
Melia: A MapReduce Framework
on OpenCL-Based FPGAs
Zeke Wang, Shuhao Zhang, Bingsheng He, and Wei Zhang

Abstract—MapReduce, originally developed by Google for search applications, has recently become a popular programming

framework for parallel and distributed environments. This paper presents an energy-efficient architecture design for MapReduce on

Field Programmable Gate Arrays (FPGAs). The major goal is to enable users to program FPGAs with simple MapReduce interfaces,

and meanwhile to embrace automatic performance optimizations within the MapReduce framework. Compared to other processors like

CPUs and GPUs, FPGAs are (re-)programmable hardware and have very low energy consumption. However, the design and

implementation of MapReduce on FPGAs can be challenging: firstly, FPGAs are usually programmed with hardware description

languages, which hurts the programmability of the MapReduce design to its users; secondly, since MapReduce has irregular access

patterns (especially in the reduce phase) and needs to support user-defined functions, careful designs and optimizations are required

for efficiency. In this paper, we design, implement and evaluateMelia, a MapReduce framework on FPGAs. Melia takes advantage of

the recent OpenCL programming framework developed for Altera FPGAs, and abstracts FPGAs behind the simple and familiar

MapReduce interfaces in C. We further develop a series of FPGA-centric optimization techniques to improve the efficiency of Melia,

and a cost- and resource-based approach to automate the parameter settings for those optimizations. We evaluate Melia on a recent

Altera Stratix V GX FPGA with a number of commonly used MapReduce benchmarks. Our results demonstrate that 1) the efficiency

and effectiveness of our optimizations and automated parameter setting approach, 2) Melia can achieve promising energy efficiency

in comparison with its counterparts on CPUs/GPUs on both single-FPGA and cluster settings.

Index Terms—FPGA, MapReduce, programming frameworks, cost model, OpenCL
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1 INTRODUCTION

MAPREDUCE, originally developed by Google for search
applications, has become a popular programming

framework in data centers with thousands of machines [15]
or parallel architectures such as a machine with multi-core
CPUs [34], Xeon Phi [29] or GPUs [18], [19], [23]. Many
applications such as machine learning and data mining
algorithms can be easily implemented with MapReduce,
with a small set of simple and sequential APIs. MapReduce
has abstracted the complexity of underlying hardware and
systems from users. For example, Mars [18] allows users to
adopt MapReduce interfaces to program GPUs, without
worrying about the underlying details on GPU architec-
tures. There are MapReduce design and implementation on
other parallel architectures including multi-core CPUs [34]
and CPU-GPU architectures [19]. In those studies, MapRe-
duce is designed as a software library to improve the
programmability of parallel architectures. Advanced fea-
tures such as fault tolerance are usually neglected, which
allows the design and implementation of MapReduce con-
centrating on individual parallel architectures.

On the other hand, Field Programmable Gate Arrays
(FPGAs) have been an effective means of accelerating and

optimizing many data processing applications such as rela-
tional databases [9], [32], [46], data mining [40], image proc-
essing [30] and streaming databases [41]. Quite different
from CPUs and GPUs, FPGAs are (re-)programmable hard-
ware and have very low energy consumption. Moreover,
FPGA vendors such as Xilinx and Altera and have
recently released OpenCL SDKs as a new generation of
high-level synthesis (HLS) tools to users. Under the
OpenCL abstraction, FPGAs can be viewed as massively
parallel architectures. Encouraged by the success and
wide adoptions of MapReduce, a MapReduce framework
on FPGAs is able to enable users to program FPGAs with
simple and familiar interfaces. The key problem is how to
enable automatic performance optimizations for a Map-
Reduce framework on FPGAs.

Despite the recent success of FPGAs in data processing
applications, we have identified the following two key
obstacles in the design and implementation of MapReduce
on FPGAs. First, FPGAs are usually programmed with low-
level hardware description languages (HDL) like Verilog
and VHDL (e.g., [9], [32], [39], [46]). Although there has
been a MapReduce implementation on FPGAs [37], the
users are still required to implement map/reduce functions
through VHDL/Verilog, which hurts the programmability
and requires a long learning curve on both programming
and performance optimizations. It is desirable that users
can implement their custom data processing tasks with a
high-level language. Second, since MapReduce has irregular
access patterns (especially in the reduce phase) and needs
to support user-defined functions, careful designs and opti-
mizations are required for efficiency. Compared with
CPUs/GPUs, FPGAs have lower clock frequency. Memory
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stalls can be even more significant on FPGAs, especially for
the irregular accesses fromMapReduce.

To address those two obstacles, we implement and evalu-
ate Melia, an OpenCL-based MapReduce framework on
FPGAs. Melia takes advantage of the recent HLS tools devel-
oped by Altera, which provides an OpenCL SDK [10], [14],
[38], to allow users to write OpenCL programs for FPGAs. In
particular, the Altera’s OpenCL SDK provides the pipeline
parallelism technology to simultaneously process data in
inherently multithreaded fashion. With the OpenCL abstrac-
tion, the FPGA can bemodeled as a parallel device consisting
of multiple pipelining execution units.1 Based on OpenCL,
Melia enables users to write simple and familiar MapReduce
interfaces in C. To improve the efficiency ofMelia on FPGAs,
we evaluate a series of FPGA-centric optimizations such as
memory coalescing and private memory optimizations for mem-
ory efficiency, and loop unrolling and pipeline replications for
pipeline efficiency. Those optimizations introduce a series of
tuning parameters which significantly affect the perfor-
mance and resource utilization of Melia on FPGA. We
develop a simple yet effective cost- and resource-based
approach to determine suitable settings of those parameters.

Our experiments are conducted in two parts: real experi-
ments on a single FPGA, and back-of-envelop perfor-
mance/energy consumption analysis on multiple FPGAs in
a cluster setting. We first evaluate Melia on the Terasic’s
DE5-Net board with an Altera Stratix V GX FPGA. We
choose five commonly used MapReduce benchmarks. Our
experiments demonstrate that 1) our parameter setting
approach can predict the suitable parameter settings that
have the same or comparable performance to the best set-
ting, 2) our FPGA-centric optimizations significantly
improve the performance of Melia on FPGA with an overall
improvement of 1.4-43.6 times over the baseline (without
optimizations) on FPGA; 3) As a sanity check, Melia
achieves averagely 3.9 times higher energy efficiency (per-
formance per watt) than the CPU- and the GPU-based coun-
terparts. We further extend Melia to multiple FPGAs in a
distributed setting, and evaluate the energy efficiency of
Melia with performance/energy consumption analysis.

In summary, this paper makes the following three contri-
butions. First, we propose the first OpenCL-based MapRe-
duce framework for FPGAs to address the programmability
problem of FPGAs. Compared with commercial tools such
as Altera OpenCL SDK, this study offers a higher-level pro-
gramming framework with MapReduce, which further
abstracts the hardware details of FPGA, and resolves the
programming complexity of FPGAs. Second, we implement
our proposed system on the latest Altera FPGA, and empiri-
cally demonstrated the efficiency and effectiveness of
FPGA-centric optimizations and our automated parameter
tuning approach. Third, we discuss the lessons we have
learned from experiences and provide insights and sugges-
tions on programming FPGA.

The rest of the paper is organized as follows. We briefly
introduce the background in Section 2. Section 3 describes
the detailed design and implementations of Melia, followed
by the experimental results on a single FPGA in Section 4.

