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Abstract
Graph Neural Networks (GNNs) are widely employed in applica-
tions like recommendation systems, social network analysis, and
fraud detection, but training large-scale GNNs is challenging due
to its memory limitations. Existing systems face a trade-off be-
tween throughput and monetary cost: Distributed systems require
expensive memory scaling, while single-machine out-of-core sys-
tems are limited by GPU/PCIe throughput. To this end, we propose
Moment, a physical communication topology and data placement
co-optimizer to enable high-throughput and low-cost GNN training
in a single multi-GPU machine. Moment addresses communica-
tion contention and GPU load imbalance issues by modeling the
physical topology as capacity-constrained directed graphs and for-
mulating communication scheduling as a max-flow problem. It also
introduces a data-distribution-aware knapsack algorithm for op-
timized data placement. Experimental results show that Moment
outperforms out-of-core systems by up to 6.51× and distributed
systems by up to 3.02×, with only 50% monetary cost.
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• Computing methodologies→Machine learning; Planning
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1 Introduction
Graph Neural Networks (GNNs) [10, 11, 23, 30, 58, 79] are a power-
ful approach for processing graph-structured data, making them
particularly effective in applications such as recommendation sys-
tems [17, 25, 57, 66, 71, 77], social network analysis [2, 8, 40],
and financial fraud detection [26, 37, 61, 67, 78, 82]. Applying
GNNs on large-scale graphs in industrial settings is quite com-
mon [8, 12, 14, 24, 38, 52, 62, 70, 76, 77, 81, 87]. For example, in
Alibaba’s Taobao recommendation system [87], the user-item graph
contains more than one billion vertices and tens of billions of edges,
which requires several terabytes of storage space and can now easily
exceed the upper limit of CPUmemory capacity in a single machine.
Therefore, training large-scale GNNs remains challenging.

Existing solutions for training large-scale GNNs often compro-
mise between throughput and monetary cost. One widely used
approach is distributed clusters with multiple GPUs [16, 18, 21, 32,
36, 43, 56, 60, 64, 80, 83–87], but this requires significant memory
across multiple machines, increasing costs linearly with graph size.
Additionally, distributed systems require CPUs for graph sampling
and extensive network communication, which struggle to match
GPU training speeds [20, 75]. In contrast, single-machine solutions,
such as in-memory and out-of-core GNN systems, provide more
cost-effective alternatives [41, 42, 54, 59]. However, in-memory sys-
tems [34, 39, 44, 53, 74, 75] are limited by host memory size, making
them unsuitable for training terabyte-scale graphs. Out-of-core sys-
tems [35, 41, 42, 48, 54, 59] expand storage to disks, such as NVMe
SSDs, but are constrained by single GPU computation power and
PCIe throughput (e.g., up to 20 GiB/s with PCIe 4.0 x16), limiting
their training throughput.
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(a) SSD prioritizes the front board, GPUs are evenly distributed via
PLX. Epoch Time: 15.9s

(b) SSD prioritizes the front board, GPUs are on the same PLX. Epoch
Time: 26.7s

(c) SSDs are evenly distributed across PLX, GPUs are evenly dis-
tributed across PLX. Epoch Time: 14.9s

(d) SSDs are evenly distributed across PLX, GPUs are on the same
PLX. Epoch Time: 24.1s

Figure 1: Comparison of Different Hardware Placement Strategies on Machine A. We report the epoch time of training the
GraphSAGE [23] model on the IGB [29] dataset. We observe that hardware placement is critical to overall GNN performance.

Recent advances in GPU sampling [20, 75] and GPU-initiated
direct SSD access [41, 54] make it possible for a single machine
multi-GPU out-of-core GNN training system to achieve higher
throughput at a lower cost than distributed systems. However, scal-
ing an out-of-core system to multiple GPUs is challenging due to
communication contention and load imbalance issues. The key is-
sue lies in the impact of physical communication topology on data
locality and interconnect bandwidth, which are overlooked by prior
systems. Figure 1 shows that multi-GPU servers connect GPUs and
SSDs via PCIe interfaces, with each GPU accessing SSDs through
local or remote PCIe switches. Frequent access to remote SSDs
by all GPUs can cause severe contention on CPU interconnects
(e.g., QuickPath Interconnect, QPI), creating a bottleneck. Further-
more, Figure 6 illustrates that scaling from 2 to 4 GPUs can worsen
performance due to IO bottlenecks.

To this end, we argue for co-optimizing the physical communica-
tion topology, i.e., hardware placement, with graph data placement
for multi-GPU out-of-core GNN training. However, we have to
address the challenge that the search space is huge, because differ-
ent PCIe architectures introduce diverse ways of connecting CPUs,
GPUs, and SSDs through switches and QPI, resulting in a multitude
of complex communication combinations.

To address these challenges, we propose Moment, a physical
topology and data placement co-optimizer, which simultaneously
achieves high throughput and low monetary cost with a cheap cus-
tomized single machine utilizing multiple GPUs and SSDs. The sys-
tem automatically determines hardware and data placement during
initialization. Our key idea is to formulate candidate combinations

of physical communication links into a set of single-source single-
sink capacity-constrained directed graphs, and then transform the
communication planning into a max flow problem to maximize
GPU PCIe throughput. First, it reduces the search space by remov-
ing symmetry-invariant and rotation-invariant structures. Then, it
optimizes the max flow for each candidate to find the configuration
with the highest throughput. Finally, the data-distribution-aware
knapsack (DDAK) algorithm places graph embeddings in GPU/CPU
memory and SSDs. At runtime, Moment introduces a multi-GPU-
initiated disk I/O stack, allowing direct GPU-SSD access without
CPU involvement. Experimental results show that Moment outper-
forms out-of-core systems by up to 6.51x and distributed systems
by up to 3.02x at only about 50% monetary cost.

In summary, we make the following contributions:

• We highlight the impact of physical communication topology
on multi-GPU out-of-core GNN training, including commu-
nication contention and GPU load imbalance, which previous
works overlooked.

• We formulate the actual physical communication topology
into a single-source single-sink weighted communication
topology graph and minimize the optimization space by
removing redundant structures, allowing solving the com-
munication problem by a max flow modeling.

• We propose a data-distribution-aware knapsack algorithm
that accounts for graph data skewness to optimally place
embeddings across the entire memory hierarchy, including
GPU/CPU memory and SSDs.
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• We introduce Moment, which can train GNNs on terabyte-
scale graphs within a single server, achieving up to 6.51×
speedup over out-of-core systems and 3.02× over distributed
systems at about half the cost.

