
Boyi: A Systematic Framework for Automatically Deciding the
Right Execution Model of OpenCL Applications on FPGAs

Jiantong Jiang1⋆ Zeke Wang2⋆ Xue Liu1∗ Juan Gómez-Luna2
Nan Guan3 Qingxu Deng1 Wei Zhang4 Onur Mutlu2

1 Department of Computer Science and Engineering, Northeastern University, China
2 ETH Zürich, Switzerland

3 Department of Computing, Hong Kong Polytechnic University, Hong Kong
4 Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong

ABSTRACT
FPGA vendors provide OpenCL software development kits for eas-
ier programmability, with the goal of replacing the time-consuming
and error-prone register-transfer level (RTL) programming. Many
studies explore optimization methods (e.g., loop unrolling, local
memory) to accelerate OpenCL programs running on FPGAs. These
programs typically follow the default OpenCL execution model,
where a kernel deploys multiple work-items arranged into work-
groups. However, the default execution model is not always a good
fit for an application mapped to the FPGA architecture, which is
very different from the multithreaded architecture of GPUs, for
which OpenCL was originally designed.

In this work, we identify three other execution models that
can better utilize the FPGA resources for the OpenCL applications
that do not fit well into the default execution model. These three
execution models are based on two OpenCL features devised for
FPGA programming (namely, single work-item kernel and OpenCL
channel). We observe that the selection of the right execution model
determines the performance upper bound of a particular application,
which can vary by two orders magnitude between the most suitable
execution model and the most unsuitable one. However, there is
no way to select the most suitable execution model other than
empirically exploring the optimization space for the four of them,
which can be prohibitive.

To help FPGA programmers identify the right execution model,
we propose Boyi, a systematic framework that makes automatic
decisions by analyzing OpenCL programming patterns in an ap-
plication. After finding the right execution model with the help of
Boyi, programmers can apply other conventional optimizations to
reach the performance upper bound. Our experimental evaluation
shows that Boyi can 1) accurately determine the right execution
model, and 2) greatly reduce the exploration space of conventional
optimization methods.
KEYWORDS
FPGA; OpenCL; Execution Model; Programmability

⋆: Equal contribution. *: Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’20, February 23–25, 2020, Seaside, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7099-8/20/02. . . $15.00
https://doi.org/10.1145/3373087.3375313

ACM Reference Format:
Jiantong Jiang, Zeke Wang, Xue Liu, Juan Gómez-Luna, Nan Guan, Qingxu
Deng, Wei Zhang, Onur Mutlu. 2020. Boyi: A Systematic Framework for Au-
tomatically Deciding the Right Execution Model of OpenCL Applications on
FPGAs. In 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA’20), February 23–25, 2020, Seaside, CA, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3373087.3375313

1 INTRODUCTION
Bulk Synchronous Parallel (BSP) programming languages (e.g.,
OpenCL [26], CUDA [36]) are successfully employed to program
compute devices that feature a large number of cores, such as GPUs.
Since FPGAs are inherently parallel, OpenCL has naturally been pro-
posed for FPGA programming, in an attempt to ease effort spent on
programming hardware. OpenCL can deliver increased programma-
bility and lower the learning curve for programming hardware, by
abstracting away the complexity of direct hardware programming,
i.e., register-transfer level (RTL) programming. Intel FPGA SDK [21]
and Xilinx SDAccel [32] both support OpenCL. Several research
proposals [12, 23, 25, 37, 41, 44, 46, 47, 50, 52, 54, 59, 61, 63] explore
optimizations for conventional OpenCL kernels on FPGAs, where
the conventional OpenCL kernel is the NDRange kernel [21], which
employs multiple work-items (i.e., threads in OpenCL terminology)
grouped into work-groups to express parallelism. The NDRange
kernel is the default execution model in OpenCL. However, the
performance of conventional NDRange kernels running on FPGAs
is far from optimal in many cases, because this execution model
cannot always represent the FPGA architecture in an efficient way.