We extend the framework to FPGA cluster design in Sec-
tion 5. We discuss our experiences from this study and point
out a number of open problems in Section 6 and conclude
this paper in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 FPGAs

Generally, FPGA technology is low-power and offers a
reconfigurable hardware solution for many applications.
The FPGA implementation generally needs the input design
specified at Register-transfer-level (RTL) or gate level using
a HDL, such as Verilog and VHDL. Since HDL is cycle-
sensitive and error-prone, generally good knowledge of
hardware design detail and hand-on experiences are req-
uired to guarantee a successful design or implementation.

The most common part in the FPGA architecture [25] is
logic blocks (called Configurable Logic Block, CLB (Xilinx),
or Logic Array Block, LAB (Altera)), as shown in Fig. 1.
They are fine-grained logic and capable to implement bit-
level computation. Modern FPGA families expand to
include coarse-grain function blocks into the silicon, such as
DSP blocks and Memory blocks. Having these dedicated
hardware-based macros embedded into FPGA helps imple-
mentation of computational intensive applications with less
area and higher throughput.

There have been many studies on leveraging FPGAs in
data processing applications (e.g., [17], [22], [44], [47]). We
refer readers to a tutorial [31] for more details on FPGA-
based data processing. Roughly, we can classify them into
two major categories: integrating FPGA into the data path
(e.g., [17]) and viewing FPGA as a co-processor/accelerator
(e.g., [9], [30]). Using FPGAs in the data path, Netezza [17]
employs FPGAs to filter and transform tuples from the
disks prior to processing. Also, as an I/O engine, the FPGA-
based circuits are developed for various data streaming
operators, such as projection, selection and windowed
aggregation [32], [33], [46]. Designed as an accelerator,
FPGAs have been used to accelerate various database oper-
ations or applications such as join [9], [44] and frequent pat-
tern mining [40]. Most previous studies implement specific
applications with HDL. In contrast, this paper focuses on
the implementation with high level synthesis.

2.2 Altera’s OpenCL Architecture

OpenCL [24] has been developed for heterogeneous comput-
ing environments. OpenCL is a platform-independent stan-
dard where the data parallelism is explicitly specified in the
code. This programming model targets at a host-accelerator

Fig. 1. Resource features on FPGA.

1. This paper focuses on Altera FPGAs. Other vendors like Xilinx
also have similar plans to support OpenCL.
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model of program execution, where a host processor runs
control-intensive task and offloads computationally intensive
portions of code (i.e., kernel) onto an external accelerator.

Recently, Altera provides the OpenCL SDK [38], [45] to
abstract away the hardware complexities from the FPGA
implementation. Fig. 2a illustrates the Altera architecture
for OpenCL system implementation. An OpenCL kernel
execution contains multiple kernel pipelines and their inter-
connects with global memory and local memory. The Alter-
a’s SDK can translate the OpenCL kernel to low-level
hardware implementation by creating the circuits for each
operation of the kernel and interconnect them together to
realize the data path of the kernel. Fig. 2b shows the pipe-
lined parallelism in the case of a simplified vector addition
example [38], which can achieve the throughput of one
work item finished per cycle. The frequency of FPGA kernel
can vary with the OpenCL kernel. It mainly depends on the
FPGA resource utilization by the OpenCL kernel. Ideally,
the more resource that the kernel consumes, the lower fre-
quency that the FPGA execution has.

From the perspective of OpenCL, the memory compo-
nent of FPGA computing system contains three layers. First,
the global memory resides in DDRs on the FPGA board. The
accesses to global memory has long latency. Second, the
local memory is a low-latency and high-bandwidth scratch-
pad memory. In our tested FPGA, the local memory has 4
banks in general. The private memory, storing the variables
or small arrays for each work item (i.e., the basic execution
unit in OpenCL), are implemented using completely-
parallel registers which are plentiful resources in FPGA.
Compared with CPU/GPU, FPGA has relatively sufficient
number of registers, which should be employed efficiently
to store intermediate results for each individual work item.

As in Fig. 2, we can configure multiple kernel pipelines,
i.e., Compute Unit (CU), if resource allows. Different CUs
are executed in parallel. Each CU implements a massive
pipelined execution for the OpenCL program, and has its
own local memory interconnect while all the pipelines share
the global memory interconnect. In particular, the load/
store operations to local memory access in one CU can com-
bine together to arbitrate for the local memory. However,
the load/store operations to global memory access will
compete for the on-board global memory bandwidth [38].
Compared with global memory, the on-chip local memory
is low-latency and high-throughput. Moreover, the global
memory system is lack of dedicated cache hierarchy which
causes the global memory transactions of FPGA are less effi-
cient than that of GPU/CPU. Thus, the local and private

memory should be employed whenever possible to reduce
global memory accesses.

2.3 MapReduce

MapReduce is a programming framework, originally devel-
oped by Google and mainly used for parallel and distrib-
uted data processing. In the big-data era, MapReduce has
gained a significant amount of interests from both industry
and academia. The basic idea of MapReduce is to offer sim-
plified data processing and to hide the details of parallel
and distributed executions from users. Formally, MapRe-
duce consists of two user-defined functions: Map and
Reduce. The Map function takes as input a key-value pair
(key1, value1) and generate intermediate key-value pairs in
the form of (key2, value2). Next, the system automatically
groups the intermediate key-value pairs on the key, and
forms the pairs of a key and the values of the same key
(key2, list(value2)). For each key2, the Reduce function pro-
cesses its corresponding value list. Many previous studies
(e.g., [15], [16], [18], [23], [34]) have demonstrated that
MapReduce offers simplified yet reasonably efficient paral-
lel and distributed data processing. More details about
MapReduce and its usage in parallel data processing can be
founded from recent surveys [27], [28].

Closely related to this study, FPMR [37] attempted to
implement MapReduce on FPGA. However, those studies
are limited in two aspects. First, the developers [37] are still
required to implement map/reduce functions through
VHDL/Verilog. Second, FPMR is rigid in some specific
application (without flexible data shuffling). Instead, this
paper has the full OpenCL-based MapReduce framework
on FPGAs, and the MapReduce can also support flexible
data shuffling. In [43], [48], FPGAs (together with GPUs)
are adopted to implement the MapReduce framework,
where the host CPU implements the scheduling task and
the FPGAs (together with GPU) are considered as co-
processors. There have also been two studies [13], [36] on
offering the capability of executing MapReduce functions in
OpenCL. Still, they are very preliminary in the sense that
they only implement very basic form of MapReduce. The
major contributions of our paper include 1) offering a more
FPGA friendly MapReduce framework, and 2) the optimiza-
tions are guided by the cost model.

On parallel architectures, there have been OpenCL-based
MapReduce implementations [11], [12], which target at the
multi-core CPU or the GPU in a single host. The state-of-
the-art OpenCL implementation of MapReduce on CPUs/
GPUs [12] is imported to FPGAs, denoted as baseline. We
have observed that the baseline implementation, which
does not include optimizations (e.g., loop unrolling), suffers
from severe memory stalls and pipeline inefficiency (as we
will see in the experiments).

3 DESIGN AND IMPLEMENTATION OF MELIA

This section presents design and implementation of Melia
on a single FPGA. Based on the single-FPGA implementa-
tion, we extend our design to multiple FPGAs in Section 5.

3.1 Melia Overview

We have identified the following two key challenges for an
efficient MapReduce on FPGAs. The first problem is on

Fig. 2. Altera OpenCL system implementation.
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high-latency global memory transactions. Unlike the CPU/
GPU, the FPGA does not have dedicated cache hierarchy.
Then, the global memory access transactions generated on
the FPGA directly interface with the memory controller
of the external memory. Second, writing the OpenCL pro-
gram should consider the efficiency of pipeline execut-
ions on FPGAs.