2 Background and Motivation
2.1 Preliminaries
Graph Neural Networks (GNNs). Given a graph 𝐺 = (𝑉 , 𝐸),
Graph Neural Networks (GNNs) are utilized to compute compact
representations for each target vertex by applying neural networks
across 𝐿 layers. At each layer 𝑙 ∈ 1, 2, ..., 𝐿, the activation ℎ𝑙𝑣 of a
vertex 𝑣 ∈ 𝑉 is updated by aggregating the features or hidden acti-
vations of its neighboring vertices, denoted as 𝑁 (𝑣). This process
is defined by:

𝑎𝑙𝑣 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑙 (ℎ𝑙−1𝑢 |𝑢 ∈ 𝑁 (𝑣))

ℎ𝑙𝑣 = 𝑈𝑃𝐷𝐴𝑇𝐸𝑙 (𝑎𝑙𝑣, ℎ𝑙−1𝑣 )
(1)

Here, the AGGREGATE function gathers information from the
neighbors of vertex 𝑣 , and the UPDATE function combines this ag-
gregated information with the previous activation ℎ𝑙−1𝑣 to produce
the new activation ℎ𝑙𝑣 .
Mini-batch GNN Training Workflow. This paper focuses on
mini-batch GNN training using graph sampling to scale training for
large graphs [8, 77, 87]. The overall workflow of mini-batch GNN
training consists of three key steps: 1) graph sampling, 2) feature ex-
traction, and 3) model training. Graph Sampling begins by selecting
a batch of vertices and iteratively selecting their neighbors using
strategies like random sampling [23, 79], which are then organized
into a subgraph [63]. Feature Extraction involves collecting vertex
embeddings from the sampled subgraph. These embeddings can
vary in size depending on the vertices and their neighbors, cap-
turing the necessary information for further processing. In model
training, the AGGREGATE and UPDATE operations are performed
on the sampled subgraph. During this process, model parameters
are updated through forward and backward propagation. Previous
studies [34, 36, 59, 75] have identified graph sampling and feature
extraction as key bottlenecks in GNN training, particularly in out-
of-core settings, unlike other DNNs where model training is the
primary bottleneck.

2.2 Issues of Existing Distributed and
Out-of-core Systems

Existing systems, including distributed systems and single-machine
out-of-core systems for training large-scale GNNs, often compro-
mise between throughput and monetary cost.
Distributed Systems. Distributed GNN systems, such as Dist-
DGL [85], partition graph data across multiple machines to en-
able distributed data-parallel training. While this approach handles
larger graphs by aggregating memory, it introduces several critical
issues: 1) High Monetary Costs: As graph sizes grow, the cost for
more GPUs and machines increases linearly. 2) Limited Memory
Capacity: Even with scaling, the GPU/CPU memory in distributed
systems may still fall short for large graphs. For instance, the CL
dataset in Table 2 requires over 4 TB of memory. Storing the dataset
in distributed CPU memory would require at least eight 500-GB

machines, even before accounting for the memory expansion intro-
duced by training frameworks such as DistDGL, which can demand
up to 5× the dataset size. 3) Large Graph Sampling and Network
Communication Overhead: Distributed GNN training relies on data-
dependent graph sampling, which often requires fetching data from
remote machines and is typically handled by CPUs in existing sys-
tems [18, 36, 56, 83, 85, 87]. However, prior studies have shown
that CPU-based sampling falls short of keeping up with GPU-based
model training [20, 75].
Single-Machine Out-of-core Systems. Existing out-of-core GNN
systems typically rely on a single GPU, which limits their through-
put. Specifically, these systems encounter two main issues:1) Lim-
ited Computational Power of a Single GPU : TrainingGNNs—especially
complex models such as GAT [58]—is computationally demanding,
yet the achievable throughput remains bounded by the computa-
tion power of a single GPU. 2) PCIe Bandwidth Bottlenecks: System
performance is further limited by the bandwidth of a single PCIe
interface. For instance, a PCIe 4.0 NVMe SSD can deliver over one
million random IOPS and approximately 6 GiB/s of bandwidth [22],
which already approaches the maximum throughput of a PCIe
4.0×16 link (around 20 GiB/s). Meanwhile, SSD bandwidth con-
tinues to scale rapidly [3, 13, 19, 31, 47, 49, 51, 73]. On Machine
A (Table 3), for example, 8 NVMe SSDs together sustain a peak
throughput of 48 GiB/s—2.4× higher than that of a single PCIe
link. Consequently, current out-of-core systems are unable to fully
exploit the performance potential of modern SSDs.

2.3 Impact of Physical Communication
Topology

A promising direction to overcome the above limitations is scaling
up GNN training with multiple GPUs and SSDs. However, this
is non-trival due to the challenges of communication contention
and load imbalance, both of which are highly dependent on the
underlying physical communication topology.

Figures 1 and 2 illustrate two Machines A and B (Table 3) with
different PCIe topologies, each equipped with 4 A100 GPUs, 8 P5510
NVMe SSDs, and additional devices. Machine A (Figure 1) adopts a
balanced PCIe topology, whereas Machine B (Figure 2) follows a
cascaded PCIe topology. To highlight the impact of physical topol-
ogy, we construct four representative layouts based on a combined
design space of SSDs and GPUs. For SSDs, we consider two place-
ment principles: (i) balanced placement across front- and back-end
boards, which is widely used to achieve load balance, and (ii) front-
board–prioritized placement, which reflects practical constraints in
modern servers (e.g., facilitating SSD hot-swapping). For GPUs, we
also examine two strategies: (i) P2P-prioritized placement, which
enables direct GPU communication without crossing PCIe switches
or the CPU, thereby achieving higher P2P throughput, and (ii) even
distribution across multiple PCIe switches. Combining these SSD
and GPU strategies yields four hardware layouts, as summarized in
Figures 1 and 2.

We extended Hyperion [54] and GIDS [41] from single-GPU
to multi-GPU execution, creating M-Hyperion and M-GIDS. We
evaluated M-Hyperion’s training throughput on the IGB and UK
datasets (see Table 2). As shown in Figure 3, Placement (c) achieved
the best throughput, improving 1.86× over Placement (b). Similarly,
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(a) SSD prioritizes the front board, GPUs are evenly distributed via
PLX. Epoch Time: 28.4s

(b) SSD prioritizes the front board, GPUs are on the same PLX. Epoch
Time: 29.7s

(c) SSDs are evenly distributed across PLX, GPUs are evenly dis-
tributed across PLX. Epoch Time: 18.6s

(d) SSDs are evenly distributed across PLX, GPUs are on the same
PLX. Epoch Time: 24.0s

Figure 2: Comparison of Different Hardware Placement Strategies on Machine B. We report the epoch time of training the
GraphSAGE [23] model on the IGB [29] dataset.

Figure 3: Comparison of
Different Placements un-
der Machine A

Figure 4: Comparison of
Different Placements un-
der Machine B

Figure 5: Throughput w.r.t.
GPU expansion from 2 to 4
of M-Hyperion

Figure 6: Throughput w.r.t.
GPU expansion from 2 to 4
of M-GIDS

Figure 4 shows that Placement (c) was 1.96× better than Placement
(b). Figures 5 and 6 demonstrate that increasing GPUs from 2 to 4
under Placement (d) resulted in little or decreased throughput. In
summary, bad placement can degrade throughput by nearly 2× and
reduce scalability. We explain the underlying reasons below.

