponding hash search is second
executed. Fig. 11(c) shows the elapsed time of hash search.
The number of search keys is 4 million and the number of
keys in the hash table is 16 M and the average number of
keys for each bucket is 32. The optimized implementation
(I R = 1) is roughly 12.5 times faster than the original
implementation. The reason why (I R = 1) is chosen for the
optimized implementation is that the data partitioning with
(I R = 2) cannot fit into FPGA when the same optimization
effort as the local memory based hash search is applied.

VIII. CONCLUSION

Motivated by recent popularity of OpenCL-based FPGAs
on data-intensive applications, we develop a new multikernel
partitioning approach for databases. Moreover, we develop an
FPGA-specific cost model to guide the parameter settings.
Our experimental results demonstrate that: 1) our cost model
can accurately predict the performance of data partitioning
with different parameter combinations and 2) the proposed
multikernel approach can achieve 16.6× speedup over the
original implementation.

REFERENCES

[1] Altera SDK for OpenCL Optimization Guide, Altera, San Jose, CA,
USA, 2014.

[2] C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu, “Main-memory
hash joins on multi-core CPUs: Tuning to the underlying hardware,” in
Proc. IEEE 29th Int. Conf. Data Eng. (ICDE), Apr. 2013, pp. 362–373.

[3] J. Casper and K. Olukotun, “Hardware acceleration of database oper-
ations,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
New York, NY, USA, Feb. 2014, pp. 151–160.

[4] D. Chen and D. Singh, “Invited paper: Using OpenCL to evaluate the
efficiency of CPUS, GPUS and FPGAS for information filtering,” in
Proc. 22nd Int. Conf. Field Program. Logic Appl. (FPL), Aug. 2012,
pp. 5–12.

[5] Y. Chen et al., “FCUDA-NoC: A scalable and efficient network-on-chip
implementation for the CUDA-to-FPGA flow,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 24, no. 6, pp. 2220–2233, Jun. 2016.

[6] Y. Chen, B. Schmidt, and D. L. Maskell, “Reconfigurable accelerator for
the word-matching stage of BLASTN,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 21, no. 4, pp. 659–669, Apr. 2013.

[7] T. S. Czajkowski et al., “From OpenCL to high-performance hardware
on FPGAS,” in Proc. 22nd Int. Conf. Field Program. Logic Appl. (FPL),
Aug. 2012, pp. 531–534.

[8] B. He, N. K. Govindaraju, Q. Luo, and B. Smith, “Efficient gather and
scatter operations on graphics processors,” in Proc. ACM/IEEE Conf.
Supercomput., New York, NY, USA, Nov. 2007, pp. 46:1–46:12.

[9] J. He, M. Lu, and B. He, “Revisiting co-processing for hash joins on
the coupled CPU-GPU architecture,” Proc. VLDB Endowment, vol. 6,
no. 10, pp. 889–900, Aug. 2013.

[10] J. He, S. Zhang, and B. He, “In-cache query co-processing on cou-
pled CPU-GPU architectures,” Proc. VLDB Endowment, vol. 8, no. 4,
pp. 329–340, Dec. 2014.

[11] Z. Istvan, G. Alonso, M. Blott, and K. Vissers, “A flexible hash table
design for 10GBPS key-value stores on FPGAS,” in Proc. 23rd Int.
Conf. Field Program. Logic Appl. (FPL), Sep. 2013, pp. 1–8.

[12] S. Paul, A. Krishna, W. Qian, R. Karam, and S. Bhunia, “MAHA:
An energy-efficient malleable hardware accelerator for data-intensive
applications,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23,
no. 6, pp. 1005–1016, Jun. 2015.

[13] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in Proc. 27th Annu. Int. Symp. Comput.
Archit., New York, NY, USA, 2000, pp. 128–138.

[14] P. Wang and J. McAllister, “Streaming elements for FPGA signal and
image processing accelerators,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 24, no. 6, pp. 2262–2274, Jun. 2016.

[15] Z. Wang, B. He, and W. Zhang, “A study of data partitioning on
OpenCL-based FPGAs,” in Proc. 25th Int. Conf. Field Program. Logic
Appl. (FPL), Sep. 2015, pp. 1–8.

[16] Z. Wang, B. He, W. Zhang, and S. Jiang, “A performance analysis
framework for optimizing OpenCL applications on FPGAs,” in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Mar. 2016,
pp. 114–125.

[17] Z. Wang, J. Paul, H. Y. Cheah, B. He, and W. Zhang, “Relational query
processing on OpenCL-based FPGAs,” in Proc. 26th Int. Conf. Field
Program. Logic Appl. (FPL), Aug. 2016, pp. 1–10.

[18] Z. Wang, S. Zhang, B. He, and W. Zhang, “Melia: A MapReduce
framework on OpenCL-based FPGAs,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 12, pp. 3547–3560, Dec. 2016.

[19] S. Zhang, J. He, B. He, and M. Lu, “OmniDB: Towards portable and
efficient query processing on parallel CPU/GPU architectures,” Proc.
VLDB Endowment, vol. 6, no. 12, pp. 1374–1377, Aug. 2013.

Zeke Wang received the B.Sc. degree from the
Harbin University of Science and Technology,
Harbin, China, in 2006, and the Ph.D. degree from
Zhejiang University, Hangzhou, China, in 2011.

He is currently a Research Fellow with the School
of Computing, National University of Singapore,
Singapore. His current research interests include
heterogeneous computing with a focus on field-
programmable gate array and database systems.

1918 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 6, JUNE 2017

Johns Paul received the bachelor’s degree from
the National Institute of Technology, Calicut, India.
He is currently pursuing the Ph.D. degree with
the School of Computer Science and Engineering,
Nanyang Technological University, Singapore.

His current research interests include
heterogeneous computing (field-programmable gate
array & GPU) and database systems.

Bingsheng He received the bachelor’s degree in
computer science from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2003, and the Ph.D. degree
in computer science from The Hong Kong University
of Science and Technology, Hong Kong, in 2008.

He is currently an Associate Professor with
the School of Computing, National University of
Singapore, Singapore. His current research interests
include high performance computing, distributed
and parallel systems, and database systems.

Wei Zhang received the Ph.D. degree from
Princeton University, Princeton, NJ, USA, in 2009.

She was an Assistant Professor with the School
of Computer Engineering, Nanyang Technological
University, Singapore, from 2010 to 2013. In 2013,
she joined The Hong Kong University of Science
and Technology, Hong Kong, as an Assistant
Professor and established the Reconfigurable
System Laboratory Department of Electronic
& Computer Engineering, HKUST. Her current
research interests include reconfigurable system,

field-programmable gate array-based design, low-power high-performance
multicore system, embedded system security, and emerging technologies.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

