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Abstract—With the wide adoption of GPU and the explosion
in data volumes, existing accelerator-centric systems require
massive storage access. They adopt high-performance storage
devices like NVMe SSDs to scale up single-node systems cost-
effectively and leverage the CPU to manage these SSDs. However,
they suffer from performance bottlenecks because of the high
CPU OS kernel overhead and the CPU memory intermediated
data transfer. To address this issue, GPU-initiated and GPU-
managed SSD management is proposed to allow the GPU to
fully manipulate SSDs: 1) direct data transfer from SSD to GPU
memory (data plane) and 2) GPU-managed SSD control (control
plane). This can potentially enable these GPU systems to fully
leverage the SSD bandwidth. However, we still identify two severe
issues. First, the GPU-management SSD control leads to low
GPU Streaming Multiprocessor utilization. Second, it leads to the
serial execution of SSD accesses with GPU computation, which
slows down the overall computing task. To this end, we propose
CAM, the first asynchronous GPU-initialized, CPU-managed
SSD management for batching storage access. It 1) offloads the
SSD control plane from GPU to CPU, thus maximizing GPU
streaming multiprocessor utilization, and 2) adopts asynchronous
user-friendly APIs that allow programmers to easily overlap
GPU computation and SSD I/O operations while keeping a
synchronous programming experience. As such, CAM enables
us to achieve the best of two worlds: high performance and
high programmability. The experimental results show that CAM
can perform GNN model training, mergesort, and GEMM up to
1.84x, 1.5%, and 1.84 x faster, compared to the existing state-of-
the-art GPU systems, while keeping high programmability.

I. INTRODUCTION

With the advancement of GPUs, many cutting-edge appli-
cations, such as neural network models [1], [21] and GPU-
based database systems [6], [50], are turning into GPU-centric
systems, which can benefit from GPU’s massive parallel com-
puting power. In particular, the NVIDIA A100 GPU delivers
312 TeraFLOPS (TFLOPS) of computing capability, while the
AMD Threadripper 3995WX CPU has fewer than 3 TFLOPS.

Together with the increasing requirement of computing
power, the problem size of an application also increases faster.
For GNN, the graph can contain billions of vertices and tens
of billions of edges [35], [59], [63], which needs several
terabytes of storage space. For DLRM, the memory capacity
of embedding tables has increased dramatically from tens of
GBs to TBs throughout the industry [33], [61], [62]. Therefore,
many researches [43], [46], [48], [58] leverage SSDs to break
the GPU memory and server memory boundaries so as to
enable out-of-core computation on massive data volume for
a broad range of applications. Storing data in SSDs not only
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addresses the data volume limitation but also decreases the
system cost for the same amount of data.

However, the benefits of offloading data from GPU to SSDs
come at the cost of potential performance degradation if the
corresponding GPU-powered system is not well optimized,
especially for its I/O side. Essentially, un-optimized GPU-
powered systems could serialize SSD accesses and GPU
computation. Because SSD accesses suffer from long access
latency and low throughput, these GPU-powered systems that
need to access data from SSDs could be easily bottlenecked
by slow SSD I/O accesses. In order to better analyze their
properties, we classify these systems into two categories
according to how they manage SSDs.

1. Traditional CPU-OS-Managed SSD Management.
Many GPU computing systems leverage CPUs to manage
SSDs, such as Ginex [44], MariusGNN [55], and ZeRO-
Infinity [46]. These systems use 1ibaio [46] or POSIX I/O
such as pread [44], [55] to manage SSDs. The CPU is
responsible for 1) sending read/write commands to SSDs, 2)
polling the completion information, and 3) notifying the GPU
to continue the following computation. However, these systems
fail to fully utilize the SSD bandwidth, especially in a multi-
SSD setting. On the one hand, the overhead of invoking OS
kernel significantly degrades the achievable SSD bandwidth.
On the other hand, these kernel functions can only move data
between SSDs and CPU memory. As such, the data movement
between GPU memory and SSDs must use CPU memory as
an intermedium, thus degrading the overall bandwidth and
increasing the I/O latency.

2. GPU-Managed SSD Management. To relieve the severe
CPU-managed overhead, the state-of-the-art GPU-managed
SSD management approach BaM [45] enables GPU to directly
access SSDs without the involment of CPU. The state-of-the-
art approach BaM [45] allows GPU thread blocks to directly
submit their read/write commands to Submission Queues
(SQs) of SSDs using a synchronous API and then allows
these GPU threads to poll on the corresponding entries in the
Completion Queues (CQs), while the data is directly trans-
ferred between GPU memory and SSDs, without involving
CPU memory as an intermedium. We observe that letting GPU
directly manage SSDs greatly improves the achieved GPU-
SSD bandwidth and decreases the I/O latency. However, the
benefits come at the cost of low GPU resource utilization for
compute kernels. BaM needs to launch a large number of GPU
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thread blocks to submit enough in-flight I/O requests and then
poll their completions. SSDs experience a high I/O latency
(tens of ps), and these threads are all waiting idly most of
the time. In particular, an A100 GPU needs to use all its SMs
(Streaming Multiprocessor) to fully exploit the SSD bandwidth
when the number of SSDs exceeds five.

To this end, we propose CAM, the first GPU-initialized,
CPU-managed SSD management for batching SSD access
GPU applications. We offload the SSD control plane from
GPU to CPU, thus maximizing GPU streaming multiprocessor
utilization for compute kernels during SSD I/O processes.
However, it is non-trivial to achieve. We propose two key
designs to solve the corresponding challenges. As such, CAM
enables us to achieve the best of two worlds: high performance
and high programmability.

First, we propose a dynamic adjustment method to change
the number of cores for CPU control SSD to address the
challenge of managing SSDs with as few CPU cores as possi-
ble without sacrificing performance (Challenge 1). Assigning
multiple CPU cores for each SSD achieves high bandwidth.
However, this consumes a large number of CPU cores, espe-
cially considering the large number of SSDs that a server may
be equipped with. For instance, controlling 12 SSDs would
require 13 cores for reading and an additional 13 cores for
writing, resulting in a total of 26 cores. As the number of
SSDs increases, this becomes increasingly unsustainable. To
save CPU cores, CAM can dynamically adjust the number of
cores for CPU control SSD. In an environment with N SSDs,
CAM can use N/4 to N/2 cores dynamically according to the
relative time of computation and 1/O.