With the abstraction of Altera OpenCL SDK, the FPGA can
bemodelled as amassively parallel architecture with amulti-
level memory hierarchy. Many design and implementation
optimizations that have been developed for the CPU and the
GPU can be applicable to the OpenCL program, and their
impact should be revisited under the new FPGA abstraction.
Example optimizations include memory coalescing and local
memory optimizations to resolve the memory stalls. On the
other hand, there are some new optimization strategies that
are particularly attractive on the new FPGA abstraction.
Examples include pipeline replications and loop unrolling.
Altera OpenCL SDK explicitly supports loop unrolling to
take advantage of the flexible hardware resource allocations
on FPGAs. Pipeline replications enable multiple replicated
pipelines to execute in parallel to fully take advantage of
hardware resources on FPGAs. Those optimizations are cor-
relating factors in performance tuning for the OpenCL-based
MapReduce on FPGAs, including hardware frequency and
resource utilization. Due to the architectural difference
between FPGAs and CPUs/GPUs, many tuning knobs [11],
[12] fromCPUs/GPUs are no longer applicable to FPGAs.

Taking those issues into account, our design of Melia
addresses the aforementioned challenges. Our optimiza-
tions improve the memory efficiency and pipeline effi-
ciency. To ease the complexity in performance tuning, we
develop a simple yet effective cost- and resource-based
approach to automatically determine suitable settings of
those parameters. The approach takes into consideration
the cycles of the pipeline, the frequency and resource limita-
tion of FPGA, and recommends the best parameter configu-
ration. We first present the overall workflow of our
implementation, and details of our optimizations and auto-
mated parameter settings in the later two sections.

Melia is currently designed and implemented as a soft-
ware library. Users are able to use Melia, almost in the same
way as other MapReduce frameworks [18], [19], [23]. Specif-
ically, users need to first implement a map() and a reduce()
function in C. For the reduce function, users can annotate
whether it is an associative and communicative function. If
so, Melia can enable early reduction optimization. Given the
two user-defined functions, Melia first determines the suit-
able execution parameters (Section 3.3). Next, the user com-
piles and executes the program on the FPGA. During the
execution, Melia executes the two user-defined functions
according to the overall workflow in Algorithm 1.

The overall execution of Melia is designed as two stages:
map and reduce. The map function takes one input unit
and then generates one key-value pair. Whenever an inter-
mediate key/value is emitted, the insert() is invoked (in
Algorithm 2). The system maintains a bucket based hash
table. The bucket stores the key-value pairs or reduction
object [11], [12] for each key. The usage of reduction object is
to represent the partial reduction result. If the reduce func-
tion is associative and communicative, the key-value pair is

inserted to a reduction object. Otherwise, it is directly
appended to hash table. Multiple OpenCLwork items access
the shared hash table. Locks are used for synchronization
among work items. In the reduce phase, each work item is
responsible for one bucket of the hash table. If reduction
objects are used, no explicit reduction phase is conducted.

Algorithm 1. OVERALL WORKFLOW OF MELIA

1: /* Stage 1: the map stage; */
2: for each key/value pair in the input do
3: execute map(); //when an intermediate key/value is

emitted, the insert() is invoked.
4: end
5: /* Stage 2: the reduce stage; */
6: for each key/value pair in the intermediate output from the map

stage do
7: execute reduce();
8: end

Algorithm 2. INSERT (key; key size; val; val size)

1: index = hash(key; key size)%NUM_BUCKETS;
2: DoWork = 1;
3: while (DoWork) do

/* wait until having lock[index] */
4: with lock = 0;
5: while(with lock ¼¼ 0) do
6: with lock = get_lock(index);
7: end
8: index base = index;

/* (coalescing read from 128-bit memory) :

valid, key_addr, val_addr,key_val_size */
9: bucket unit4 = buckets[index];

/* bucket[index] is empty */
10: if (bucket unit4:valid == 0) then
11: ðkey addr; val addrÞ = atomic_alloc(key size; val size);

/* (coalescing write to 128-bit memory):

valid,key_addr, val_addr,key_val_size */
12: bucket unit4 = ð1; key addr; val addr; ðkey size; val sizeÞÞ;
13: buckets[index] = bucket unit4;

/* store key and value data */
14: copy(key addr; key; key size); copy(val addr; val; val size);
15: DoWork = 0;
16: end

/* key is same as bucket[index] */
17: else
18: if (equal(bucket unit4:key addr, bucket unit4:key size,

key, key size)) AND reduce is associative and commu-
nicative then

/*reduce val to bucket[index] */
19: reduce(bucket unit4:val addr, bucket unit4:val size,

val, val size);DoWork = 0;
20: end

/* key is not same as bucket[index] */
21: else
22: DoWork = 1;
23: index = update_index(index);
24: end
25: end

/* release the lock[index base] */
26: release_lock(index base);
27: end
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Our implementation requires quite some design and
engineering efforts in optimizing the efficiency of Melia. We
take as one example the insertion of a key-value pair into a
reduction object in MapReduce, illustrated in Algorithm 2.
When a key-value pair is to be inserted into the reduction
object, the index is calculated via the hash value of the key.
Since there are read/write conflicts to the same bucket, a
lock mechanism is employed. The work item polls the corre-
sponding lock of the index until the work item acquires the
lock. If the bucket of the index is empty, Melia first creates a
new bucket in the hash table. If the key of the bucket is
same as the inserted key, Melia atomically reduces the key-
value pair to the bucket, using the reduce function provided
by the user. If the keys are not the same, the computing
work item calculates a new index for the next round.

Melia employs the static memory coalescing, in terms of
built-in vector type unit4, to combine several small-sized
global memory accesses to form the vector load/store
accesses (e.g., the register bucket unit4). Therefore, the
global memory transactions for the bucket information in
Melia are one vector load operation (Line 9) and one vector
store operation (Line 12). With the reduced number of
load/store operations, the OpenCL kernel can use less hard-
ware resource and then might achieve higher frequency.

3.2 Optimization Techniques

To reduce the number of global memory transactions, Melia
employs a series of memory optimizations such as memory
coalescing and private memory optimizations [4]. To improve
the pipeline execution efficiency, Melia converts multiple
nested loops into a single loop and combines the replicated
instructions whenever possible. Then, it is more efficient to
map to the FPGA pipeline. Furthermore, we apply loop
unrolling and pipeline replications to better utilize the FPGA
resource. Those optimizations are automatically included in
our framework implementation. For user-defined functions,
only loop unrolling is automatically applied in Melia (by
identifying the target loops through source code analysis),
and other optimizations are left to users.

Private memory. The private memory on FPGA are imple-
mented using completely-parallel registers (logics), which
are plentiful resources in FPGAs. Then, the private memory
is useful for storing single variables or small arrays in the
OpenCL kernel [4]. The kernel can access private memories
completely in parallel, and no arbitration is required for
access permission. Therefore, the private memory has sig-
nificant advantages, in terms of bandwidth and latency,
over local memory and global memory. Since the general
MapReduce applications require a lot of memory accesses,
we should use private memory, instead of local memory
and global memory, whenever possible.

Local memory. The local memory on the FPGA is consider-
ably smaller than global memory; however, it has signifi-
cantly higher throughput and much lower latency. The
local memory are implemented in on-chip memory blocks
[5] in the FPGA. The on-chip memory blocks have two
read and write ports, and have twice the operating fre-
quency as the frequency of the OpenCL kernel pipelines.
Thus, the local memory is able to support four simulta-
neous memory accesses. Therefore, the local memory is
good for the intermediate data between the work items in

the same work group. In Melia, we maintain reduction
objects in the local memory.