Reason 1: Communication Contention. During GNN training,
multiple GPUs will simultaneously access large volumes of graph
vertex embeddings from storage devices, such as SSDs or CPU
memory. The shared data paths, such as PCIe links and QPI, can
become system bottlenecks due to communication contention. In
machine A’s setup, as illustrated in Figure 1b, the communication
topology consists of two CPUs connected via QPI, with each CPU
integrating a root complex. On the left, this root complex connects
four NVMe SSDs via Bus 1-4 and links a PCIe switch hosting four
GPUs via Bus 9. The PCIe topology on the right is symmetrical to
the left but connects to other devices like network interface cards
(NICs) and LAN adapters. The primary contention lies in the shared
PCIe links between the PCIe switch 0 and root complex 0, i.e., Bus
9. The problems can similarly arise in machine B shown in Figure 2,
such as the QPI links and Bus 11 in Figures 2a and 2b, as well as
the Bus 11 and Bus 16 links in Figures 2c and 2d.
Reason 2: GPU Load Imbalance. Asymmetric GPU placements1
can inherently lead to GPU load imbalance. Figure 2 shows that
machine B’s cascaded PCIe topology. The root complex 0 is con-
nected to the PCIe switch 0 via Bus 11, and PCIe switch 1 is attached
to PCIe switch 0 via Bus 16. According to Figure 4, Placement (c)
achieves the highest throughput among the four placements. However,
it still suffers from load imbalance issues. Specifically, GPU 0 and
GPU 1 in this placement, directly connected to the PCIe switch 0,
can access graph vertex embeddings through Bus 11-13 and Bus 16,

1There are asymmetric topology cases. E.g., PCIe expansion like H3 Falcon 4016
presented in a recent work [46] adopts a cascaded PCIe switch design, which is similar
to the communication topology of Machine B in our paper.
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Figure 7: Moment’s Placement on Machine B. Epoch Time:
13.2s

which can achieve approximately 40 GiB/s of overall IO throughput.
In contrast, GPU 2 and GPU 3 connected to the PCIe switch 1 can
only retrieve embedding data through the severely contended Bus
16 and Bus 17-18, achieving about 30 GiB/s maximal IO through-
put. As such, the imbalanced IO throughput leads to imbalanced
workloads for the GPU. In contrast, Moment’s optimization (Figure 7)
selects an unusual configuration that reduces contention on Bus 16
and mitigates GPU load imbalance.
Opportunities and Challenges: As highlighted, physical com-
munication topology greatly affects GNN training throughput. As
shown in our experiments, certain placements (e.g., placement (c))
can significantly outperform others, but the optimal choice varies
with the machine configuration. Key influencing factors include
the number and throughput of GPUs and SSDs, PCIe/QPI/UPI band-
width, PCIe topology, and the distribution of graph data. With
server vendors offering customized machines [15, 55] and large-
scale GNN training being common in applications like e-commerce
recommendations [8, 87], there is an opportunity to optimize hard-
ware placement. Customized machines with multiple GPUs and
SSDs can achieve high throughput at low costs, as shown in Figure 7.
However, determining the optimal placement is non-trivial. The
above factors form a vast and complex optimization space, making
it difficult to design the most efficient communication solution. Our
key insight is that throughput can be predictable by modeling the
communication topology as a single-source, single-sink capacity-
constrained directed graph. The formulation in Section 3.2 will
guide us to find the optimal topology to maximize throughput.

3 Moment Design
We introduce Moment, a co-optimizer for physical communication
topology and data placement to scale-up out-of-core GNN training,
delivering high throughput and low cost on a customized machine
with multiple GPUs and SSDs. Figure 8 outlines the Moment work-
flow, featuring an automatic module that models communication
topology as a max-flow problem to optimize hardware placement
and traffic distribution (see Section 3.2). Additionally, Moment em-
ploys a data-distribution-aware knapsack (DDAK) algorithm to
optimize graph embedding placement (see Section 3.3).

3.1 SystemWorkflow
Figure 8 illustrates the overall workflow of Moment. The inputs
of Moment consist of (1) communication topology, which includes
the physical connections between GPUs, SSDs, and CPUs, as well
as the bandwidth constraints of interconnects like PCIe and QPI;

Figure 8: Moment Overview

(2) GNN Model (e.g., GCN [30], GraphSAGE [23]), including the
graph sampling methods, determining the data access patterns; (3)
Datasets including vertex embeddings and edge information.
Automatic Module. During offline initialization, Moment intro-
duces an automatic module for hardware and data placement (i.e.,
graph embedding layout) using communication topology modeling,
max flow optimization, and the data-distribution-aware knapsack
algorithm (DDAK). The module first extracts the server’s commu-
nication topology via Linux commands and libraries like libpci [69]
and dmidecode [68], which provide PCI configuration and SMBIOS
data. This topology is modeled as a directed communication graph
for amax flow problem (see Section 3.2). It also profiles bandwidths
of hardware components like SSDs, PCIe, and NVLinks, to establish
throughput constraints. The module then eliminates redundant
structures and compares feasible hardware placement schemes to
identify the optimal placement and its predicted throughput. Note
that with a given set of hardware, the optimal hardware placement
can be reused across different GNN models and training loops. Fi-
nally, the DDAK algorithm determines the vertex embedding layout
based on the flow through storage nodes (see Section 3.3).
Multi-GPU Disk IO Stack.Moment extends Hyperion’s single-
GPU IO stack [54] to allow multiple GPUs to initiate direct SSD
access requests, enabling each GPU to fully utilize SSD IO through-
put with minimal GPU core usage (e.g., 1%). Each GPU maintains
submission queues (SQs), completion queues (CQs), and applica-
tion buffers. During GNN training, each GPU retrieves the SSD
ID and vertex offset, then initiates parallel IO requests. SSDs re-
turn the requested data to the application buffers, with each GPU
independently managing its own IO stack.
System Runtime. Moment performs data-parallel training on
multiple GPUs by evenly partitioning training vertices; each GPU
pipelines sampling, feature extraction, and model training, like
existing works [41, 54].

3.2 Communication Topology and Max Flow
Formulation

To find the optimal hardware placement and communication plan-
ning, Moment first formulates physical communication topology
into a directed communication graph and augments the physical
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Figure 9: Example of converting a communication topology
to a maximum flow problem. Vertex 𝑠 is the abstract source,
and 𝑡 is the GPU sink. Edges represent physical link band-
widths; virtual edges have infinite bandwidth.

graph with virtual source/sink nodes and edges, as shown in Fig-
ure 9. Then Moment computes max flow based on the graph to find
the optimal hardware placement.
Graph Representation.We represent the augmented communi-
cation topology as a directed graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set
of nodes, including:

• Storage Nodes (𝑉𝑠 ): Graph embeddings are stored in storage
nodes, including GPU/CPU memory, and SSDs.

• Computation Nodes (𝑉𝑐 ): Graph embeddings are consumed
by computation nodes, i.e., GPUs.