Second, we propose asynchronous user-friendly APIs that
allow programmers to easily overlap GPU computation and
SSD I/O operations while keeping synchronous program-
ming experience to tackle the problem that an asynchronous
interface comes with low programmability (Challenge 2).
Asynchronous APIs, though powerful, are often difficult to
work with. To simplify usage, we want to design a set of user-
friendly synchronous APIs without sacrificing performance.

We evaluate CAM on the sort and GEMM workloads, three
popular GNN models (GCN, GAT, and GRAPHSAGE), and
real-world datasets (PaperlOOM and IGB-Full) on a GPU
server with A100 80G GPU and 12 SSDs. Experimental results
show that our system can fully utilize the I/O bandwidth. In the
GNN application, our approach has consistently outperformed
state-of-the-art implementations across various models and
datasets, achieving up to 1.84x training speed. CAM also
outperforms up to 1.50x and 1.84x compared to baselines
in sort and GEMM workloads.

Overall, our contributions are as follows:

1) We identify the concrete SSD access issues of existing

GPU-powered computing systems.

2) We propose CAM, the first GPU-initialized, CPU-
managed SSD management that enables parallel execu-
tion of SSD I/O and GPU computation. The compute
kernel can use all GPU streaming multiprocessors so as
to maximize the GPU utilization for computation;
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Fig. 1: GNN training time breakdown for the baseline BAM-
based GIDS on the Paper100M [19] graph dataset and different
models (GCN [26], GAT [53], GRAPHSAGE [16]). The node
feature data is stored in 12 SSDs, while the graph structure
data is stored in the CPU memory.

3) We design the first asynchronous APIs that enable
a synchronous programming experience while keep-
ing high performance for asynchronous GPU-Initiated,
CPU-Managed SSD Management.

II. MOTIVATION

Compared with storing data in the server memory, SSDs’
large volume comes at the cost of performance degradation.
The main reason for the performance degradation is the high
data transfer overhead between GPUs and SSDs. To illustrate
this, we make GNN training, a typical big data application
involving GPU and SSDs, as an example. We profile a GNN
training system GIDS [43] on the PaperlOOM [19] dataset
using 12 SSDs. As depicted in Figure 1, GIDS spends 40%-
65% of the overall training time on extracting node features,
which mainly involves reading data from SSDs to GPUs.

However, the poor performance can not be blamed on SSD’s
abilities. Modern SSDs (solid-state drives) offer significantly
higher performance than traditional HDDs (hard disk drives).
A typical enterprise SSD provides random read bandwidth up
to 4.8 GB/s, and the throughput of NVMe-based SSDs scales
linearly with the number of SSDs used [11], [15]. GIDS [43]
uses 12 SSDs when training on the IGB [25] dataset. It only
achieves 15 GB/s SSD bandwidth. However, the examined
CPU-SSD bandwidth of using 12 SSDs can be up to 20 GB/s.

Applications such as storage-offloaded LLM training and
DLRM training present similar conclusions. For example,
the DLRM training system TorchRec [37] spends 75% of
each iteration time on the embedding access, which mainly
reads the embedding table from SSD with only the ~64%
SSD bandwidth utilization [2]. LLM training system Zero-
infinity [21], [46] spends more than 80% of time on the update
phase that mainly consists of SSD accesses with only ~70%
SSD bandwidth utilization [32].

In the following, we categorize existing GPU-powered sys-
tems into two types according to the devices for managing
SSDs and identify the concrete issues that prevent them from
fully exploiting SSD abilities.
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1/O stacks

A. GPU-Powered systems with CPU-Managed SSDs.

Many GPU-powered computing systems leverage CPUs to
manage SSDs, such as Ginex [44], MariusGNN [55], and
ZeRO-Infinity [46]: 1) For the control path, these systems use
libaio or POSIX I/O primitives pread and pwrite to
manage SSDs. In particular, the CPU sends the read/write
commands to SSDs, polls for completion information, and
notifies the GPU to continue the following computation. 2) For
the data path, these systems use CPU memory as an inter-
medium between GPU memory and SSDs. In particular, these
systems only support transferring data between SSDs and CPU
memory and then use cudaMemcpy to transfer data between
CPU memory and GPU memory.

The above systems experience two severe issues that prevent

the system from fully exploiting SSD performance.
Issue 1: I/O Stack Overhead Due to Heavy OS Kernel.
Current CPU-managed systems adopt I/O stacks that require
OS kernel functions to perform I/O, such as POSIX 1/O,
libaio, and io_uring. We found that these I/O stacks
incur heavy overhead for GPU-SSD transfer. To show this,
we measure the maximum throughput of various I/O stacks,
including POSIX I/O, 1ibaio, io_uring in interrupt mode
(io_uring int) and io_uring in polling mode (io_uring poll)
when manipulating a single Intel P5510 SSD. Figure 2 shows
the random read and write throughput with the 4KB access
granularity, where the dashed line indicates the maximum
I/O throughput the SSD provides. The result shows that all
these software I/O stacks’ performance is far below SSD’s
throughput, indicating the severe overhead.

The reason for the overhead is due to heavy OS kernel
processing. In the kernel mode, they all need the logical
block address retrieval, io_map, and Block I/O (the OS I/O
abstraction) to handle a single request. In the following, we
take the most commonly used pread primitive from POSIX
1/0O as an example, while POSIX pwrite and other I/O stacks
are alike to pread. We divide the I/O procedure into four
layers, namely User, file system, I/O mapping, and Block
I/0 (the OS I/O abstraction), and describe concrete the 1I/O
procedure and the layer that handles each step:

e User: The GPU calculates the file’s data address and trans-
fers it to the CPU.
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Fig. 3: Read/write I/O time breakdown of software I/O stacks

User: The CPU application issues I/O requests through
pread calls, with the parameter file descriptor, offset, and
the destination buffer. Each pread call reads a sequential
chunk in the file.

File system: The file system retrieves the page’s logical
block address (LBA) mapped to the file request according
to the file ID and the offset.

/O mapping: The /O mapping module calls I/O map-
related functions to pin kernel pages and add them to the
Block I/0.

Block I/O: The block I/O module assigns the requests to
SSD’s request queue and communicates with SSDs for I/O
transaction notification.

I/O mapping: Upon the SSD I/O completion, the data has
been transferred to the CPU memory by SSDs, and the CPU
unpins the pinned kernel pages. The pread procedure is
completed, and the CPU exits to user mode. After that, the
CPU transfers data to the GPU.