Kernel pipeline replication. If the resource is sufficient on
the FPGA, the kernel pipeline can be replicated to generate
multiple compute units (CUs) to achieve higher throughput.
Generally, each CU can execute multiple work-groups
simultaneously. The inner hardware scheduler can auto-
matically dispatch the work-groups among CUs. For exam-
ple, if two CUs are implemented, each CU executes a half of
the work-groups.

Since kernel pipeline replication can consume more
resource, the frequency tends to be lower than that of one
kernel pipeline. That means, two CUs cannot double the
performance. Another issue is that the global memory
load/store operations from the multiple compute units
compete for the global memory accesses. Nevertheless, we
find that more compute units can still bring performance
gains in most cases. Hence, we simply take the largest num-
ber of CUs that can fit into the resource budget of FPGA.

Loop unrolling. If a large number of loop iterations exist in
the kernel pipeline, the loop iterations could potentially be
the critical path of the kernel pipeline. Then, unrolling the
loop by an unroll factor could increase the pipeline through-
put by decreasing the number of iterations. However, on
FPGA, loop unrolling is achieved at the expense of
increased hardware resource consumption. Different from
loop unrolling on CPUs/GPUs, the FPGA allocates more
hardware resources to the execution of unrolled loops.

Loop unrolling might have another side-product benefit:
the load/store operations with simple array indexes, are
coalesced so that more valid data can be loaded per memory
transaction. This reduces the number of total memory
accesses, which further improves the performance.

3.3 Parameter Settings for Melia

The FPGA compilation time is long (hours) and there are
several optimization parameters to tune the performance in
Melia. The design space of optimizations is large, since there
are a number of optimization methods andwe need to deter-
mine where to apply these optimizations in the OpenCL-
based MapReduce applications. It is critical to address the
main bottleneck by the proper optimizations. Therefore, it is
necessary to have an automated tool which can guide the
parameter settings, under the resource constraints in FPGA.
Additionally, since different kinds of optimizations consume
different amount of hardware resources on FPGAs, this
paper presents the FPGA-specific cost model to guide the
suitable optimization configuration for MapReduce. Due to
the resource constraints of an FPGA, the selection and config-
uration of individual optimizations significantly affect the
application performance, as we demonstrated in Section 4.

The flow contains three stages to determine tuning
parameters for local memory, loop unroll and replicated
kernel pipelines accordingly.

Stage 1: It is the user to determine whether the local
memory is employed, according to the specific MapReduce
application. MapReduce applications can be roughly
divided into the reduction-intensive and map computation-
intensive applications [12]. The former kind has a large
number of key-value pairs for each unique key, and then
the reduction computation time is significant. The later kind
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represents the applications that spend most of their time for
computation in the map stage. Therefore, the local memory
is recommended for the reduction-intensive applications
and the size of local memory are determined by the user.
However, the local memory is not suitable for the applica-
tions of map computation-intensive applications (e.g., no
key-value pairs share the same key).

Stage 2: The design flow guides how to determine the
unroll factor f in the Map/Reduce function. If no fixed loop
iterations exist in the Map/Reduce function, then f is 1 and
the design flow directly go to the next stage (CU num). Oth-
erwise, there are total loop num iterations in the map/
reduce function, and we roughly estimate the unroll factor
(f) as follows.

On the current version of Altera OpenCL SDK, it is rec-
ommended that f is a divisor of total loop num. The system
iterates all possible unroll factor(f), ranging from the small-
est divisor (1) to the biggest divisor (total loop num) in the
map/reduce function. Next, the OpenCL kernel with the
unroll factor(f) is passed to the Altera resource estimation
tool [4] to estimate the resource utilization of the OpenCL
kernel. While the entire compilation process may take
hours, the resource estimation can give the statistics on
resource usage in seconds or minutes. Then, the cost model
roughly provide the rough trends of the execution cycles
and kernel frequency. We estimate the execution time by
multiplying the estimated execution cycles with the esti-
mated frequency. The details on estimating the frequency
and clock cycles are described in Sections 3.3.1 and 3.3.2.
We accept the unrolling factor only if the kernel can fit into
the FPGA.

Stage 3: We determine the CU num, the maximum num-
ber of replicated kernel pipelines under the constraint that
the required utilization of each feature (such as logic, mem-
ory block and DSP block) is less than a predefined resource
usage threshold (95 percent in our study).

In the following, we present the details on our cost mod-
els. The proposed cost models are used to guide the devel-
oper how to determine the parameter setting for the
MapReduce applications, not to accurately predict the fre-
quency and clock cycles. The unique architectural feature of
FPGA actually allows us to simplify the cost estimation. In
our experiment, we observe that our cost models can
roughly predict the suitable parameter configuration, and
the simplified cost models are sufficient for the purpose.

3.3.1 Cost Model for Estimating Frequency

It is hard to develop an accurate analytical model to estimate
the hardware frequency due to the internal complexity of
FPGA. Fortunately, we observe that there is a strong correla-
tion between the resource utilization on FPGA and the hard-
ware frequency. Thus, we develop a simple linear regression
model for hardware frequency based on resource utilization,
which is generally accurate enough for our experiments.

The FPGA mainly has three features (logic element,
memory block and DSP block), and each feature can have
different resource utilizations. For simplicity, we assume
that the feature with the largest utilization is chosen to
determine the frequency of kernel. Next, we use the applica-
tions in the Altera OpenCL SDK as training data sets.
For each application, we obtain the maximum resource

utilization and the kernel frequency. Finally, we apply least
squares method to determine the linear model function that
can best fit the training data set, and obtain the estimated
frequency Festimated. In our experiment, we obtain the linear
model in Eq. (1), where the Rmax utilization is the maximum
resource utilization of the given OpenCL kernel, reported
from Altera resource estimation tool [4]

Festimated ¼ �79 �Rmax utilization þ 245MHz: (1)

3.3.2 Cost Model for Estimating Clock Cycles

The Altera’s OpenCL Compiler [38] translates the OpenCL
kernel to a hardware pipeline, which implements each oper-
ation in the OpenCL kernel by the specific circuit. Then,
these circuits are wired together to execute the pipeline.
Then, the massive parallelism exists in the global memory
accesses and arithmetic computations. The total clock cycles
for the execution highly depends on the degree of global
memory parallelism in the kernel pipeline. We adopt
one metric [20], MTP ( Memory Thread Parallelism), to repre-
sent the maximum number of threads that can access the
global memory simultaneously.

To further explain how the multiple threads are exe-
cuted in the kernel pipeline, we illustrate the pipeline exe-
cution of the vector addition, as shown in Fig. 3. For Case
1 in Fig. 3a, the global memory system can service two
global memory transactions simultaneously (MTP = 2),
and the “m x” indicates the work item with ID (m) loads
from (x = a or b) or stores to (x = c) the global memory. In
this case, the computation operations are completely hid-
den behind the global memory operations, the kernel
throughput is bounded by the global memory transactions.
For Case 2 in Fig. 3b, it can service four global memory
transactions simultaneously (MTP = 4), and then the
kernel throughput is greatly improved.

