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Abstract—The optimization of conjunctive predicates is still
critical to the overall performance of analytic data processing
tasks, especially on a denormalized table, where queries with
time-consuming joins on the original normalized tables are
converted into simple scans. Existing work relies on the query
optimizer to do the selectivity estimation and then produce the
optimal evaluation order of predicates. In this paper, we argue for
an order-oblivious approach, based on memory-efficient storage
layouts. Accordingly, we propose Hebe, a simplified execution
scheme which is attractive to the query optimizer, as it does not
need to go through a sampling process to determine an optimal
evaluation order of predicates. Compared with the state-of-the-
art implementation with the optimal evaluation order, Hebe can
also achieve up to 153% performance improvement.

I. INTRODUCTION

Decision support queries often contain conjunctive predi-

cates in data warehouses. For example, most TPC-H queries

contain at least two predicates. The optimization of queries

with conjunctive predicates is challenging since the explo-

ration space is large. Take the conjunction p(1)
∧
p(2) of

two predicates p(1) and p(2) as an example. They can be

evaluated with either logical-and & or branching-and && [7].

The conjunction will output the result bit vector, where one

bit indicates the result of one tuple. The former evaluates

the two predicates independently to generate one-bit result

for each predicate. It then performs the logical and opera-

tion on the two one-bit results. Suppose branching-and will

evaluate the predicate p(1) first. If its outcome is false, the

final result (false) is determined, and there is no need to

evaluate p(2). If it is true, p(2) is evaluated, and then its

outcome determines the final result. Therefore, logical-and
is oblivious to the evaluation order but it has to evaluate all

the involving predicates. In other words, it does not explore

any cut-off condition (i.e., short-circuit) among predicates (the

cut-off condition among predicates is called inter-predicate
cut-off condition). In contrast, branching-and explores the

inter-predicate cut-off condition and thus is sensitive to the

evaluation order.

Since database predicates can be very selective, there is

plenty of related work [4], [6], [7], [8], [13] on how do the

short-circuit evaluation (i.e., branching-and &&) to achieve

* This work was done while was at NUS.

better performance. The main idea is to try to figure out the

optimal evaluation order of predicates using different metrics,

e.g., selectivity and rank. Since the selectivity of each predicate

is unknown for ad-hoc queries, the query optimizer (QO) needs

to calculate them via some estimation approaches such as

sampling [1], [4]. Based on the estimated selectivities, the

QO produces the query execution plan (QEP) with an optimal

evaluation order. Since the selectivity estimation itself can be

inaccurate, the quality of QEP cannot be guaranteed to be

optimal after sampling.

In this paper, we argue for an alternative approach for the

evaluation of conjunctive predicates. Specifically, our approach

explores the inter-predicate cut-off conditions while keeping

the predicate evaluation order-oblivious. To do this, we rely

on memory-efficient storage layouts [3], [5].

Memory-efficient storage layouts [3], [5] vertically partition

the codes of one column, resulting in several memory regions
to store the column. The codes are generated from the column

values using dictionary compression [2], [5]. The memory

region denotes a data structure that stores data in a sequence.

More specifically, BitWeaving/V [5] proposed a set of storage

layouts to fully exploit the intra-cycle parallelism available in

modern CPUs. More recently, a byte-level columnar storage

layout (called ByteSlice) was proposed to accelerate database

scans by fully leveraging SIMD computing [3], [12]. Accord-

ingly, an early stopping technique has been proposed to fully

exploit the intra-predicate cut-off condition, based on these

memory-efficient storage layouts. With the early stopping

technique, the final result of a code evaluating a predicate

can be determined after evaluating its partial bits (not all the

bits). To illustrate, consider two 7-bit codes (v1 = 0000101,

v2 = 0100100) try to evaluate the predicate p̂ : v < 0110110,

where p̂ indicates that the predicate p is evaluated under

memory-efficient storage layouts. We can observe that v1 (or

v2) can terminate its evaluation after evaluating the first two (or

three) bits, with the last evaluated bit underlined. Therefore,

there is no need to evaluate the remaining bits.

Leveraging insight from memory-efficient storage layouts

and early stopping technique, we propose a simplified ex-

ecution scheme Hebe for conjunctive predicates. Hebe can

aggressively explore intra-predicate and inter-predicate cut-off

conditions to significantly reduce branch misprediction and
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Fig. 1: Three memory-efficient storage layouts

cache miss penalties. Therefore, its raw performance is always

better than the state-of-the-art execution model (i.e., column-

first) under memory-efficient storage layouts [3]. Specifically,

our experimental result shows that Hebe is capable of achiev-

ing up to 153% performance improvement over the column-

first execution model. Meanwhile, its order-oblivious property

is attractive to the QO which does not need to estimate

selectivities and then to determine the optimal evaluation order

of conjunctive predicates.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the efficient storage

layouts and the processing of conjunctive predicates.