To illustrate the OS kernel overhead, we break down the
I/O procedure into time spent in the four layers. We evaluate
on both 4KB random read and random write workloads, and
via different kernel I/O stacks including POSIX I/O, 1ibaio,
io_uring in interrupt mode (io_uring int) and io_uring
in polling mode (io_uring poll). Figure 3 shows the I/O time
breakdown. We observe that significant amount of time is spent
on the io_map and logical block address retrieval procedure
(more than 34%). According to the SSD characteristics, the
I/O stack should issue many NVMe commands concurrently
to maximize the SSD’s throughput. However, too much time
spent on the file system and I/O mapping layers limits the
number of concurrent NVMe commands sent to SSDs. In
contrast, the smaller fraction of time spent in the two layers
results in more throughput.

Opportunity for Improvement. Since I/O spends a large
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fraction of time on end-to-end performance, reducing the CPU
OS kernel software overheads is essential. We observe that
overhead caused by the file system and I/O mapping layers
can be eliminated. The underlying reason that these I/O stacks
need to map and unmap the buffer is that these management
handle requests one by one. They don’t know the total request
size ahead of time, so they can’t map once in a single batching
access. Besides, traditional file systems like EXT4 require
logical block address retrieval design because the file is not
always mapped to continuous blocks. The file system must
look up the LBA from the file and offset.

In contrast, the SSD data access granularity in the scenario

of GPU-powered systems is often 512 B or 4 KB, and the
batch size is usually large. The file size is usually fixed or
varies regularly. As such, the LBA can be mapped using a
simpler method, such as direct mapping. Meanwhile, the total
batch number can be determined before the first request is
handled. As such, the buffer only needs to be mapped once
before batching access is made and only needs to be unmapped
after the whole batch accesses.
Issue 2: Redundant Memory Copy. Instead of directly
transferring data between SSDs and GPU memory, system
calls like pread can only take CPU memory addresses as
parameters. As such, these systems use CPU memory as an
inter-medium between GPU memory and SSDs. When the
access granularity is small, the cudaMemcpyAsync function
needs to be called multiple times. The smaller the access
granularity, the greater the impact on performance. A 4KB
granularity can only yield 1.3GB/s SSD bandwidth, which
is only 6% of PCle peak bandwidth. When we evaluate the
ANNS workload that mainly involves 4 KB SSD accesses,
cudaMemcpyAsync costs 78% of the total time. Such a large
proportion can not be overlapped by computation.

B. GPU-Powered Systems with GPU-Managed SSDs

In order to address the issues of OS kernel-managed SSDs,
recent works [45] intend to offload control and data planes
onto GPUs. BaM (Big Accelerator Memory) [45] is the state-
of-the-art GPU-initiated GPU-managed SSD management.
BaM allows GPU thread blocks to submit their read/write
commands to Submission Queues (SQs) to SSD using a
synchronous API and allows these GPU threads to poll on
the corresponding entry in Completion Queues (CQs) to be
aware of the completion. BaM enables GPUs to achieve high
throughput and fine-grained SSD-GPU accesses without CPU

2312

TABLE I: Architectural design comparison

Initialized by | Control plane Data plane
POSIX 1/0 CcPU CPU OS kemel | SSD-CPU memory
-GPU memory
BaM GPU GPU User SSD-GPU memory
1/0 queue
CAM GPU CPU User 1 55p-GPU memory
1/0 queue

involvement. However, it still has a severe issue that prevents
it from efficient I/O.

Issue 3: Serial Execution of Computation and I/O due
to Low GPU SM Utilization. BaM [45] offers an array-
based synchronous API (bam: : array) to access SSD, which
provides fine-grained, on-demand SSD access. However, this
user interface design comes at a performance cost in three
aspects: 1) Due to its synchronous interface, threads wait
for their competition after submitting I/O requests instead of
submitting other requests. 2) To fully exploit SSD bandwidth,
BaM needs to launch a large number of GPU thread blocks to
submit enough in-flight I/O requests and poll the completion.
3) SSD I/O incurs high latency, e.g., a random read latency of
15 microseconds and a random write latency of 82 microsec-
onds [49]. Thus, the thread idle period is long. As a result, a
large number of thread blocks in BaM are waiting idly.

Worse still, many application utilizes multiple SSDs to
enlarge the SSD capacity and improve the aggregated 1/O
bandwidth, and the problem becomes more severe with the
increase in SSD numbers. To illustrate this, Figure 4 shows
the A100 SM (Streaming Multiprocessor, computing unit of
a GPU) utilization to fully exploit the bandwidth of different
numbers of SSDs. When the number of SSDs exceeds five, the
BaM system engages nearly all available GPU streaming mul-
tiprocessors to initiate NVMe commands. This high utilization
for the I/O process results in substantial contention between
GPU computation and GPU-managed I/0. Consequently, the
I/0 and computation phases are executed serially, leading to
low GPU utilization for the computation process.

To validate that BaM failed to overlap I/O and computation,
we evaluated the relative execution time of I/O and compu-
tation in a real-world application. We profile each stage in
the GNN training execution of GIDS, as shown in Figure 1.
GIDS extracts node features based on the BaM’s high-level
interfaces. GIDS spends 40%-65 % of the overall training time
on I/O. The training phase accounts for a significant portion
of the execution time, ranging from 16% to 44% for each step.
In conclusion, BaM’s low GPU SM utilization fails to overlap
computation and 1I/O.

III. DESIGN OF CAM

To address the above issues, we propose CAM, a GPU-
initialized, CPU-managed system that efficiently offloads the
SSD management to CPU user space while providing a set of
APIs to keep programmability. Table I shows the architectural
design comparison of CAM, BaM, and POSIX I/0. We have
three design goals that motivate the design of CAM.

Goal 1: Minimum GPU SM Overhead for I/O Pro-
cessing. Minimum GPU SM utilization for I/O processing
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indicates that more GPU SMs can be used by computation
tasks and thus can directly reduce the task completion time.

Goal 2: Fully Utilizing SSDs’ Bandwidth and Scalability.
Our design must provide high scalability when managing
multiple SSDs, so as to meet the fast processing requirements
of the growing data volume.

Goal 3: Programming-Friendly Interfaces. Generally,
asynchronous APIs are thought to be able to provide a
better performance than synchronous APIs, however, an asyn-
chronous interface comes with low programmability. As such,
CAM intends to provide APIs as easy as synchronous APIs
to simplify programming without sacrificing performance.