We estimate the total number CFPGA of elapsed clock
cycles on the FPGA to be the larger one of the clock cycles for
memory accesses and computations (Eq.(2)). Cmem and Ccomp

denote the total number of clock cycles in global memory
accesses and the total number of clock cycles in computa-
tions, respectively. This estimation simplifies the interaction
between memory accesses and computation, which assumes
a maximum overlapping between Cmem and Ccomp. Due to
the massive parallel pipeline on FPGAs, this overlapping is
high in practice and the simplified estimation is sufficient

CFPGA ¼ MaxðCmem;CcompÞ: (2)

Fig. 3. OpenCL kernel execution flow: (a)MTP = 2, (b)MTP = 4.
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Estimating Ccomp. Based on the full pipelined property of
the arithmetic operation implemented on FPGA, the arith-
metic operation can achieve the throughput with one opera-
tion per cycle. Another advantage of arithmetic operation is
that each arithmetic operation in the OpenCL is imple-
mented with specific circuit, then no resource competition
will occur among arithmetic operations. Therefore, we esti-
mate Ccomp to be the total number of clock cycles for all
instructions in the critical path. We have developed a tool to
count the number of instructions in each kind, and multiply
the unit cost of each kind of instruction. Table 1 lists a sam-
ple of instructions and their unit costs on the FPGA used in
our experiments. We obtained the unit costs from profiling
the FPGA IP cores of the Altera OpenCL SDK.

Estimating Cmem. We consider two major factors: total
number of memory accesses and how memory accesses are
served in parallel on the FPGA. Eq.(3) gives the estimation
on Cmem, where Lmem and Nmem denote the clock sum of
the total global memory accesses and the latency of one
global memory access and the number of global memory
accesses, respectively. Thus, Lmem �Nmem denotes the total
clock cycles for memory accesses, if memory requests are
served one by one. On FPGAs, memory accesses are sev-
ered in parallel with a degree of MTP . Lmem is obtained
from profiling the FPGA, and Nmem and MTP can be
obtained with the simulation tool [49]. Differently, we con-
sider that the FPGA does not have dedicated cache hierar-
chy, when counting Nmem

Cmem ¼ Lmem �Nmem

MTP
: (3)

4 EXPERIMENTAL EVALUATION

This section presents the experimental studies on a single
FPGA. The major goal of the experiments is to evaluate the
efficiency and effectiveness of the optimization techniques
in Melia over the baseline implementation on FPGA [12].

4.1 Experimental Setup

Our experiments were conducted on a machine with CPU
and one FPGA board (Terasic’s DE5-Net board) which
includes 4 GB DDR3 device memory, and an Altera Stratix
V GX FPGA (5SGXEA7N2F45C2). The FPGA [5] includes
622 K logic elements, 2560 M20 K memory blocks (50 Mbit)
and 256 DSP blocks. The FPGA board is connected to the
host via an X8 PCI-e 2.0 interface.

We compare Melia with the state-of-the-art OpenCL
MapReduce [12] on the high-end 2.40 GHz Intel Xeon CPU
E5645 (12 cores) and an AMD FirePro V7800 GPU. The peak
DRAM bandwidth of the high-end Intel CPU is around
32 GB/sec. The low-end CPU is the Intel Xeon Processor E3-
1230 L. The GPU has 18 streaming multiprocessors (SM),
and each SM has 128 Radeon cores, with a clock rate of

700 MHz. Thus, there are 1440 Radeon cores on this GPU.
Each SM has 32 KB local memory. The device memory is
2 GB DDR5, with 1200 MHz clock frequency and peak band-
width of 153.6 GB/sec. The GPU is connected to the host via
an X16 PCI Express 3.0 interface.

A fair and accurate comparison on the energy consump-
tion across multiple platforms is a nontrivial task, since
these three platforms can have very different hardware and
peripheral equipment in practice. Thus, we adopt two meth-
ods to compare the energy efficiency among three plat-
forms. The first method is an estimation with multiplying
the execution time by the corresponding TDP (Thermal
Design Power) of the platform. This methodology is used in
the previous studies [7], [10]. In practice, this offers a good
estimation on the energy consumption of each platform,
since we have various optimizations to maximize the
resource utilizations on high-end CPU, GPU and FPGA.
The second method is to further add a low-end CPU power
consumption for the FPGA/GPU implementation, in addi-
tion to the first method. The reason of using a low-end CPU
is, since the CPU is roughly idle during OpenCL kernel on
FPGA/GPU are running, it is unfair to count the power
consumption of full-fledged Intel CPU into the power con-
sumption of FPGA/GPU platform. In this study, we assume
the energy consumption of the low-end CPU to be 25W. The
TDPs of the high-end CPU, the GPU and the FPGA are 80,
150, and 25 W, respectively.

Applications. We have used seven common MapReduce
benchmarks, which have been used in the experiments of
previous studies [1], [12], [18], [21].

These applications cover different performance aspects
of MapReduce: reduction-intensive and map computation-
intensive applications. The former kind of applications usu-
ally have a large number of key-value pairs for each unique
key, whereas the map tasks spend most of the time in the
latter kind of applications. The details on the applications
and their data sets are summarized in Table 2. The default
data have uniformly distributed input keys. K-means clus-
tering (KM) is one of the most popular data mining algo-
rithms. Word Count (WC) can be reduction-intensive if the
number of distinct words (DW ) is small. We use DW=500
as the default setting. String Matching (SM) is used to
check whether the target string is in the file. For simplicity,
the first string in the file is set to be the target string to
search. Matrix Multiplication (MM) is a map computation-
intensive application. Similarity Scope (SS) is used in
web document clustering, which computes the pair-wise
similarity score for a set of documents. It is also a map
computation-intensive application. Histogram movies

TABLE 1
Latency (cycles) of Each Kind of Instructions

fp_sqrt fp_mul fp_add/sub fp_div
28 5 7 14
int32_add/sub int32_mul int32_div global memory
1 3 32 35

TABLE 2
Application and Datasets Used in our Experiments

Application Dataset Size

K-means, K = 40 (KM) 200 M points
Word Count (WC) 100 MB text file
String Matching (SM) 100 MB text file
Matrix Multiplication (MM) 2,000*2,000 matrices
Similarity Scope (SS) 2,000 files each with 2,000 features
Histogram movies (HM) 100 Mmovive rating points
Inverted index (II) 200 M tuples
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(HM) generates a histogram of the movie rating data. It is a
reduction-intensive application. Inverted index (II) gener-
ates word-to-document indexing for a list of documents. It
is a reduction-intensive application. Among them, KM and
WC are in HiBench [21], while HM and II are in PUMA [1].

In summary, MM and SS are map computation-intensive,
and others are reduction-intensive. The input data sets are
initially loaded into the device memory, excluding the cost
of PCI-e data transfer time.

4.2 Impacts of FPGA-Centric Optimizations

In this section, we study the separate impact of individual
FPGA-centric optimizations in Melia, through manually
enabling/disabling certain optimizations in Melia. It is
important to study the impacts of these optimizations, since
the performance can be significantly improved with proper
optimizations.

Private memory. We first study the performance impact of
the private memory access optimization. Fig. 4a shows the
speedup of private memory on Melia with one and two CUs
(denoted as 1-CU and 2-CU, respectively). We define the
performance speedup of an optimization technique to be
the ratio of the elapsed time without the optimization tech-
nique to that with the optimization technique. We recom-
mend that the private memory should be chosen for storing
intermediate data in the Melia framework and user-defined
map/reduce functions whenever possible. One reason is
that FPGA has a plentiful amount of reconfigurable
logics for the private memory. The usage of the private
memory reduces the number of long-latency global memory
accesses. Since the multiple kernel pipelines are more global
memory intensive than that of one kernel pipeline, the 2-CU
case can achieve a higher performance speedup than that of
1-CU case. We do not include the results for SS, MM, KM,
HM and II, because the private memory optimization is not
necessary for those applications.