A. Memory-Efficient Storage Layouts

In this subsection, we mainly discuss the characteristics of

three memory-efficient storage layouts: VBP [5], BitWeav-

ing/V [5] and ByteSlice [3]. All of them can benefit from

the early stopping technique.

Vertical Bit Parallel (VBP) Layout. VBP vertically parti-

tions the codes at the bit level [5]. In particular, the codes are

divided into segments, and each segment contains W codes,

where W is the width of a processor word. In a segment, the

W k-bit codes are transposed into k W -bit processor words,

with the most significant bits stored at the lowest address. The

j-th bit in the i-th word equals to the i-th bit in the original

j-th code. For example, Figure 1a shows the transposition of

one segment, from 32 13-bit codes to 13 32-bit words, which

are stored in a continuous memory space. The consecutive

segments are also stored continuously. Therefore, it only needs

one memory region MR1 to store the transposed codes. Within

VBP layout, the performance of scan can be improved by

the early stopping technique. However, it is far from optimal.

Suppose one cache line contains eight words. The outcome

of comparisons on 32 codes of this segment in Figure 1a is

determined after evaluating the first five words. Then, the other

three words, which have already been loaded in the same

cache, are skipped for the evaluation due to early stopping

technique. Therefore, resulting in wasted memory bandwidth.

Bitweaving/V. Since the VBP layout does not make full

utilization of early stopping technique, the Bitweaving/V lay-

out [5] (built on VBP) is proposed to combine vertical and

horizontal partitioning. It partitions the code not only at the

bit level, but also in a horizontal fashion to achieve better CPU

cache performance. In particular, BitWeaving/V divides the k
words in a segment into �k/G� bit groups, where G is the

number of bits in a bit group. Each bit group is associated with

one memory region to store the sequential words. Figure 1b

shows the case with three bit groups and G = 5, so there

are three memory regions for the compressed codes. With

BitWeaving/V, the previous example only needs to access the

first bit group containing the first five bits in the memory

region MR1. Thus, it can save plenty of memory bandwidth

compared with the VBP layout. VBP is a special case of

BitWeaving/V (only one bit group).

ByteSlice. Since the SIMD register of modern CPUs sup-

ports the 8-bit bank width, the byte-level columnar layout

ByteSlice [3] can fully leverage the data-level parallelism of

SIMD instructions by vertically distributing bytes of a k-bit

code across �k/8� memory regions. It is like BitWeaving/V

since both layouts contain vertical and horizontal partitioning.

However, byte, instead of bits, serves as the basic unit when

vertically partitioning the codes under ByteSlice. Figure 1c

shows the transposition of one segment under ByteSlice lay-

out: each 13-bit code is partitioned into two memory regions.

B. Processing of Conjunctive Predicates

The database query can consist of several predicates. The

optimization of predicates is still an attractive research topic.

There is plenty of related work [4], [6], [7], [8], [9], [13]

to optimize the evaluation order of predicates using different

metrics, e.g., ranking and selectivity. However, they do not

have the order-oblivious property as the proposed design.

III. DESIGN AND IMPLEMENTATION OF HEBE

In this section, we present the implementation details of

Hebe, a simplified execution scheme which is order-oblivious

and high-performance on modern CPU architectures.

The detailed execution flow of Hebe is shown in Algo-

rithm 1. We use ByteSlice as the default storage layout. N
conjunctive predicates are taken as input and a result bit vector

bitvector is generated to indicate whether each tuple satisfies

conjunctive predicates or not.

In the initialization step, the bytes of literal c(i) of p(i) are

broadcast to �B(i)/8� SIMD registers Dc(i) (Line 3). B(i) is

the number of memory regions where p(i) is evaluated. Dc(i)
is shared by each segment (Lines 1-5), and thus only need to

be computed once. For each segment, the detailed execution

flow (Lines 6-31) is given step by step.

First, we initialize three W -bit segment-level status masks

(Lines 7-11) for each predicate: less-than mask Mlt (0W ),
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Algorithm 1: PROPOSED EXECUTION SCHEME

Input : N : the number of predicates,
c(i): the literal of p(i),
vl(i): the l-th code of p(i),
B(i): the number of bytes of code which evaluates p(i).