To achieve the above goals, we propose CAM, an asyn-
chronous GPU-initiated, CPU-managed SSD management for
batching storage access. CAM consists of 1) a GPU-initiated,
CPU-managed SSD I/O stack and 2) a set of user-friendly
synchronous programming APIs.

A. GPU-Initiated, CPU-Managed SSD 1/0O Stack

CAM'’s I/O stack consists of new designs in both control
and data planes. Regarding the control plane, CAM proposes
1) a GPU-initiated asynchronous I/O submission technology,
2) a CPU user-space SSD control offloading technology, and
3) a thread-level synchronization technology. Regarding the
data plane, CAM presents the direct data path between GPU
and SSD.

Overall I/O Procedure. Figure 5 shows how GPUs access
SSDs in CAM. Here, we take GPU reading data from an SSD
as an example, while the writing procedure is the same, except
for the data transfer direction. GPU first writes the LBA of the
data to be prefetched in the next step into CPU memory (@).
Meanwhile, the CPU thread keeps polling until it receives the
GPU signal that informs the new I/O request (). After issuing
the LBA, GPU initializes the asynchronous I/O submission by
sending the synchronization signal (€). Then, the CPU issues
the I/O request to SSDs and waits for SSDs to complete the
data transfer (@). Meanwhile, GPU polls for the complete
prefetch signal when there are no ongoing computation tasks
(@). Upon the CPU receiving the completion signal from
SSDs, it informs the GPU through the completion signal (@).
After the data is prefetched completely into GPU memory,
the GPU starts the computation (@). For the data path, data
is directly transferred between SSDs and GPU memory.
GPU-Initiated Asynchronous I/O Submission.

To achieve Goal 1, we aim to reduce GPU SM utilization
during SSD I/O. GPU computes the LBA of blocks to be
prefetched. It takes tens of microseconds between issuing
NVMe commands and waiting for the request to complete,
thus such a long time brings a significant challenge to fully
harness SM utilization. Therefore, we present an asynchronous
initial method to let GPU send LBA to CPU without con-
cerning the SSD control (e.g., creating SSD commands and
sending commands to SSDs).

As illustrated in Figure 5, GPU threads compute LBA and
write the LBA to CPU memory (@). This is an asynchronous
GPU initial block request without blocking. After each thread
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Fig. 5: CAM’s GPU-initiated, CPU-managed disk I/O stack
(I: GPU prefetch initialization; C: GPU computation; M: CPU
SSD management; P: SSD request processing)

completes the block initially, the GPU synchronizes with the
CPU (@). Following this initial process, the GPU can perform
computations using data prefetched in the last step. This
arrangement ensures that the GPU remains productive rather
than lying idle awaiting the completion of I/O tasks.

CPU User-Space SSD Control Offloading. To achieve
Goal 1, we should minimize the GPU SM utilization from
I/O processing. So, we offload the SSD management to the
CPU, achieving zero GPU streaming multiprocessor utilization
during SSD I/O. To achieve Goal 2, we have two tasks: 1)
to make an SSD achieve maximum throughput, and 2) to
achieve scalability when the SSD’s number increases. We have
adopted the lightweight Storage Performance Development Kit
(SPDK) to achieve higher SSD bandwidth. SPDK offers a set
of tools and libraries for writing high-performance, scalable,
user-mode storage applications. Users can simply write a
request into a predefined ring buffer and signal to the SSD
that there are pending requests. SPDK completely bypasses
the operating system kernel, including the block device layer,
file systems, and the page cache. With SPDK’s capabilities,
we have managed to avoid kernel I/O stacks and achieve high
bandwidth for SSD data reading. To achieve scalability, we use
the thread pool that allows each thread to control one or many
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TABLE II: CAM software API

API Run On Input Description
CAM init Host — Initialize SSD
CAM alloc Host size Allocate GPU memory
CAM_free Host pointer Free GPU memory
LBA array Prefetch data
prefetch Device req_num from SSDs to
dest addr pinned GPU memory
prefetch_synchronize Device — S&Z}gﬁggﬁigﬁﬁ:
LBA array Write back data
write_back Device req_num from pinned GPU
dest addr memory to SSDs
write_back_synchronize Device — Sy{lchronlze the %ast
write_back function

SSDs and dedicate a single NVMe queue pair to each NVMe
device. The NVMe driver takes no locks in the I/O path. So,
it scales linearly in terms of performance per thread, as long
as a queue pair and a CPU core are dedicated to each new
thread. To optimize CPU usage, CAM can dynamically adjust
the number of CPU cores for controlling SSD. If computation
takes a longer time, the total execution time is bounded by
computation because I/O time completely overlaps with com-
putation time. Less I/O throughput may also be no longer than
the computation time, allowing CAM to dynamically reduce
the CPU cores without affecting performance. CAM records
computation and I/O time. CAM records both computation and
I/O times. CAM adjusts the number of cores for CPU-based
SSD control according to the relative time of computation and
I/O in the last batch.

Direct Data Path between GPU and SSD. To achieve Goal 2,
we need to optimize the data path from storage to GPU, which
is essential for performance efficiency in massive storage
access. Our system tackles memory copy issues by establishing
a direct data path from the SSD to GPU, bypassing the
CPU and thus avoiding unnecessary memory staging at CPU
memory. To implement this, we need to get the physical
address of pinned GPU memory and then use the physical
address to make SSD commands.

Our system incorporates the GDRCopy technology to pin
GPU memory and get the physical address of the pinned
GPU memory. Specifically, these pinned memory buffers
can be mapped to the GPU memory through the function
nvidia_p2p_get_pages. After this procedure, we can
know the start physical address of this big chunk of memory,
and the address is continuous. So, we can calculate the
physical address from any virtual address in this chunk.

During the data transfer, our system issues NVMe Sub-
mission Queue Entries (SQEs) with the target addresses set
to specific physical locations within pinned GPU memory.
By directly targeting these pinned GPU memory’s physical
addresses when sending NVMe SQEs, the data path is directly
between GPU and SSDs.