Memory coalescing. Fig. 4b shows the performance
speedup of the static memory coalescing on the seven

applications. With memory coalescing, multiple global
memory transactions are combined, and the total number of
global memory accesses is reduced. Similar to the results on
private memory optimizations, the 2-CU case also achieves
more performance speedup than that of 1-CU case. Specific
to FPGA, this optimization also reduces the hardware
required resource consumption. We use KM as an example,
and memory coalescing has a significant speedup of 1.42 on
KM. The 2-CU KM variants with and without coalescing
require 72 and 93 percent of the total FPGA resource,
respectively. Even worse, the high resource consumption
also leads to a lower frequency. Those two factors contrib-
ute to the relatively high overall speedup of memory
coalescing on KM.

Loop unrolling. Fig. 4c shows the performance speedup of
the loop unrolling on the FPGA. Loop unrolling is not appli-
cable to SM and WC, due to their irregular loops. For the
other three applications, loop unrolling achieves very signifi-
cant performance speedup (up to 8.48). The throughput of
the pipeline in the FPGA is always determined by the slow-
est part of the pipeline. Through loop unrolling, we can allo-
cate more resource to the slowest part of the pipeline, and
make the throughput of each part of pipelinemore balanced.

Local memory. Fig. 4d shows the performance speedup of
the local memory for WC SM HM and II. The local mem-
ory has significant advantages in latency and throughput
over global memory. Another advantage is that each ker-
nel pipeline has its own local memory, the pipeline do not
need to compete with the other kernel pipelines for local
memory accesses, unlike global memory accesses. Since
each kernel pipeline has its own local memory, the 2-CU
case can achieve more significant performance speedup
than 1-CU case.

Pipeline replication. Fig. 4e shows the performance
speedup of the multiple kernel pipelines (CU) on the FPGA.
Increasing the pipelines from one to two results in the
speedup of 1.08-1.59 on the seven applications. That shows
the importance of fully utilizing the hardware resource.

Fig. 4. Performance speedup of individual optimization on the FPGA, where K-means (KM), Word Count (WC), String Matching (SM), Matrix Multipli-
cation (MM), Similarity Scope (SS), Histogram movies (HM) and Inverted index (II).
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Put them all together. Finally, we compare Melia with the
baseline approach (without FPGA-specific optimizations) on
FPGA, as shown in Fig. 4f. The speedup of all FPGA- centric
optimizations is 1.4-43.6 times over the baseline approach.
This validates the importance of FPGA-centric optimizations
in writing an efficient OpenCL program for FPGAs.

4.3 Cost Model Evaluations

In this section, we evaluate our cost models from two
aspects: cycles and frequency estimations and optimization
parameter setting.

Estimations of cycles and frequency. We first study our pre-
dictions on the clock cycles and hardware frequency. We
have studied three reduction-intensive applications (WC,
KM and SM) and two map computation-intensive applica-
tions (MM and SS). We observe that our predictions can
generally capture the trend of clock cycles and frequency. In
the following, we present the detailed results for two repre-
sentative applications, WC and SS, without and with loop
unrolling optimizations, respectively. Additionally, they
cover a series of memory optimizations.

For each application, we consider different combinations
of FPGA-centric optimizations. Thus, we use the following
abbreviations to represent the optimizations and their param-
eters used in the evaluation:G, P ,C, SM,NSM andUf repre-
sent the baseline global memory version, private memory,
static memory coalescing, local memory, non local memory,
and loop unrollingwith unrolling factor f , respectively.

Figs. 5a, 6a, 7a, 8a and 9a show the predictions on hard-
ware frequency of running WC, SM, KM, MM and SS with
Melia, respectively, in comparison with the measured fre-
quency after the real FPGA compilation. Our simple
approach can roughly predict the hardware frequency of
the OpenCL kernel, with the input from the corresponding
estimated resource utilization provided by the
Altera resource estimation tool.

Figs. 5b, 6b, 7b, 8b and 9b show the predictions on the
elapsed clock cycles. Generally, our prediction on clock cycles
is able to capture the trend of the MapReduce application
with different parameter configurations. On WC, our

estimation can predict the clock cycle reductions of the mem-
ory optimizations (local memory, private memory and static
memory coalescing), and the correspondingMTP value used
in Fig. 5b is 11.3. For SS, KM andMM, our estimation can also
predict the impact of loop unrolling, which significantly
reduces the clock cycles by shortening the critical path of the
kernel pipeline, and their corresponding MTP values are
30.4, 60 and 70, respectively. For SS, our estimation can predict
the clock cycle trend with varying unrolling factor f . For MM
and KM, our estimation can not accurately predict the clock
cycle trends, but the performance of the estimated parameter
configuration can be very close to the optimumperformance.

Optimization parameter setting. We now evaluate the effec-
tiveness of our models in predicting the suitable parameter
settings in Melia. We study the predicted optimization con-
figuration of parameter settings for the seven applications in
comparisonwith the best configuration in Table 3. We obtain
the best/worst/medium configurations by experimentally

Fig. 5. Frequency and clock cycle estimations of WC on the FPGA.

Fig. 6. Frequency and clock cycle estimations of SM on the FPGA.

Fig. 7. Frequency and clock cycle estimations of KM on the FPGA.

Fig. 8. Frequency and clock cycle estimations of MM on the FPGA.

Fig. 9. Frequency and clock cycle estimations of SS on the FPGA.

TABLE 3
Configuration of Best and Predicted Cases

for the Five Applications

Configuration Best Case Predict

WC SM+P+C+2CU SM+P+C+2CU
KM SM+P+C+U8+2CU SM+P+C+U20+1CU
SM SM+P+C+2CU SM+P+C+2CU
MM NSM+P+C+U25 NSM+P+C+U40
SS NSM+P+C+U80 NSM+P+C+U80
HM SM+P+C+2CU SM+P+C+2CU
II SM+P+C+2CU SM+P+C+2CU
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measuring the execution time of all possible configurations.
Our model is able to match the best cases for the five applica-
tions (WC, SM, SS, HM and II). For MM and KM, the perfor-
mance of the predicted configuration is comparable to or
very close to the best case, as shown in the Table 4. More
importantly, our prediction can effectively avoid the worst
configuration, and significantly outperform the medium
case in all applications.

4.4 Comparisons Between FPGA and CPU/GPU

We evaluate the execution time, and energy efficiency (per-
formance per watt) of Melia, in comparison with its state-of-
the-art counterparts on CPU/GPU. Note, we directly use
the implementation [11], [12] from the author.

Comparisons with GPU. We show the ratios of Melia over
the GPU-based counterpart [11], [12] on the execution time
and energy efficiencies (with/without low-end CPU), as
shown in Figs. 10a, 10b, and 10c. In particular, Melia
achieves averagely 3.6 (2.1) times higher energy efficiency
(performance per watt) than the GPU-based counterparts
without (or with) low-end CPU. Due to the low power fea-
ture of the FPGA, Melia has a lower power consumption on
all applications.

For the execution time, there is no conclusive comparison
between FPGA and the GPU. On KM, Melia significantly
outperforms the GPU-based MapReduce on all the two met-
rics, since the KM implementation utilizes the optimization
methods: local memory and loop unrolling. In particular,
FPGA is good for computation-intensive MapReduce appli-
cations with regular memory access pattern, since FPGA
can provide multiple custom pipelines (via loop unrolling)
to efficiently improve the computing ability and on-chip
buffers to reduce global memory accesses. For example, KM
can employ the loop unrolling to improve computation

ability and on-chip buffers to reduce the number of memory
accesses. Compared with the GPU-based counterpart, Melia
achieves slower performance on other applications. Take SS
and MM as examples. Melia fully utilizes the loop unrolling
optimization. However, still many global memory transac-
tions impede the further performance improvement since
no dedicated cache is involved on the FPGA. In contrast,
GPU is good for the computation-intensive application with
irregular memory access pattern, since GPU has powerful
computation ability and high memory bandwidth.