• Interconnect Nodes (𝑉𝑖 ): Interconnect nodes, such as PCIe
switches, root complexes, and other interconnect compo-
nents, do not store graph embeddings but function as inter-
change hubs for data transmission.

• Virtual Nodes: Source node 𝑠 and sink node 𝑡 . We add a
single virtual source node that functions as a data source
connecting to all storage nodes. We add a single sink node
to aggregate the data flow from all computation nodes.

Therefore, the total set of nodes is:

𝑉 = 𝑉𝑠 ∪𝑉𝑐 ∪𝑉𝑖 ∪ {𝑠, 𝑡}

The communication graph edges comprise physical edges (storage-
interconnect, interconnect-interconnect, and interconnect-computation
links) and virtual edges (source-to-storage input links and computation-
to-sink output links), formally defined as 𝐸 = 𝐸𝑝 ∪ 𝐸𝑣 , where 𝐸𝑝
and 𝐸𝑣 denote physical and virtual edges, respectively. The physical
edges 𝐸𝑝 in the communication graph represent the complex hard-
ware links facilitating data transfer between system components.
These links can include various interconnect technologies, such as
NVLink, PCIe, QPI, and others, depending on the system configu-
ration. Importantly, 𝐸𝑝 encompasses high-bandwidth connections,
including those supporting NVLink, which is essential for efficient
GPU-to-GPU communication in multi-GPU setups. During GNN
training, GPU-driven embedding accesses across GPU memory,
CPU memory, and SSDs enforce directional data flow: source →
storage→ interconnect→ computation→ sink.
Capacity Constraint. Each edge 𝑒 ∈ 𝐸 has a capacity 𝑐 (𝑒) repre-
senting the maximum data transfer rate, i.e., throughput constraint,
over that link. Moment measures edge capacities by hardware pro-
filing (See Section 3.1). For edge (𝑢, 𝑣) ∈ 𝐸𝑝 :

𝑐 (𝑢, 𝑣) = 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑢→𝑣

𝑐 (𝑠, 𝑣𝑠 ) = 𝑐 (𝑣𝑠 , 𝑣𝑖 ), 𝑐 (𝑣𝑐 , 𝑡) = ∞

Definition of Flow. The flow 𝑓 represents the actual amount of
data transferred over each edge during GNN training. For the edge
(𝑠, 𝑣𝑐 ), 𝑓 (𝑠, 𝑣𝑐 ) corresponds to the flow into the computation node
𝑣𝑐 . For each edge, the flow cannot exceed its capacity constraint.
Except for the source and sink nodes, the total flow input into a
node must equal the total flow output from the node.
Optimization Objective. The objective is to maximize the total
flow from the source 𝑠 to the sink 𝑡 :

Maximize 𝐹 =
∑︁
𝑣𝑐 ∈𝑉𝑐

𝑓 (𝑠, 𝑣𝑐 )

0 ≤ 𝑓 (𝑒) ≤ 𝑐 (𝑒), ∀𝑒 ∈ 𝐸∑︁
𝑢:(𝑢,𝑣) ∈ 𝐸

𝑓 (𝑢, 𝑣) =
∑︁

𝑣:(𝑣,𝑢 ) ∈ 𝐸

𝑓 (𝑣,𝑢)

Problem Solving. While the above discussion assumes a fixed
hardware placement, there are numerous possible configurations
given a set of hardware components. Since the machine’s communi-
cation topology is accessible at the software level, we can simulate
all feasible placement combinations. By systematically: 1) Elimi-
nating Equivalent Variants (e.g., symmetrical-, rotation-invariant,
or physically equivalent structures); 2) Considering Physical Slot
Constraints (e.g., PCIe switch bandwidth or slot widths).

Specifically, placing GPUs and SSDs in PCIe slots leads to a large
number of possible communication configurations. However, many
of these are functionally equivalent due to symmetry-invariant
properties of the topology. Symmetry arises in two main ways:
(1) Topological symmetry—in most servers, PCIe topologies are
balanced, meaning devices have identical access paths; swapping
device positions or connections does not change traffic distribution
or performance. (2) PCIe switch symmetry—devices connected to
the same switch share identical bandwidth and connection char-
acteristics, so their arrangement has no performance impact. In
addition, rotation-invariant symmetry occurs when rotating or re-
ordering components yields the same performance. By applying
isomorphic graph reduction, we can eliminate these redundant
configurations and simplify the search for optimal placements.

Furthermore, we use the dmidecode utility to check the actual
lane widths of each PCIe slot, ensuring that only physically com-
patible combinations are considered, accounting for hardware con-
straints like the requirement for dual PCIe slots for high-end GPUs
(e.g., NVIDIA A100) and single slots for NVMe SSDs.

After narrowing the search space to a limited set of distinct
hardware placement candidates, we build a maximum flow model
and perform simulations to estimate the total flow of each candi-
date. Specifically, Moment applies a time-bisection Ford-Fulkerson
method procedure to estimate the minimum time required to reach
the sink’s total access demand. The optimal candidate is then se-
lected based on the maximum predicted flow. This method effec-
tively identifies the hardware placement that maximizes communi-
cation throughput.

3.3 Data-distribution-aware Knapsack
Algorithm

In this section, we introduce a systematic method for optimiz-
ing graph data placement across different storage tiers, including
CPU/GPU memory and SSDs. The goal is to match real I/O traffic
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with the theoretically optimal distribution derived in Section 3.2, so
that overall throughput can be maximized. However, naive uniform
distribution methods (such as hash-based partitioning) are not ef-
fective for graph workloads because data access is highly skewed2.
To address the challenge, we propose a data-distribution-aware
knapsack algorithm that takes graph skewness and hotness into
account for data placement.
Data-distribution-aware Knapsack Algorithm. We propose a
data-distribution-aware knapsack algorithm (DDAK) to map stor-
age node access traffic to graph vertex embeddings, ensuring precise
allocation of each vertex’s embedding information. This approach
translates communication traffic patterns into physical data place-
ment, achieving balanced load distribution for GPU-SSD access.

Specifically, we model GPU/CPU memory and NVMe SSDs as
multiple bins. Using maximum-flow modeling, we estimate the ac-
cess flow to each bin while respecting storage capacity constraints,
determined by GPU/CPU cache rates and SSD sizes. We first collect
vertex hotness information through pre-sampling, then sort the
vertices in descending order of hotness for sequential allocation.
The filling priority of each bin is defined as follows:

𝐵𝑖𝑛𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =
𝐵𝑖𝑛𝑎𝑐𝑐𝑒𝑠𝑠

𝐵𝑖𝑛𝑡𝑟𝑎𝑓 𝑓 𝑖𝑐
·
𝐵𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐵𝑖𝑛𝐶𝑎𝑝𝑎𝑐𝑖𝑐𝑖𝑡𝑦
(2)

In this formula, 𝐵𝑖𝑛access represents the cumulative hotness of the
current Bin, defined as the sum of the hotness values of all vertices
stored in it. 𝐵𝑖𝑛traffic denotes the expected traffic to the Bin, modeled
bymaximumflow.𝐵𝑖𝑛currentCapacity is the current storage size of the
bin holding embeddings, while 𝐵𝑖𝑛Capacity is the desired capacity
of the Bin. For GPU/CPU memory, 𝐵𝑖𝑛Capacity is typically set to the
cache size allocated for graph data, whereas for SSDs, it corresponds
to the maximum available storage capacity.