B. Asyn. API with Synchronous Programming Experience

In order to achieve Goal 3, CAM needs to offer a series
of programming-friendly interfaces, while an asynchronous
interface can lack programmability. However, CAM must
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have an asynchronous interface to overlap computation and
communication while keeping high GPU utilization for com-
pute kernels. Therefore, CAM exposes synchronous-like high-
level application programming interfaces to guarantee high
programmability. We aim to pipeline the I/O and computation
phases as shown in Figure 5. Figure 6 shows how the steps
are logically pipelined for the GNN workload. The pipeline
programming procedure consists of a series of coordinated
steps to manage data flow with SSDs and processing tasks.
Firstly, node sampling enables us to identify which nodes
should be prefetched. Secondly, the data is retrieved from
SSDs and stored in a read buffer. Thirdly, users utilize this
data to perform computations for model training purposes.
These three stages overlap with each other, ensuring a seamless
and efficient process. If the read is dependent on the prior
compute, pipeline bubbles will appear. This is a limitation of
the algorithm. Our system can’t eliminate the pipeline bubbles
caused by data dependencies. In this situation where data have
dependencies, the compute and I/O are serial. Our system
achieves high I/O throughput and thus achieves short I/O time.
Table II shows our APIs. This section will describe the
design for CAM API in the order of initialization, GPU
memory management, and read-write-related functions, which
are similar to the order of use. Finally, we will show a
simplified example using CAM.
Initialization. CAM utilizes an CAM_init function to set
up the data structure and manage threads for CPU-GPU syn-
chronization and SSD management. CPU-GPU synchroniza-
tion involves four main memory regions and a polling CPU
thread. Regarding SSD management, the initialization function
focuses on setting up the SSD controllers and mapping GPU
memory regions, which we used for the CAM_alloc function.
GPU Memory Management. The CAM alloc and
CAM_free functions are used to manage the GPU mem-
ory. Users should use our alloc interface instead of the
cudaMalloc function to allocate the GPU memory. The
alloc function returns an address registered by GDRCopy. The
allocated buffer would be pinned and the SSDs can directly
access these buffers.
Read and Write related Functions. CAM does not require
persistent threads on the GPU. Instead, it requires a persistent
thread on the CPU. We realize the synchronization between
GPU and CPU by four pre-allocated memory regions. These
regions are designated for prefetching and are allocated in the
initialization function. (1) The first region contains an array of
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procedure __global__ kernel_function
for i in iterations do
prefetch_synchronize()

compute_buffer « read_buffer

read_buffer « temp_buffer

for blocks to be prefetched do
array[i] « (block_id)

end for

prefetch(array,num,read_buffer)

temp_buffer < compute_buffer
end for
: end procedure

(a) Kernel Funtion

: procedure host_function

CAM_init()

void *read_buffer,*compute_buffer
void *temp_buffer

read_buffer « CAM_alloc(BATCH_SIZE)
compute_buffer « CAM_alloc(BATCH_SIZE)
void *pl « read_buffer

void *p2 « compute_buffer

kernel function <<<>>>()
CAM_free(p1)

CAM_free(p2)

: end procedure

(b) Host Funtion

Fig. 7: Programming example powered by CAM

logical blocks that need to be processed. (2) The second region
stores arguments for the CPU to process a batch of requests.
(3) The third region is used by the CPU to be informed when
the GPU has finished writing all the block IDs; this region is
written exclusively by the GPU and read only by the CPU.
(4) The fourth region notifies the GPU when the CPU has
processed all requests; the CPU writes to this region but reads
from it only when requested by the GPU. The first three
regions are implemented using unified memory, while the last
region is located in GPU memory but has its copy stored in
CPU memory. The first three regions are only written by the
GPU and read by the CPU, whereas the last region is only
written by the CPU and read by the GPU.

Before the prefetch function is called, the GPU threads
fill the first region with logical block addresses. Within the
prefetch function, only the leading thread writes the nec-
essary arguments for the CPU to process this batch of requests
into the second region. The leading thread also writes a signal
to the third region, informing the CPU polling thread that the
GPU has completed writing and is ready for the CPU to begin
processing 1/O requests. The prefetch function only needs
the leading thread to perform these actions, while other threads
need not do anything. In the prefetch_synchronize
function, all threads are blocked and wait for the leading thread
to check if the fourth region has been written. This region
will be written to by the CPU polling thread once it has fully
processed all requests. Regarding the write-related functions,
write_back and write_back_synchronize operate
similarly to the read functions.
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Figure 7 demonstrates a simplified example using CAM to
write an application that overlaps prefetching and computation
through a structured, three-step process. The first step invokes
the prefetch_synchronize function to ensure complete
data fetching (Line 3). The second step entails preloading
logical block addresses of SSDs’ blocks to be prefetched
and calling the prefetch function (Lines 7-10). The core
computational work is carried out during the third step. In the
host function, users only need to initialize the initialize
function once (Line 2 in the host function). Users alloc and
free buffers in GPU memory using alloc and free.

We observe that the user experience of sequentially reading
and computing mirrors the familiar synchronous programming
model. Essentially, CAM offers the programmer a natural
workflow where reading is synchronized before data retrieval.
This implicitly aligns with conventional programming prac-
tices, offering ease of use and reduced cognitive load.

C. Discussion

CAM has three limitations. Firstly, CAM requires SSDs
to operate without a pre-existing filesystem. Any filesystem
must be removed before CAM deployment, and concurrent
access to the same data blocks by multiple processes risks data
consistency issues. Secondly, the current prototype restricts
data consumption capabilities to a single GPU configuration.
Thirdly, CAM’s architecture requires a linear scaling of CPU
core allocation relative to the number of SSDs to fully uti-
lize their aggregate bandwidth. This scalability model risks
resource contention when CAM operates alongside concurrent
applications that require almost all CPU cores.

IV. EVALUATION

Our evaluations aim to answer the following questions:

o What are the performance characteristics of CAM com-
pared with existing CPU- and GPU-managed approaches
(§IV-B)?

What is the end-to-end performance in real world appli-
cations of CAM compared to baseline solutions (§IV-C,
8IV-D, and §IV-E)?

How user-friendly is the CAM API for programming
purposes (§IV-F)?

Does the user-friendly APIs sacrifice performance?
(§IV-G)?

What is the performance penalty of handling multiple
NVMes with a single CPU thread (§IV-H)?

How much is the CPU overhead for CAM? (§IV-I)?
How does CAM compare with optimized SPDK (with
overlapping) (§IV-J)?

A. Experimental Setting

Hardware Testbed. Table III summarizes the hardware and
software configurations of our evaluation platform.