Comparisons with CPU. We present the overall compari-
son with the CPU-based MapReduce without figures. Previ-
ous studies [11], [12] have compared the MapReduce
performance on the CPU and the GPU. Our results are con-
sistent with their studies. Eventually, Melia has higher
energy efficiency than the CPU-based MapReduce on all the
seven applications, with the improvement of up to 16.7
times. In general, CPU is good for the control-intensive appli-
cation, since CPU has powerful cache hierarchy and super-
scalar technology to reduce the latency of memory access.

For the seven MapReduce applications presented at our
experiment, we summarize our findings as follows. First,
FPGA is good for computation-intensive applications with
regular memory access pattern, since FPGA can provide
multiple custom pipelines to efficiently do the computation
and on-chip buffers to efficiently read/write data. For
example, KM can employ the loop unrolling to improve
computation ability and on-chip buffers to reduce the num-
ber of global memory accesses. Second, GPU is good for the
computation-intensive applications with irregular memory
access patterns, since GPU has powerful computation abil-
ity and high memory bandwidth. For example, MM and SS
requires the powerful computation ability to efficiently do
the computation and requires high memory bandwidth to
efficiently deal with a lot of global memory accesses. Third,
CPU is good for the control-intensive applications, since
CPU has powerful cache hierarchy and superscalar technol-
ogy to reduce the average latency of memory access. For
example, SM, WC, HM and II require powerful cache hier-
archy and powerful superscalar technology to deal with
plenty of branches.

4.5 Other Studies

In this section, we study the robustness of Melia in the fol-
lowing aspects.

Different data sizes.We also study the different data sets of
the application (WC) for the case study. Fig. 11 shows the
elapsed times of WC with input sizes (100, 200, . . . , 500,

TABLE 4
The Best, Worst, Medium Execution Time for

Different Configurations, and the Execution Time
of Our Predicted Configuration

Worst Best Medium Predicted

WC 1,269 ms 510 ms 810 ms 510 ms
KM 7,450 ms 1,131 ms 3,456 ms 1,872 ms
SM 506 ms 416 ms 470 ms 416 ms
MM 37.8 s 5.3 s 20.6 s 5.4 s
SS 21.2 s 2.5 s 9.6 s 2.5 s
HM 28.9 s 3.12 s 4.96 s 3.12 s
II 53.4 s 6.48 s 10.48 s 6.48 s

Fig. 10. Comparison of Melia on FPGA over on GPU.
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1,000, 1,500 MB). The experimental result shows that the
performance scales well for increasing data sizes.

Locking overhead. We also study the locking overheads of
five MapReduce applications (WC, KM, SM, MM and SS)
on OpenCL-based FPGAs. We estimate the locking over-
head as subtracting the MapReduce application without
locking operations from the same MapReduce application
with locking operations. The time breakdown is shown in
Fig. 12. The experimental result shows that the locking over-
head is one important component of the total execution time
for each MapReduce application, since FPGA cannot
efficiently accommodate the standard locking mechanism
(e.g., atomic_cmpxchg) from OpenCL specification.

Input data characteristics. We also study the impact of
input data characteristics [2], [42] of the MapReduce appli-
cation (WC) on FPGA/GPU, as shown in Fig. 13. In particu-
lar, we adopt the two cases of input data in the previous
study: skewed key occurrence (SKO) and uniform key
occurrence (UKO). The SKO is the case that the same key
occurs consecutively, which implies that work items of
MapReduce framework need to compete for the same lock
(one distinct key has one corresponding lock). On the other
hand, UKO is when keys uniformly appear, which implies
that the possibility of lock contention is relatively low.
Based on the experimental result, there are two observa-
tions. First, the input data with UKO has much better per-
formance than that with SKO, since the lock contention is
serious for SKO, which significantly degrades the perfor-
mance of OpenCL-based Melia. Second, FPGA has signifi-
cant performance advantage over GPU when the number of
input distinct keys is small, since the lock-step execution
model of GPU cannot efficiently address the serious lock
contention, then work items actually execute sequentially.

When the number of distinct keys is knownbeforeMapRe-
duce runtimeperforms,we can allocate proper FPGAon-chip
buffer to store the reduction object and the proper hashing
function can be used, so that FPGAon-chip buffer can be fully

utilized. Then, the amount of FPGA resource can be reduced
and more aggressive optimizations (e.g., more CU) can be
applied to MapReduce programs. Take WC as an example,
we can allocate three CUs for the implementation when the
number (500) of input distinct keys is known before execu-
tion, then we get the performance improvement by 1.21X,
comparedwith the default implementationwith two CUs.

Comparison with direct HLS acceleration. We have com-
pared the HLS enabled MapReduce runtime Melia with
direct HLS acceleration. The implementation based on
Melia requires more FPGA resources than the direct HLS
acceleration. On the other hand, Melia improves the
programmability so that the user only needs to implement
two primitives (map and reduce), and MapReduce is able to
exploit the parallelism in the underlying computing resour-
ces. Take MM with full optimizations for example. With
Melia, the HLS enabled MapReduce roughly requires 10
percent more resources than the direct HLS acceleration, as
shown in Table 5. The execution time of Melia (5.41 s) is
much larger than that of HLS implementation (3.45 s) since
the locking overhead of Melia is significant.

4.6 Finding Summary

Overall, FPGA demonstrates the significant energy effi-
ciency, in comparison with its CPU- and GPU-based
counterparts. The performance and energy consumption
comparisons of FPGA-based MapReduce over the CPU/
GPU-based MapReduce are resulted from the differences in
the architectures as well as the algorithm design. First, the
FPGA usually has much lower hardware frequency than
CPU/GPU, respectively. In our experiments, the FPGA has
the frequency of hundreds of MHz, while GHz for the
CPU/GPU, respectively. Moreover, compared with CPU/
GPU, FPGA does not have coherent cache hierarchy, e.g.,
L1/L2 caches. For some applications, Melia can still be
faster than the MapReduce implementations on CPU/GPU,
thanks to the FPGA-centric optimizations. Second, FPGA by
design has much lower power consumption than CPU/
GPU. This is a direct factor contributing to the superb
energy efficiency of FPGA over CPU/GPU.

Fig. 11. WC with varying data sizes (MB).

Fig. 12. Lock overheads for seven MapReduce applications.

Fig. 13. Execution time for various number of distinct keys on FPGA and
GPU.

TABLE 5
Comparison with Direct HLS Acceleration (MM)

LUTs REGs RAMs DSPs time

With Melia 179,630 273,103 1,886 32 5.41s
Direct HLS 160,480 244,187 1,657 32 3.45s
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5 EXTENSIONS TO MULTIPLE FPGAS

Our extension (simulation) follows the common MapRe-
duce design [15]. Many good mechanisms of MapReduce
are inherited, including task scheduling and fault tolerance.
Thus, we focus on how FPGAs are interconnected to make a
large-scale system. While FPGAs can be integrated as a co-
processor, we adopt a radical approach by viewing FPGAs
as individual nodes. The Melia implementation on a single
FPGA is used to process the map and the reduce tasks on a
chunk of input data and a chunk of intermediate key-value
list generated from the map task, respectively.