Since GPUs provide High Bandwidth Memory (HBM) and CPU
memory delivers higher I/O throughput than SSDs, we adopt the
following storage hierarchy: GPU > CPU > SSD. Once a vertex
embedding is placed into a bin according to this hierarchy, the bin’s
access and capacity usage are updated. After each placement, the
priorities of all bins are re-evaluated to ensure that subsequent
embeddings are allocated efficiently across the hierarchy.

The effectiveness of the DDAK algorithm lies in its dynamic
priority mechanism, which optimizes access frequency, storage
utilization, and hierarchy storage performance. 1) The dynamic
priority adjustment ensures that high-throughput bins (e.g., GPU
HBM) prioritize hot vertices, while excess data is redirected to
underutilized bins as capacities approach limits, preventing over-
load; 2) DDAK aligns IO traffic with physical constraints, allocating
skewed graph workloads and preventing traffic congestion by en-
forcing traffic limits for each bin (GPU, CPU, SSD); 3) The algorithm
enforces a performance hierarchy (GPU>CPU>SSD) with adaptive
migration of hot data and offloading of cold data.
Wide Applicability to Various Server Topologies. Our experi-
ments demonstrate significant performance gains (30.6% improve-
ment over hash-based allocation, as detailed in Section 4.5) in com-
mon balanced PCIe topologies through DDAK’s intelligent data
placement. However, real-world servers often exhibit asymmetric

2A small set of vertices is accessed far more frequently than others.

(a) GraphSAGE (b) GAT

Figure 10: End-to-end Throughput of Moment, M-GIDS, and
DistDGL

communication topologies due to heterogeneous hardware config-
urations or vendor-specific design choices.3 Moment effectively
addresses both scenarios: 1) In balanced topologies, DDAK opti-
mally matches skewed data access patterns with uniform hardware
resources; 2) In unbalanced topologies, the max flow model explic-
itly captures PCIe lane asymmetries through edge capacity con-
straints, while DDAK dynamically adapts data placement to match
these hardware-imposed traffic limits. This dual approach ensures
Moment automatically optimizes both hardware placement and
data distribution to maximize throughput across arbitrary physical
topologies. Moreover, the comprehensive evaluation of NVLink’s
communication enhancement effects is presented in Section 4.7.
Pooling and Pre-processing Cost. While DDAK’s vertex-wise
allocation yields precise placement, it introduces pre-processing
overheads. We therefore pool decisions over 𝑛 vertices per step.
Larger 𝑛 accelerates planning but can increase cross-bin communi-
cation; in practice, we fix 𝑛=100 as a balanced default. With 𝑛=100,
offline preprocessing (Max-Flow + DDAK) takes ∼14 s on UK, ver-
sus ∼90 s per epoch on a 2-GPU server. Because it runs once per
model/hardware configuration and is reused across runs, the cost
amortizes over many epochs (e.g., 48 for PA,), contributing <1% of
total training time.

4 Evaluation
4.1 Experimental Setting
Experimental Platform. Table 3 shows the evaluated platforms:
two single machines and one four-machine cluster.
GNNModels.Weemploy two sampling-basedGNNmodels: GAT [58]
and GraphSAGE [23]. Both models utilize a 2-hop random neighbor
sampling strategy by default, with fan-out sizes of 25 and 10. For
GAT, the hidden dimension is set to 64, and each layer consists of 8
attention heads. For GraphSAGE, the hidden dimension is config-
ured to 256. Consistent with prior studies [53, 75], the batch size is
set to 8000. Node classification serves as the primary task for these
GNN models.
Datasets.We conduct our experiments on several real-world graph
datasets of varying scales. Table 2 summarizes the characteristics
of these datasets. The Paper100M (PA) dataset is sourced from the
Open Graph Benchmark [28], while the IGB-HOM (IG) dataset
is part of the IGB dataset [29]. The UK-2014 (UK) and ClueWeb
(CL) datasets are obtained from WebGraph [4–7]. Since the UK

3For example, to enable all-to-all GPU P2P, systems may employ a cascaded (nested)
PCIe-switch topology, as shown in Fig. 2.
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Table 1: Detailed evaluation platforms
Machine/Cluster A B C (Cluster, 4× Machines)
GPU 40GB-PCIe-A100 40GB-PCIe-A100 40GB-PCIe-A100
SSD 8 × 3.84TB Intel P5510 8 × 3.84TB Intel P5510 /
PCIe/Network 4.0x16 4.0x16 3.0x16, 100Gbps

CPU
Intel(R) Xeon(R) Gold 5320 CPU
(2 × 52 threads) @ 2.20GHz

Intel(R) Xeon(R) Gold 6426Y CPU
(2 × 32 threads) @ 2.50GHZ

Intel(R) Xeon(R) Silver 4214 CPU
(2 × 24 threads) @ 2.20GHz

CPU Mem. 768GB 512GB 256GB

(a) GPU2-GraphSAGE (b) GPU2-GAT (c) GPU4-GraphSAGE (d) GPU4-GAT

Figure 11: Comparison of Throughput of Four Classic Placements and Moment in Machine A

(a) GPU2-GraphSAGE (b) GPU2-GAT (c) GPU4-GraphSAGE (d) GPU4-GAT

Figure 12: Comparison of Throughput of Four Classic Placements and Moment in Machine B

Table 2: Dataset Statistics

Dataset PA IG UK CL

Vertices Num 111M 269M 0.79B 1B

Edges Num 1.6B 4B 47.2B 42.5B

Topology Storage 14GB 34GB 384GB 348GB

Feature Size 1024 1024 1024 1024

Feature Storage 56GB 1.1TB 3.2TB 4.1TB

and CL datasets lack features, we manually generate node features
with a dimensionality of 1024, consistent with the settings for IG.
Following the experimental setup in [75], we randomly select 1%
of the vertices from each graph as training data.
Baselines. We utilize the state-of-the-art out-of-core GNN system,
GIDS [41], and the distributed system, DistDGL [85], as our baseline
systems. DistDGL is deployed on Cluster C using 4 machines. Since
DistDGL relies on CPUs for distributed sampling, we maximize the
number of CPU threads per machine to 48. To measure DistDGL’s
network utilization, we employ Intel PCM and observe that its peak
network throughput only reaches 20Gbps. This indicates that the
PCIe 3.0 bandwidth of the cluster does not impose a bottleneck
on DistDGL’s performance. As GIDS supports only a single GPU,

we extend its capability to multi-GPU execution by integrating
PyTorchDDP andmodifying its disk I/O stack, creating an enhanced
version called M-GIDS. Specifically, since GIDS does not support
shared access to a single SSD by multiple GPUs, we allocated a
fixed number of SSDs to each GPU. For example, with a total of 8
SSDs, during 2 GPUs training, each GPU performed I/O access to 4
SSDs, and during 4 GPUs training, each GPU performed I/O access
to 2 SSDs. For both M-GIDS and Moment, we store the entire graph
topology in CPU memory, leveraging CPU memory as a cache for
1% of the vertices from each dataset.