Workloads. In this section, we first conduct micro-
benchmarks to evaluate the performance of CAM and different
I/O stacks, then benchmark the end-to-end performance of
CAM on three real-world workloads, namely GNN training,
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TABLE III: Experimental platform
Configuration Specification
CPU Intel(R) Xeon(R) Gold 5320 CPU
(2 x 52 threads) @ 2.20GHz
CPU Memory 768 GB
GPU 80GB-PClIe-A100
SSD 12 x 3.84TB Intel P5510
PCle Gen 4 x16
Ubuntu 22.04 LTS,
S/W NVIDIA Driver 550.54
CUDA 11.4 DGL 0.10
Pytorch 1.13.0

TABLE IV: Real-world dataset used for evaluating CAM

Dataset Paper100M IGB-full
Nodes Num 111,059,956 269,364,174
Edges Num 1,615,685,872 | 3,995,777,033

Feature Dimension 128 1024
Feature Size 56 GB 1.1 TB

merge sort, and general matrix multiplication (GEMM). We
will describe the concrete workload and baseline settings in
their individual subsections.

B. I/0 Stack Microbenmarks

We first present the performance of CAM in comparison
with (1) BaM, (2) POSIX I/O, and (3) SPDK. CAM manages
each SSD using one CPU thread. We evaluate the performance
of BaM using 262144 CUDA threads, a CUDA block size of
64, a queue depth of 1024, and the number of queues per
controller of 128. We evaluate the performance of POSIX
I/O with O_DIRECT. To measure the scalability of this SSD
management, we create a widely adopted method of RAID 0
array to support multiple SSDs because POSIX 1/O doesn’t
support varying SSD numbers. The goal is to examine the
achieved disk I/O throughput. We examine the achieved I/O
throughput on our platform with Intel P5510 SSDs [49] in
different SSD numbers and access granularity. From Figure 8,
we make 3 major observations.

Firstly, Figure 8a shows CAM achieves similar read
throughput to that of SPDK and BaM. All three systems
outperform POSIX I/O because they can bypass the overhead
of the OS kernel. The measured peak PCle bandwidth (21

Parameter Setting
GNN Task Node classification
Sampling Method 2-hop random neighbor sampling
Sampling Fan-outs 25, 10
Hidden Layer Dimension 128
Batch Size 8000

TABLE V: Configuration Details in the GNN Experiment

GBY/s) is lower than the theoretical value (32 GB/s) due to 1)
PCle header and control signal overhead and 2) PCle traffic
contention between multiple SSDs.

Secondly, the write I/O throughput is slower than the read
throughput for all the measured SSD managements. This is
because SSD itself has higher read throughput than write.

Thirdly, our findings also show that the I/O throughput
increases with increases in access size in all workloads using
12 SSDs, as shown in Figures 8b and 8d. The throughput
increase is facilitated by the NVMe protocol’s efficiency,
where more data are retrieved from the SSDs using a single
Submission Queue Entry (SQE). This has a lower overhead in
the flash translation layer [15].

In conclusion, CAM performs higher I/O throughput POSIX
I/O and has similar performance to SPDK and BaM. When
configured with 12 SSDs and an access granularity of 4096,
CAM is capable of achieving 20GB/s throughput. Addition-
ally, as CAM employs CPU resources exclusively to orches-
trate the SSDs, it does not engage any GPU SMs. Con-
sequently, during the computation phase, all available GPU
SMs can be dedicated to computational tasks without any
reservation or hindrance.

C. Comparison of GNN Training Epoch Time

We compare CAM with the state-of-the-art out-of-core
GNN training systems, GIDS [43], regarding the GNN training
epoch time. We run three GNN models (GCN [26], GAT [53],
and GRAPHSAGE [16]). Each model is tested in two datasets
(Paper100M and IGB-Full). The node number, edge number,
and feature dimension of Paper100M and IGB-Full are shown
in Table IV. We use 12 SSDs to store the datasets. Neither
GIDS nor our code uses the CPU memory cache. The config-
uration details in the GNN experiment are shown in Table V.
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Figure 9 shows the results. We make 3 observations.
Firstly, our approach has consistently outperformed state-of-
the-art implementations across various models and datasets.
The reason is that the I/O overlaps with computation, and
thus shortens I/O time, because CAM can achieve higher
throughput than BaM. Secondly, with the Paper100M dataset,
our solution can achieve greater speed in the GAT model than
GCN and GRAPHSAGE. This is because I/O time is slightly
longer than the computation time. We find that the GAT
involves the most intensive computations when evaluating
different models. Due to this characteristicc CAM can overlap
more time with the GAT model over others, such as GCN
and GraphSAGE, which have lower computational demands.
Thirdly, we have observed that the CAM achieves a greater
speed-up on the IGB dataset than the Paper100M dataset. This
is primarily because the I/O operations consume more time
on the IGB dataset than the Paperl00M dataset. For the IGB
dataset, the I/O time is slightly longer than the computation
time. In the ideal situation, if the I/O and computation parts
fully overlap, the total time is I/O bound. CAM can take
advantage of the available SSD throughput better than BaM.

In summary, CAM enables the overlap of SSD I/O and
computation to achieve better performance in out-of-core
GNN training applications compared to state-of-the-art BaM-
powered out-of-core GNN training system GIDS.

D. Comparison of Sort Performance

We examine the sort time of the system based on CAM
compared with the sort baseline, which is an essential database
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operation that is suitable to be executed in GPUs [7], [24].

We implement a sort algorithm based on the NVIDIA
ModernGPU library [4]. The modern GPU library is a high-
performance library. We compare CAM against SPDK and
POSIX I/O. Our solution is structured into two distinct phases
to optimize efficiency. In the initial phase, we leverage the
advanced sorting capabilities of the ModernGPU library to me-
thodically combine data blocks, each containing a substantial
volume of 1 billion int32 entries. Following this preliminary
step, we embark on the second phase, which involves the
pairwise merging of these pre-sorted blocks in a systematic
fashion until all data entries are fully organized in a sequential
manner.

Figure 10a shows the mergesort time comparison of CAM
and baselines on the mergesort workload. CAM outperforms
POSIX I/O and achieves a similar execution time to SPDK.
CAM performs better than POSIX I/O because CAM can
achieve higher I/O throughput. CAM and SPDK achieve
similar execution times because 1) they can achieve similar I/O
throughput in this application, and 2) they overlap computation
and /0.