We design a FPGA-based computing cluster with mas-
ter/slave architecture. The master node runs on a stan-
dard server, which is responsible for task scheduling and
other management in MapReduce. Each slave node is a
standalone FPGA board, which is plugged into one slot of
a custom direct point-to-point backboard [35]. The back-
board employs the high-speed Transceivers (MGTs) on
the FPGA, named RocketIOs [5], to provide a custom
high-speed data network. In particular, since MGT is full
duplex and no software overhead is required, the data
transfer bandwidth between any pair of two FPGA nodes
at either direction can achieve 800 MB/s via 14.1 Gb/s
transceiver. This is significant data transfer bandwidth
advantage of FPGA over CPU/GPU. Dozens of FPGAs
(16 in our performance/energy consumption analysis)
forms a pod. All the FPGAs within a pod are fully con-
nected via the backboard. To support a larger number of
FPGAs, we leverage existing cluster network topolo-
gies [3], which connect pods with Ethernet switches in a
tree-like network topology. Our cluster design is a hybrid
one with both the features of FPGA backboard and Ether-
net switches. For CPU/GPU-based cluster, we consider a
common setting: a 10 Gb/s Ethernet switch within the
pod of 16 machines each, and pods are connected with
10 Gb/s switch. The FPGA cluster uses the same cross-
pod design. We use the power consumption model [6] for
Ethernet switches. For example, an 10 Gb/s 32-port
switch roughly consumes 786 Watts.

There are two issues that are worth discussion. The
first one is on cost efficiency. The FPGA board used in
the experiment costs 8,000 USD each, and the worksta-
tion costs 2,000 USD each. The FPGA board is more
expensive than the server. In the real production envi-
ronment, only the FPGA itself is required, rather than
the entire FPGA board. Thus, the price per FPGA
should be much lower than the FPGA board. Second,
we adopt the fair scheduling policy in Apache Hadoop

2.5.1 – YARN, to handle job/task scheduling and fault
tolerance. Both CPU/GPU- and FPGA-based clusters use
the same policy in the simulation. Thus, we omit the
experimental studies on those issues.

Simulation setup.We conduct the simulation about perfor-
mance and energy consumption analysis according to the
approach introduced by Lang et al. [26]. The basic idea is
that, in the map phase, we consider the computation time of
the map tasks; in the reduce phase, we estimate the time of
network transfers required by the data shuffling and the
computation time of the reduce tasks. For more details, we
refer readers to the original paper [26].

We scale the data size by a factor (�f , meaning that we
scale the input data size or dimensions in Table 2 by f); that
is, each node roughly has the same amount of data as shown
in Table 2. We use the machine and FPGA setup in Section
as the input hardware profile in the performance/energy
consumption analysis.

Performance/energy analysis. Figs. 14a and 14b show the
performance/energy consumption analysis results of
Melia on CPU/GPU/FPGA clusters. The results are
shown with 32 slave nodes (either FPGAs or servers with
CPUs/GPUs) and the input data scale of (�32). Overall,
in the cluster setting, seven MapReduce applications of
Melia even more significantly outperforms its CPU/GPU
counterparts in terms of performance and energy effi-
ciency, in comparison with the results in Section 4. In par-
ticular, the performance of Melia is better than CPU/GPU
cluster as show in Fig. 14a, since the RocketIO network in
FPGA cluster can provide much more data transfer band-
width than Ethernet of CPU/GPU cluster. Therefore, the
time required for data shuffling in FPGA cluster is signifi-
cantly less than that in CPU/GPU cluster. Furthermore, our
FPGA cluster design has taken the backboard support of
FPGAs, which eliminates the standard server components,
which are required by the CPU/GPU cluster. Therefore, the
energy consumption advantage of FPGA cluster over CPU/
GPU cluster is much more significant than the performance
advantage, as shown in Fig. 14b.

Scalability. We also study the impact of different FPGA
nodes for the MapReduce application WC as the case study,
as shown in Fig. 14c. The results are shown with varying
slave nodes (8, 16, 32 and 64) and the input data scale of
(�32). The experimental result shows that more FPGA nodes
can have better performance, since the data set for each
FPGA node is accordingly reduced. However, the cluster
withmore FPGA nodesmay havemore power consumption,
consumed bymore data shuffling between FPGAnodes.

Fig. 14. Comparisons (time and power consumption) of Melia on CPU/GPU/FPGA clusters.
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6 EXPERIENCES AND OPEN PROBLEMS

Our initial studies show a few opportunities for further
improving the performance and energy efficiency of Map-
Reduce on FPGAs.

First, with OpenCL abstractions, FPGAs can be viewed
as a highly parallel architecture with strong and efficient
support on hardware pipeline executions. This fits
extremely well with massively parallel processing like Map-
Reduce. The fast inter-“thread” communication within the
same hardware pipeline can significantly accelerate the per-
formance and ease the programming.

Second, the FPGA programmability for more complex
applications has been improving greatly. Besides Altera
OpenCL SDK, Xilinx C/C++ HLS tools significantly reduce
the programming complexity on FPGAs.

Third, as energy efficiency has a more significant role in
system designs, FPGAs are more likely to become an impor-
tant citizen in MapReduce, and other data processing sys-
tems. Through proper optimizations, we demonstrate that
FPGAs achieve significantly higher energy efficiency than
CPUs/GPUs, with slight performance degradations or even
better performance on FPGAs.

We have also identified a few open problems:
First, MapReduce in specific and data processing in gen-

eral are complex in its runtime logic. Even though FPGAs
have low power, we still require a significant amount of
design and implementation effort to further improve the
performance and energy efficiency of Melia.

Second, even with OpenCL abstraction, reconfigurable
computing still has other challenges. More advanced system
features such as the partial reconfiguration capability is still
preliminary [8]. Also, as our experiments show, memory
stall optimizations and pipeline execution efficiency are two
most important performance factors. For example, the hard-
ware reconfigurable capability also requires careful algo-
rithmic designs, since even the unexecuted code in runtime
has to consume resources on FPGA. FPGAs now do not
offer coherent cache memory hierarchy. The locality and
coherency are left to programmers.

Third, similarly to GPU, FPGA is relatively weak on syn-
chronization handling and memory subsystems (no cache
coherence). For example, we found that the atomic-lock seri-
ously affect performance. It is desirable to develop software
or hardware techniques to improve those issues on FPGAs.

7 CONCLUSION

MapReduce has become a popular programming framework
in parallel architectures. In this paper, we implement and
evaluate an OpenCL-based MapReduce framework (Melia)
with a series of optimizations for FPGAs, based on the
recently released Altera OpenCL SDK. We evaluate Melia on
a recent Altera FPGA. Our evaluations show that memory
stalls and pipeline execution efficiency have significant
impact on the overall performance and energy efficiency of
FPGAs. Our results demonstrate that 1) our parameter setting
approach can predict the suitable parameter settings that
have the same or comparable performance to the best setting,
2) our FPGA-centric optimizations significantly improve the
performance of Melia on FPGAwith an overall improvement
of 1.4-43.6 times over the baseline on FPGA. Both real

experiments on a single FPGA and performance/energy con-
sumption analysis on a cluster setting demonstrate the signif-
icant performance and energy efficiency improvement of
Melia over its CPU/GPU-based counterparts.

One interesting future direction is to schedule the execu-
tion among heterogeneous environments (including FPGAs,
GPUs and CPUs), and to extend the methodology to general
OpenCL programs. We have made Melia open-sourced in
http://www.ntu.edu.sg/home/bshe/Melia.html.
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