Output : bitvector: result bit vector of conjunctive predicates.
1 for i = 1 to N do
2 for j = 1 to B(i) do
3 D[j]

c (i) = v broadcast(c[j](i))
4 end
5 end
/* Evaluate the codes in each segment in parallel. */

6 for (each segment with codes vl+1 . . . vl+W/8) do
7 for i = 1 to N do
8 Mlt(i) = 0W

9 Mgt(i) = 0W

10 Meq(i) = 1W

11 end
12 for j = 1 to max

1≤i≤N
B(i) do

13 for i = 1 to N do
/* Check cut-off condition for p(i). */

14 if (Meq(i) �= 0W )&&(j ≤ B(i)) then
15 D[j](i) = v load(v

[j]
l+1(i) . . . v

[j]

l+W/8
(i))

16 Mlt(i) = v cmp lt(D[j](i), D[j]
c (i))

17 Mgt(i) = v cmp gt(D[j](i), D[j]
c (i))

18 Meq(i) = v cmp eq(D[j](i), D[j]
c (i))

19 Mlt(i) = v or(Mlt(i), v and(Meq(i),Mlt(i)))
20 Mgt(i) = v or(Mgt(i), v and(Meq(i),Mgt(i)))
21 Meq(i) = v and(Meq(i),Meq(i))
22 end
23 end

/* M further prunes each predicate. */
24 M = global filter(Meq(1 : N), Mgt(1 : N), Mlt(1 : N))
25 for i = 1 to N do
26 Meq(i) = v and(Meq(i),M)
27 end
28 end
29 Mfinal = final mask(Meq(1 : N), Mgt(1 : N), Mlt(1 : N))
30 r = v movemask(Mfinal)
31 Append r to bitvector
32 end

greater-than mask Mgt (0W ) and equal-to mask Meq (1W )1,

indicating the uncertain status of each predicate. Mlt (Mgt

or Meq) contains W/8 8-bit banks, where all the eight bits

in the l-th bank are 18 if vl is less than (greater than or equal

to) c, or 08 otherwise.

Second, the codes are examined one byte (i.e., one memory

region) per iteration until the cut-off condition is reached, with

max
1≤i≤N

B(i) iterations (Lines 12-28). Before each iteration, the

cut-off condition is checked for each predicate to early stop.

The j-th byte needs to evaluate p(i) (Lines 16-22) when its

cut-off condition (Meq(i) �= 0W ) is not satisfied and when

each code of p(i) contains at least j bytes (Line 14). The j-th

byte in this segment is loaded into one SIMD register (Line

15) to compare with the corresponding j-th byte of literal c(i)
(Lines 16-18), with the comparison statuses stored into three

local masks (Mlt, Mgt and Meq). Then, these local masks are

used to update three segment-level status masks (Lines 19-21).

After all the N predicates are evaluated, their segment-level

status masks are sent to the global filter module (Line 24)

which explores the inter-predicate cut-off conditions for N
predicates. In particular, the filter mask of each predicate is

evaluated to be ¬Mgt for the comparison type < or ≤, ¬Mlt

for > or ≥, ¬Mlt|Mgt for =, and 1W for �=. Then, M is

1For better readability, we will use plain Mlt, Mgt Meq (without i)
whenever we refer to all the predicates (i is from 1 to N ).

evaluated to be ANDed each predicate’s filter mask together.

Intuitively, M indicates whether the result of the evaluated

tuple has already reached the false state (i.e., 0) or not (i.e.,

1) after evaluating j bytes. If the false state is detected, no

further evaluation on the tuple is required. Therefore, M can

be used to further prune the uncertain conditions (Lines 25-

27). Thus, high-cost branch mispredictions and cache misses

can be significantly reduced at the expense of a few low-

cost arithmetic instructions. This is the underlying reason why

Hebe can achieve better performance.

Third, after the above iterations, the final result of each

tuple in this segment is determined. Then Mlt, Mgt and

Meq
2 of this segment are sent to the final mask module, which

generates the final result mask Mfinal (Line 29). In particular,

the output result mask of each predicate is evaluated to be Mlt

for <, Mlt|Meq for ≤, Mgt for >, Mgt|Meq for ≥, Meq

for =, and Mgt|Mle for �=. Then, Mfinal is calculated to

be ANDed the output result mask of each predicate together.

The W -bit Mfinal is condensed to a W/8-bit mask r using

the v movemask instruction (Line 30). Lastly, the final result

of this segement (r) is appended to bitvector.

IV. EXPERIMENTAL EVALUATION

In this section, we present the experimental setup and

evaluate the efficiency of Hebe.