E. Comparison of GEMM Performance

We examine the General Matrix-matrix Multiplication
(GEMM) performance of systems based on CAM, BaM,
NVIDIA GPUDirect Storage (GDS) [40], and SPDK. GEMM
is the core computational task of most deep learning models
in training and inference. Accelerating GEMM has become a
major goal of hardware accelerator design. Since three huge
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TABLE VI: Lines of code in real-world applications

Lines of Code Workloads
GNN Training | Sort | GEMM
SSD Management
POSIX 1/0 / 644 /
GDS / / 158
BaM 65 / 165
CAM 66 510 130
20 300
K3 @ B CAM Sync
815 D00 || BCAM Async
310 SPDK E BSPDK
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(a) Random Read (b) Sort Application
Fig. 11: Throughput and execution time comparison of CAM

and other asynchronous APIs

matrices cannot fit into GPU memory entirely, we need to
divide these matrices into smaller blocks.

Figures 10b and 10c show that our system can be used
to accelerate GEMM compared to BAM and GDS solutions.
GDS demonstrates slower throughput than BaM and CAM
because GDS relies on a complex file system to deal with the
EXT4 File System, NVFS Management, and CUDA library-
related tasks. These I/O unrelated operations account for 70%
of the total processing time. The substantial time spent on
the file system and I/O mapping layers limits the number
of concurrent NVMe commands that can be sent to SSDs,
resulting in lower performance. For example, GDS achieves
a throughput of only 0.8 GB/s with 12 SSDs, whereas CAM
can attain nearly 20 GB/s. CAM outperforms BaM because
CAM can overlap I/O with computation.

From the above three applications, we conclude that CAM
has wide applicability and good performance.

F. Programming-Friendly APIs

We validate the programmability of our APIs by comparing
the lines of the code we use with their baselines, as shown
in Table VI. In the GNN training workload, we compare the
code lines of the SSD-related I/O stack and the training one-
step function, which are related to SSD management. CAM
needs slightly longer lines of code than that of BaM, which
relies on a synchronous APIL In the context of the mergesort
workload, the central processing loop of the CAM implemen-
tation comprises just 510 lines of code, compared to the 644
lines of the traditional version. Within the GEMM workload,
the core loop of the CAM implementation is executed in 130
lines of code, showing a reduction of around 30 lines of code
compared to the BaM and GDS solutions.

Irrespective of the algorithmic complexity, each implemen-
tation is streamlined, requiring fewer lines of code than tradi-
tional approaches or similar code lines than the synchronous
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code. CAM empowers developers to remain data-centric, min-
imizing the need to manage intricate asynchronous operations.
CAM effectively meets Goal 3 of enhancing programmability
without sacrificing efficiency, offering a more accessible and
less labor-intensive coding experience.

G. Comparison with Asynchronous APIs

The main goal of the synchronous APIs is to allow users
(regardless of their skill level) to write application code easily
without sacrificing performance.

We run a sort application that sorts billions of integer
elements in SSDs. We implement a version that adopts SPDK
asynchronous APIs, a version with raw asynchronous CAM
APIs (CAM-Async), and a version with our carefully designed
synchronous APIs (CAM-Sync). For all three implementa-
tions, we use the same configurations. We let them use
the same number of CPU threads. Figure 1la shows the
achieved read throughput with different numbers of SSDs,
and Figure 11b shows the execution time on datasets with
different sizes. We observe that CAM-Sync can achieve nearly
the same performance as CAM-Async/SPDK, indicating that
our synchronous APIs would not harm performance while
preserving programmability.

H. Effect of Handling Multiple NVMes with one CPU thread

To show the performance penalty of handling multiple
NVMes with one CPU thread, we test the achieved random
read and random write I/O throughput with different numbers
of CPU threads using 12 SSDs.

A polling thread is used in each implementation and is not
counted. We change the number of managed SSDs for each
thread and measure the achieved throughput with the different
number of threads. Figure 12 shows the result of CAM’s I/O
throughput when using different numbers of cores to control
12 SSDs at random read and random write workloads. We
observe that when using a thread to control 2 SSDs, the
I/O throughput is similar to that of one thread managing 1
SSD. When a single thread controls more than two SSDs, the
performance begins to decline. The I/O throughput using one
thread to control 4 SSDs is 75% of the throughput using one
thread to control one SSD.

In conclusion, CAM allows a single thread to control two
SSDs without performance degradation. However, 4 SSDs per
thread could incur a 25% throughput degradation. In a cloud
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environment with N SSDs, users should guarantee that at
least N/2 threads could be used to manage SSDs to avoid
performance degradation.

1. Cost of CPU Processing

We test the cost of CPU processing SSD, in terms of cycles
and instructions of the CPU to process each request. We
compare the performance of CAM with SPDK and libaio. It’s
important to note that our experiment does not include BaM,
as it utilizes GPU processing for SSDs, making comparisons
with CPU instructions and cycles irrelevant. The results are
shown in Figure 13.

We have four key observations. Firstly, CAM and SPDK
use fewer instructions than 1ibaio because CAM and SPDK
bypass the OS kernel and avoid complex OS-related tasks,
which results in a reduction in the number of executed instruc-
tions. Secondly, CAM and SPDK consume fewer CPU cycles
compared to libaio. CAM’s efficiency stems from having fewer
processing instructions and achieving higher I/O throughput.
Thirdly, CAM and SPDK require fewer instructions and cycles
for random read workloads than for random write workloads
because random read operations can utilize more bandwidth
than random write operations. Fourthly, when comparing ran-
dom write workloads, CAM and SPDK incur slightly fewer
instructions but significantly fewer cycles than libaio. The
substantial reduction in cycles arises from the much higher
SSD throughput achieved by CAM and SPDK. The reason
they only save a few instructions is that they are polling-based;
they continuously check for SSD completion information.
This polling method has a high instructions per cycle (IPC)
ratio, resulting in significantly reduced cycles. In contrast,
libaio is interrupt-based and does not require polling for SSD
completion information. In conclusion, CAM costs less CPU
resources than libaio and achieves a similar cost to SPDK.

J. Discussion on SPDK

Relying on SPDK to overlap kernel invocations is effective
only when 1) CPU memory bandwidth is sufficient and 2) the
access granularity is large enough. If any of these conditions
are not fulfilled, Performance degradation will occur. In the
following, we show the memory bandwidth limitation and
access granularity limitation when using SPDK.