4.2 End-to-End Throughput
We compare the throughput of Moment with state-of-the-art out-of-
core baseline GIDS [41] and distributed baseline DistDGL [85] on
all datasets in Table 2 and two GNN models, as shown in Figure 10.
Compared to Out-of-core Baseline. Moment outperforms M-
GIDS by up to 6.51×, because Moment fully utilizes SSD throughput
and overcomes the communication contention and load balance
issues. M-GIDS runs out of GPU memory on UK and CL due to the
requirement of its page cache (Based on BaM [45]) metadata.
Compared to Distributed Baseline.Moment outperforms Dist-
DGL by up to 3.02× due tomore efficient GPU-based graph sampling
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(a) Machine A (b) Machine B

Figure 13: Prediction Accuracy of the Automated Prediction
Module on Two Different Communication Architectures

and no network communication overhead. DistDGL runs out of
CPU memory on IGB, UK, and CL datasets, as it allocates about 5×
memory of the original dataset size. On the other hand, Moment
only uses a single machine while DistDGL runs on 4× machines.
The monetary costs of NVMe SSDs are negligible compared to dis-
tributed machines [55]. We refer to AWS [1] on-demand p5.16xlarge
instances to evaluate the cost of a single machine with 4 GPUs and
4 machines each with 1 GPU, Moment achieves only about 50%
monetary cost of DistDGL. Similarly, using TCO estimation in ex-
isting work [54], our configurations yield a 5-year TCO of $90,270
for Machine A/B versus $181,100 for the 4-node Cluster C.

4.3 Impact of Hardware Placements
We evaluate the impact of hardware placement on machines A and
B, as shown in Figures 11 and 12. Moment is compared against four
classical placements from Section 2.3, using 2 to 4 GPUs and two
GNN models. Moment achieves up to 1.54× speedup on machine A,
and up to 1.63× on machine B. Figure 7 shows the optimal placement
predicted by Moment on machine B with 4 GPUs and 8 SSDs. In this
setup, GPU 0 attaches to root complex (RC) 0; GPU 3 and four SSDs
to RC 1; two SSDs to PCIe switch 0; and two SSDs plus two GPUs
to PCIe switch 1. This layout maximizes locality to SSDs and CPU
memory while keeping the critical paths (QPI, buses 9–11, and
16) uncongested, enabling near-full I/O utilization. With 4 GPUs,
Moment delivers 15.61 GB/s average per-GPU inlet bandwidth,
versus 10.92 GB/s for the best common layout (Placement (c)).

4.4 Automatic Prediction
To assess the automatic model’s prediction accuracy, we compare
Moment’s predicted placements with the actual measured place-
ments on Machines A and B from.

Figure 13 shows that Moment’s prediction can generalize well
across hardware. Specifically, across four datasets with 2- and 4-
GPU settings, predicted and measured throughput closely match
(max error 8.61%), indicating high predictive accuracy and robust
generalization across configurations. Moment can leverage this to
simulate different hardware combinations and select an optimal
hardware placement.

4.5 Impact of Data-distribution-aware
Knapsack Algorithm

We evaluated the performance improvement of DDAK over the
Hash data placements on Machine A and Machine B. With a fixed
hardware placement of 4 A100 GPUs and 8 NVMe SSDs, DDAK

(a) Placement (a) (b) Placement (b)

(c) Placement (c) (d) Placement (d)

Figure 14: Comparison using DDAK in four classic place-
ments under the Machine A communication architecture

(a) Placement (a) (b) Placement (b)

(c) Placement (c) (d) Placement (d)

Figure 15: Comparison using DDAK in Four Classic Place-
ments under the Machine B Communication Architecture

achieved a maximum improvement of 30.6% on Machine A and
34.0% on Machine B.

Moreover, we identify that DDAK alleviate QPI bottlenecks. We
analyzed cross-QPI traffic on Machine A under four placement
schemes, with results shown in Figure17. Across schemes (a)–(d),
DDAK reduced cross-QPI traffic by 14.2%, 8.7%, 18.1%, and 9.5%, re-
spectively. These results indicate that DDAK alleviates QPI-induced
bottlenecks under diverse placement configurations.



SC ’25, November 16–21, 2025, St Louis, MO, USA Zuocheng Shi, Jie Sun et al.

(a) Machine A (b) Machine B

Figure 16: Scalability on Machine A and Machine B

Figure 17: Comparison of
QPI Data Traffic between
Hash and DDAK Placement
on Machine A

Figure 18: Comparison
between No-NVLink and
NVLink on Machine A and
B

4.6 Scalability of Moment
To evaluate Moment’s scalability, we vary the number of GPUs from
1 to 4 on Machine A and Machine B. We compare the throughput
of Moment to the best placement (c) and the weaker placement (d)
among four classic placements on IGB, as shown in Figure 16.

Scaling from 1 to 4 GPUs, under Machine A’s topology the
speedups are 1.92× (placement d), 1.21× (placement c), and 2.26×
(Moment); under Machine B they are 1.57×, 1.21×, and 2.21×, re-
spectively. With 4 GPUs, Moment nearly saturates the aggregate
bandwidth of 8× SSDs, so further gains are limited unless more
SSDs are added.

Notably, placement (d) shows negative scaling. After Bus 9 satu-
rates (Fig. 1d), two GPUs can draw from two SSDs each, but with
four GPUs the slot limits on PCIe Switch 0 restrict each GPU to one
SSD—raising contention and cutting throughput.

4.7 NVLink Support
To evaluate Moment’s support for general server architectures fea-
turing NVLink, we conducted simulations under the Placement (c)
scheme for both Machine A andMachine B using the IGB dataset. In
the NVLink configuration, we added NVLink connections between
GPU1 and GPU2, as well as between GPU3 and GPU4.

Figure 18 shows that enabling NVLink improves performance
by 11.7% on Machine A and 6.8% on Machine B over non-NVLink
configurations, due to the additional GPU–GPU communication
paths through NVLink. Figure 1c illustrates that, without NVLink,
GPU 0 and 1 could only exchange data through Bus9–11. With
NVLink enabled (Bus12–13), alternative paths are available, allow-
ing peer-to-peer transfers when PCIe channels become congested.
These results indicate that Moment adapts well to mainstream
server interconnect topologies while maintaining compatibility
with heterogeneous hardware configurations.