A. Experimental Setup

Hardware Configuration. We conduct our experiments on

a workstation with a 3.0GHz Intel i7-5960X 8-core CPU

and 64GB DDR4 memory. Each core has 32KB L1 cache

and 256KB L2 cache. Besides, all cores share the 20MB

L3 cache. The CPU is based on Haswell microarchitecture

which supports 256-bit AVX2 instruction set. All the related

programs are compiled using ICC 16.0.3 with the optimization

effort -O3. In order to accurately collect the performance

profiles, we use the Intel Performance Counter Monitor [10]

to collect the performance counters on the program of interest.

Workloads. In our experiment, we create the table with

different number of columns, where each column contains one

billion k-bit codes. By default, values of codes are uniformly

distributed in the range [0, 2k), where k is equal to 17.

The corresponding advantage is that the selectivity of each

predicate can be tuned so that we can analyze the performance

characteristics with varying selectivities.

Comparison methodology. Five implementations are used

for performance comparison. The first one is Hebe (denoted

as “Hebe”). Two implementations come from the state-of-the-

art column-first execution model [3] under ByteSlice mem-

ory layout, where “BS best” (or “BS worst”) indicates the

implementation with the optimal (or worst) evaluation order.

The other two implementations comes from the SIMD-scan

method [11] with the naive column store, where “Naive best”

2The fact that Meq is pruned by M (Lines 25-27) will not violate the
correctness, since Meq is pruned only when the result of the tuple has already
been determined. The determination comes from Mlt, Mgt and is oblivious
to M.
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(or “Naive worst”) indicates the implementation with the

optimal (or worst) evaluation order.

B. Hebe vs. Other Implementations

Suppose there are four predicates p̂(1) : v1 < c1, p̂(2) :

v2 < c2, p̂(3) : v3 < c3 and p̂(4) : v4 < c4, whose

selectivities are s(1), s(2), s(3) and s(4), respectively. We

set the selectivity (e.g., s(1)) of each predicate by controlling

the value of literal (e.g., c1). Specifically, s(2), s(3) and s(4)
are set to be 50%, and s(1) is set to be 10%. “BS best”

(or “Naive best”) indicates the case with the evaluation or-

der where p̂(1) is evaluated firstly, while “BS worst” (or

“Naive worst”) indicates the case with the evaluation order

where p̂(1) is evaluated lastly.

Figure 2 shows the throughput of conjunctive predicates,

whose number varies from 2 to 4. The predicate with low

index is picked first. For example, “Two predicates” contains

the predicates p̂(1) and p̂(2). We can make two observations.

First, as expected, two naive implementations are the slow-

est, since each code takes one 32-bit bank of SIMD register to

evaluate. In contrast, with ByteSlice under the early stopping

technique, at most 9 bits are evaluated for each code in

average [3]. It means that a lot of computing resources are

wasted by the naive implementations.

Second, Hebe can achieve more performance improvement

over the other implementations when the number of predicates

increases, since more conjunctive predicates can result in

higher cut-off probability to be explored by each predicate.

C. Hebe vs. Column-first Execution Model

We compare the throughput (in terms of tuples/ns) of three

cases (“BS worst”, “BS best” and “Hebe”) on conjunctive

predicates p̂(1)&&p̂(2)&&p̂(3)&&p̂(4). s(2), s(3) and s(4)
are set to be 50%, and s(1) varies from 50% to 0.5% to show

the effect of selectivity on the overall performance, as shown

in Figure 3a. The x-axis (s) stands for the varying selectivity

s(1). To unveil the underlying reason of the performance

improvement, we also provide one performance metric (i.e.,

L3 cache misses), which is collected from Intel Performance

Counter Monitor [10]. We can make two observations.

First, when p̂(1) becomes more selective (i.e., 50% to 0.5%),

the performance of “BS best” cannot be significantly better

than that of “BS worst”, since the column-first execution

model does not aggregatively explore the inter-predicate cut-

off conditions to reduce the high-cost branch mispredictions

and cache misses. One evidence is that the optimal order still

has high L3 cache miss ratio, as shown in Figure 3b.

Second, Hebe can achieve obviously better performance

when p̂(1) becomes selective, since Hebe can automatically

explore the inter-predicate cut-off condition. In contrast, the

performance of column-first execution model is roughly stable.

V. CONCLUSION

The optimization of conjunctive predicates is crucial to the

modern database queries. State-of-the-art works perform the

sampling to guess the optimal evaluation order of predicates,

which can be inaccurate and incurs high cost. Alternatively,

we propose Hebe, a simplified execution scheme for the evalu-

ation of conjunctive predicates. Hebe is order-oblivious while

maintaining high-performance on modern CPU architectures.
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