Memory Bandwidth Limitation. When the GPU reads from
an SSD, the SSD data is first written to CPU memory and
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then copied from CPU memory to GPU memory. Similarly,
when a GPU writes to an SSD, the process is analogous.
Reading from SSDs consumes two times the CPU memory
bandwidth, while writing to SSDs also consumes two times
the CPU memory bandwidth. Saturating a single PCle 4.0x16
GPU’s read/write SSD throughput (21 GB/s) would consume
nearly 42 GB/s CPU memory bandwidth. As such, the CPU
memory bandwidth would easily become a system bottleneck
if other co-located applications also heavily consume CPU
memory bandwidth or multiple GPUs are reading/writing
SSDs concurrently. To demonstrate this, we calculate the CPU
memory bandwidth during data transfer and test the throughput
change when the memory bandwidth is insufficient.

We first measure the real-time CPU memory bandwidth
consumption when the GPU is reading/writing (Random read-
/Random write) SSDs using CAM and SPDK. Figure 14 shows
that the CPU memory bandwidth of SPDK is nearly twice
the bandwidth of SSDs. The CAM’s CPU memory bandwidth
increases at a much slower pace. CAM requires much less
CPU memory bandwidth than SPDK to fill the bandwidth.
To further demonstrate the potential effect of the insufficient
CPU memory bandwidth, we measure the achieved GPU-SSD
throughput with 2 and 16 CPU memory channels (labeled ‘“2c”
and “16c”, respectively). We use random read and random
write workloads. Figure 15 shows that SPDK’s throughput
decreases when the CPU memory bandwidth is limited at both
workloads, while CAM is not affected by the limited CPU
memory bandwidth.

Access Granularity Limitation. SPDK’s additional memory
copy would call a cudaMemcpyAsync function and thus
increase the I/O latency. When the destination buffer is not
continuous, the cudaMemcpyAsync function needs to be
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called multiple times. The extra overhead and increased I/O
latency would require a larger access granularity to hide them
by overlapping.

To demonstrate this, we measure the I/O throughput with the
different access granularities when the destination buffer is not
continuous. Figure 16 shows that when the destination buffer
is not continuous, the application with an access granularity
of less than 128MB will decrease performance significantly.
When accessing is in 4KB granularity, it can only achieve
1.3GB/s bandwidth, which is 93.5% lower than the CAM’s
achieved bandwidth.

In conclusion, SPDK with overlapping can only achieve
ideal performance when the CPU memory bandwidth is suf-
ficient, and when the application has a relatively large access
SSD granularity.

V. RELATED WORK

To our knowledge, CAM is the first asynchronous SSD
management for batching storage access that offloads the SSD
controller from GPU to CPU. In the following, we contrast
CAM and existing works in the following aspects: GPU-
managed direct SSD access, CPU-managed SSD access, and
massive storage access applications.

GPU-Managed Direct SSD Access. In the realm of database
query optimization, HippogriffDB [31] has effectively har-
nessed the power of direct GPU-SSD transfers. On a similar
front, Morpheus [52] and GPUKYV [23] have refined data seri-
alization and the performance of key-value store applications
through the use of in-storage computation. BaM [45] has in-
troduced a synchronous model for GPU-initiated SSD access.
Distinctively, CAM offloads the SSD management to CPU user
space. This approach unlocks the GPU resource, significantly
boosting the efficiency of GNN training processes.

CPU-Managed SSD Access. Recent advancements in tech-
nologies such as NVMMU [60] have enabled GPUs to directly
transfer data to and from SSDs using the GPUDirect [39]
technology. But it still requires a kernel/user mode switch. Our
system does not need any mode switch. More importantly, this
work is latency-oriented, and our work is throughput-oriented.
Recent works [3], [15], [27], [30], [36], [54], [57] study the
characteristics of SSDs and modern hardware and guide the
design for data management tasks. Jun et al. [22] explain why
the content of a file is not always mapped to continuous blocks.
Didona et al. [11] presents the first systematic study and
comparison of storage APIs on top of raw block devices. In
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contrast, our Asynchronous API, CAM, can help these systems
tackle SSD I/O problems by overlapping the I/O process with
computation while providing easy programming.

Massive Storage Access Applications. For DLRM train-
ing, RecTS [9] implements vector-based log-structured man-
agement to increase the cache hit ratio. RecSSD [58] is
the first NDP-based SSD system specifically designed for
recommendation inference. It assigns embedding vectors to
specific SSD pages. This can increase SSD throughput due to
SSD’s character. Muhammad et al. [1] optimize the caching
of frequently accessed embeddings. Existing practices have
optimized several data management tasks, such as database
buffer management [5], [8], [10], [12]-[14], [17], [18], [20],
[28], [29], [31], [34], [41], [42], [47], [64] and information
retrieval [56]. Marius Graph Embeddings [38] offloads node
embedding parameters into SSDs and uses traditional CPU
management. LuWu [51] optimizes parameter reading by
assigning each layer its data buffers and retrieving parameters
directly from the SSDs to the parameter buffer. Ratel [32] in-
troduces SSD-CPU communication as an additional optimiza-
tion dimension. Two notable examples of out-of-core GNN
training systems are Ginex [44] and MariusGNN [55]. These
platforms rely on the CPU to manage disk I/O operations.
BaM-based GIDS [43] represents an attempt at creating a
GPU-managed disk-based system that still struggles with the
serial execution of node feature extraction and training due to
BaM'’s synchronous interface. Their primary approach focuses
on utilizing CPU memory to cache data to reduce the data
amount to be accessed in the SSD without considering the SSD
access process. In contrast, CAM can accelerate the procedure
of SSD data access and help applications make I/O overlap
with computation.

VI. CONCLUSION

In this work, we propose CAM, an asynchronous GPU-

initialized, CPU-managed SSD management for batching stor-
age access. CAM provides a series of APIs for data transfer
between GPU and SSDs, minimizing GPU streaming multipro-
cessor utilization during I/O processes, enabling simultaneous
maximization of GPU interface bandwidth, and overlapping
computation and I/O operations. Our strategy involves a GPU-
issued, CPU-managed SSD management approach, along with
asynchronous APIs that provide a synchronous programming
experience. Experimental results show that our system can
fully utilize the bandwidth of the GPU interface. In the end-
to-end experiments, CAM can perform GNN models train-
ing, mergesort, and GEMM up to 1.84x, 1.5x, and 1.84x
faster, compared to the existing state-of-the-art GPU systems,
while keeping high programmability. CAM is available at
https://github.com/RC4AML/CAM.
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