5 Discussion
Generalization to Multi-node. We can extend Moment’s opti-
mization to multi-node environments. To do so, we can model the
cluster-level communication topology by treating NICs, GPUs, and
SSDs as hardware units connected via PCIe. As such, network com-
munication links between NICs on different machines form the
edges of the topology graph. By profiling the bandwidth with GNN
training data transfers, Moment can obtain both theoretical and
profiling-based bandwidths to construct the communication topol-
ogy graphwith edge capacity constraints. ThenMoment determines
the data traffic distribution and data placement based on the graphs.
While network latency and congestion pose challenges, Moment’s
Max-Flow optimization and DDAK algorithm mitigate them by
prioritizing local SSD/memory access. We leave this generalization
as our future works.
SSD Wear Consideration. NVMe SSD wear only occurs from
write operations during the initial dataset reorganization for graph
data partitioning, while modern NVMe SSDs offer PB-level write
endurance, far surpassing the demands of large-scale graph datasets.
The GNN training process involves only read operations for em-
bedding retrieval, eliminating additional wear. Thus, SSD wear is a
negligible concern for Moment, due to this hardware robustness
and our limited write operations.
Limitations.Moment assumes direct SSD access and high-bandwidth
GPU interconnects; on commodity servers lacking these, perfor-
mance may drop. It also targets mostly static workloads—using
offline graph pre-sampling to estimate vertex popularity and DDAK
for placement—whereas dynamic settings (e.g., online inference or
streaming) require runtime monitoring and frequent embedding
reallocation and index updates across SSDs/GPUs. We plan to add
lightweight online profiling and adaptive placement to support
real-time workloads.
Hardware-aware Optimization. Some recent works utilize the
hardware topology and configurations for various applications
such as optimizing collective communication [65], large language
model training and serving [9, 27, 33], and database applications [50,
72]. In contrast, Moment targets GNN training that has different
application characteristics and proposes the GNN-training-specific
communication scheduling and data distribution technologies.

6 Conclusion
In this work, we introduce Moment, a physical communication
topology and data placement co-optimizer, which achieves both
high throughput and low monetary cost using an affordable, cus-
tomized single machine equipped with multiple GPUs and SSDs.
Moment reduces communication contention and GPU imbalance
via max-flow scheduling on a capacity-constrained topology graph
and optimizes data placement with a distribution-aware knapsack.
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

A Overview of Contributions and Artifacts
A.1 Paper’s Main Contributions
The artifacts contain resources needed for our SC-25 submission.

C1 We propose Moment, a physical communication topology
and data placement co-optimizer to enable high-throughput
and low-cost GNN training in a single multi-GPU machine.

C2 Moment addresses communication contention and GPU
load imbalance issues by modeling the physical topology
as capacity-constrained directed graphs and formulating
communication scheduling as a max-flow problem.

C3 It also introduces a data-distribution-aware knapsack algo-
rithm (DDAK) for optimized data placement

C4 Finally, we propose a multi-GPU asynchronous direct disk
IO stack. We integrate all these designs into a GNN training
system.

A.2 Computational Artifacts
A1 https://doi.org/10.5281/zenodo.16780272

Artifact ID Contributions Related
Supported Paper Elements

𝐴1 𝐶1 −𝐶4 Figure 10,12,16

..

B Artifact Identification
B.1 Computational Artifact 𝐴1

Relation To Contributions
We implement max-flow and DDAK in an automatic module, which
will suggest the best hardware placement and determine the cor-
responding data placement for users. Users can adjust their hard-
ware according to the results. The DDAk module could also be
executed independently of max-flow to generalize to more datasets
and models with specific hardware placement. These steps should
be executed only once for each training job. After that, users can
run the main training loops.

We place themain scripts used in the root directory.We also place
the main modules in the automatic module in the root directory, e.g.,
ddak.py, maxflow.py, profiler.py,... The sampling server directory
includes all CUDA/C++ codes to implement the GNN systems’
sampling module. Our multi-GPU disk IO stack is in the storage
directory. The training backend includes different kinds of models’
training scripts.

Expected Results
End-to-end results for Moment:
Compared to Out-of-core Baseline. Moment outperforms M-
GIDS by up to 6.51×, because Moment fully utilizes SSD throughput
and overcomes the communication contention and load balance
issues. M-GIDS runs out of GPU memory on UK and CL due to the
requirement of its page cache (Based on BaM) metadata.

Table 3: Detailed evaluation platforms
Machine/Cluster A B C (Cluster, 4×

Machines)
GPU 40GB-A100 40GB-A100 40GB-A100
SSD 8×3.84TB Intel

P5510
8×3.84TB Intel
P5510

/

PCIe/Network 4.0x16 4.0x16 3.0x16, 100Gbps
CPU Intel Xeon Gold

5320 (2×52
threads) @
2.20GHz

Intel Xeon Gold
6426Y (2×32
threads) @
2.50GHz

Intel Xeon Sil-
ver 4214 (2×24
threads) @
2.20GHz

CPU Mem. 768GB 512GB 256GB

Compared to Distributed Basline. Moment outperforms Dist-
DGL by up to 3.02× due tomore efficient GPU-based graph sampling
and no network communication overhead. DistDGL runs out of
CPU memory on IGB, UK, and CL datasets, as it allocates about 5×
memory of the original dataset size. On the other hand, Moment
only uses a single machine while DistDGL runs on 4× machines.

Expected Reproduction Time (in Minutes)
Automodule’s reproduction time is approximately 10minutes, while
the GNN training process takes about 1 minute per epoch for IGB
datasets.

Artifact Setup (incl. Inputs)
B.1.1 Hardware.

We evaluate on Machines in Table 3.

B.1.2 Software Dependencies. The software stack includes Ubuntu
22.04 (kernel 5.15.72), GCC/G++ 11.4.0, NVIDIA driver 515.43.04,
CUDA 11.7–12.4, and Python 3.8+.PythonPackages. Install Python
packages with conda:
conda install pytorch==2.4.0 pytorch-cuda=12.4 \
-c pytorch -c nvidia
conda install torchmetrics
conda install -c dglteam/label/th24_cu124 dgl

Other required tools are git, cmake, and GNU Make.
GPU Direct Storage (BaM). We use the BaM kernel module for
GPUDirect Storage.
cat /proc/cmdline | grep iommu

If either iommu=on or intel_iommu=on is found by grep, the IOMMU
is enabled. To disable IOMMU, remove iommu=on and intel_iommu=on
from /etc/default/grub, then the next time you reboot, the IOMMU
will be disabled:
Build NVIDIA driver kernel symbols:
cd /usr/src/nvidia-515.43.04/
sudo make

Clone and build BaM:
git clone https://github.com/ZaidQureshi/bam.git
cd bam
git submodule update --init --recursive
mkdir build && cd build
cmake ..
make libnvm # library
make benchmarks # benchmarks
cd module && make # kernel module
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Unload SSD’s NVMe driver and load the BaM module (creates
/dev/libnvm*):
sudo python Moment/unload_ssd.py
cd bam/build/module
sudo make load

To unload:
sudo make unload

B.1.3 Dataset Preparation. We conduct experiments on several
real-world graph datasets of varying scales. The datasets used in-
clude Paper100M (PA), IGB-HOM (IG), UK-2014 (UK), and ClueWeb
(CL). The UK and CL datasets do not have feature information, so
we generate node features with a dimensionality of 1024, aligning
with the features used in the IGB-HOM dataset. We provide scripts
to get these datasets in our repo. Prepare graph datasets from OGB,
Stanford-SNAP, and WebGraph by running:
cd Moment/dataset
bash prepare_datasets.sh

Refer to the README in the dataset directory for more instructions
to customize datasets

B.1.4 Build and Installation. Build the project with:
cd Moment
bash build.sh

Artifact Execution
B.1.5 Automatic Module. Run the automatic module:
sudo python3 automatic_module.py

The module can be configured to adjust to different hardware. User
can customize the file path, data access granularity (feature dimen-
sion, affecting the IO throughput), and number of GPUs/SSDs/CPUs
in the script. For example:
file_path = "/share/gnn_data/igb260m/IGB-Datasets/data/"
feature_dim = 1024
num_gpu = 2
num_ssd = 6

The module will automatically get the hardware topology, profile
the hardware bandwidth, collect data hotness, and run the maxflow
and DDAk. See github repo to find the output details of each step.

B.1.6 Training. GNN Models. We use two sampling-based GNN
models: GAT and GraphSAGE. Both models use a 2-hop random
neighbor sampling strategy with fan-out sizes of 25 and 10. GAT
has a hidden dimension of 64 and 8 attention heads per layer, while
GraphSAGE has a hidden dimension of 256. Following prior studies,
the batch size is set to 8000. Both models focus on node classifica-
tion.
After running the automatic module, we can start training a GNN
model. Open two different sessions to initiate the sampling server
and training backend, respectively.
Start the sampling server:

sudo python3 moment_server.py --dataset_name igb \
--train_batch_size 8000 --fanout [25,10] --epoch 2

Model training with MPS enabled:

export CUDA_VISIBLE_DEVICES=0
sudo nvidia-smi -i 0 -c EXCLUSIVE_PROCESS
sudo nvidia-cuda-mps-control -d
export CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=80
sudo python3 training_backend/moment_graphsage.py \
--class_num 2 --features_num 1024 \
--hidden_dim 256 --hops_num 2 --epoch 2

To stop MPS:

sudo nvidia-smi -i 0 -c DEFAULT
echo quit | nvidia-cuda-mps-control

Artifact Evaluation (AE)

C.1 Computational Artifact 𝐴1

Artifact Setup (incl. Inputs)
C.1.1 Hardware. For the AE process, we’ll create guest accounts
for reviewers to access our machines, as shown in SC25’s discussion
session. During AE, we can provide experiments running on a
Machine A in Table 3 with two Intel Xeon Gold 5320 CPUs (104
cores, two NUMA nodes, 768 GB RAM), PCIe 4.0,×16 slots, NVIDIA
A100 GPUs (80 GB HBM2), and NVMe SSDs (e.g., Intel P5510).

C.1.2 Software Dependencies. Similar to hardware, we will provide
a software environment for reviewers. All commands involving
kernel modules or SSD unbinding require root privileges. As there
might be concurrent usage of our environment, we prepared the
environment in advance to avoid conflicts. (Reviewers needn’t
prepare their environments.)

The software stack includes Ubuntu 22.04 (kernel 5.15.72), GCC/G++
11.4.0, NVIDIA driver 515.43.04, CUDA 11.7–12.4, and Python 3.8+.
Python Packages. Install Python packages with conda:
conda install pytorch==2.4.0 pytorch-cuda=12.4 \
-c pytorch -c nvidia
conda install torchmetrics
conda install -c dglteam/label/th24_cu124 dgl

Other required tools are git, cmake, and GNU Make.
GPU Direct Storage (BaM). We use the BaM kernel module for
GPUDirect Storage.
cat /proc/cmdline | grep iommu

If either iommu=on or intel_iommu=on is found by grep, the IOMMU
is enabled. To disable IOMMU, remove iommu=on and intel_iommu=on
from /etc/default/grub, then the next time you reboot, the IOMMU
will be disabled:
Build NVIDIA driver kernel symbols:
cd /usr/src/nvidia-515.43.04/
sudo make

Clone and build BaM:
git clone https://github.com/ZaidQureshi/bam.git
cd bam
git submodule update --init --recursive
mkdir build && cd build
cmake ..
make libnvm # library
make benchmarks # benchmarks
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cd module && make # kernel module

Unload SSD’s NVMe driver and load the BaM module (creates
/dev/libnvm*):
sudo python Moment/unload_ssd.py
cd bam/build/module
sudo make load

To unload:
sudo make unload

C.1.3 Dataset Preparation. Prepare graph datasets fromOGB, Stanford-
SNAP, and WebGraph by running:
cd Moment/dataset
bash prepare_datasets.sh

Refer to the README in the dataset directory for more instructions
to customize datasets

C.1.4 Build and Installation. Build the project with:
cd Moment
bash build.sh

Artifact Execution
In this section, we will show how to run the automatic module to
find the best hardware placement and data placement. Then we
will show how to run GNN training based on the placement.

C.1.5 Automatic Module. Run the automatic module:
sudo python3 automatic_module.py

The module can be configured to adjust to different hardware. User
can customize the file path, data access granularity (feature dimen-
sion, affecting the IO throughput), and number of GPUs/SSDs/CPUs
in the script. For example:
file_path = "/share/gnn_data/igb260m/IGB-Datasets/data/"
feature_dim = 1024
num_gpu = 2
num_ssd = 6

The module will automatically get the hardware topology, profile
the hardware bandwidth, collect data hotness, and run the maxflow
and DDAk. See github repo to find the output details of each step.

C.1.6 Training. After running the automatic module, we can start
training a GNN model. Open two different sessions to initiate the
sampling server and training backend, respectively. GNN Models.
We use two sampling-based GNN models: GAT and GraphSAGE.
Both models use a 2-hop random neighbor sampling strategy with
fan-out sizes of 25 and 10. GAT has a hidden dimension of 64 and 8
attention heads per layer, while GraphSAGE has a hidden dimension
of 256. Following prior studies, the batch size is set to 8000. Both
models focus on node classification.
Start the sampling server:
sudo python3 moment_server.py --dataset_name igb \
--train_batch_size 8000 --fanout [25,10] --epoch 2

Model training with MPS enabled:
export CUDA_VISIBLE_DEVICES=0
sudo nvidia-smi -i 0 -c EXCLUSIVE_PROCESS
sudo nvidia-cuda-mps-control -d
export CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=80

sudo python3 training_backend/moment_graphsage.py \
--class_num 2 --features_num 1024 \
--hidden_dim 256 --hops_num 2 --epoch 2

To stop MPS:

sudo nvidia-smi -i 0 -c DEFAULT
echo quit | nvidia-cuda-mps-control

Artifact Analysis (incl. Outputs)
See the detailed output in the repo.
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