In this work, we identify four different execution models for
OpenCL on FPGA, which show different levels of suitability for
different workloads mapped to the FPGA architecture:
NDRange (NDR). This is the default OpenCL execution model,
widely employed in GPU programming. Different kernels in the
same application communicate via the off-chip global memory.
Single Work-item (SWI). Unlike NDR, this execution model uses
one single work-item, and relies on the offline compiler to extract
pipeline parallelism at compile time. Same as NDR, different kernels
communicate with each other via the global memory.
NDRange with Direct Kernel-to-kernel Communication
(NDR+C). In this execution model, communication between two
kernels can be directly done via a FIFO called the OpenCL chan-
nel [21], which reduces the off-chip memory traffic.
Single Work-item with Direct Kernel-to-kernel Communi-
cation (SWI+C). This execution model combines the SWI execu-
tion model with direct kernel-to-kernel communication via OpenCL
channels.

Our key observation is that the selection of the execution
model has a first-order effect on the performance upper bound of

https://doi.org/10.1145/3373087.3375313
https://doi.org/10.1145/3373087.3375313

an application running on an FPGA. Figure 1 shows the speedups
obtained with the most suitable and the most unsuitable execu-
tion models for eight applications over the baseline, which em-
ploys NDR.1 We observe that 1) the average performance differ-
ence between the most suitable and the most unsuitable execution
model is 200.2×, and 2) the most suitable execution model dif-
fers between different applications (not shown in Figure 1). Thus,
finding the right execution model for an application is clearly im-
portant. The first observation is inline with previous works that
compare the default NDR execution model to the other execution
models [2, 6, 24, 34, 49, 53, 56, 67].

73.8

21.0 32.4
17.1

2.7

147.7

837.1

34.7

4.6

1.0
2.7 1.5

0.3

31.4

6.6

0.025 0.01

0.1

1

10

100

1000

RSCD TQH HSTO SC CEDD KM MM MS

Sp
ee

d
u

p
 o

ve
r

th
e

G
P

U
 b

as
e

lin
e

Most suitable execution model

Most unsuitable execution model

Figure 1: Speedup of the most suitable and the most unsuit-
able execution model over the baseline implementation for
eight applications (see Section 6 for our methodology).

Unfortunately, programmers do not have an easy way to deter-
mine a priori what is the most suitable execution model for a partic-
ular application. Implementing four versions of an application based
on the four execution models is challenging, time-consuming, and
error-prone. For example, efficiently implementing an application
with direct kernel-to-kernel communication requires a deep under-
standing of the FPGA architecture and design methodology [53]. In
general, for each execution model, we can apply multiple conven-
tional optimization methods with different configurations (e.g., loop
unrolling factors). Given that synthesizing a single configuration
takes a long time (e.g., a few hours), exploring the whole design
space is prohibitively expensive.

Our goal is to alleviate the burden on FPGA programmers by
systematically and automatically identifying the most suitable ex-
ecution model for a given application. To this end, we present
Boyi,2 a systematic framework that analyzes the characteristics of
an OpenCL application (typically, a baseline implementation for
GPUs) and determines the most suitable execution model on an
FPGA. Boyi operates in two steps. First, Boyi identifies three pat-
terns that are widely-used in OpenCL kernels for GPUs: 1) Atomic
Operation (AO), 2)Multi-Pass Scheme (MPS), and 3) Kernel-to-Kernel
Communication (KKC). Second, Boyi predicts the best-performing
OpenCL execution model based on the presence or absence of those
three OpenCL patterns. As a result, Boyi allows an OpenCL pro-
grammer to determine the most suitable execution model, without
requiring FPGA background or any effort on the part of the pro-
grammer.

Our experimental evaluations show Boyi’s effectiveness in 1)
accurately predicting the most suitable OpenCL execution model
for a given application, which determines the performance upper
1On top of each execution model, we apply conventional optimizations (e.g., loop
unrolling, local memory). We refer the reader to Section 6 for details about the baseline
and our experimental methodology.
2Boyi is a hero in Chinese mythology who assists Yu the Great to control the Great
Flood [1].

bound of the application on the FPGA, and 2) dramatically reducing
the size of the exploration space of conventional optimizations.
Boyi predicts accurately the most suitable execution model for
10 of 11 tested applications, and reduces the exploration space of
conventional optimizations by 3.4×. For example, for SC [13], the
number of optimization combinations decreases by a factor of 5.9,
after Boyi determines the right execution model. We believe that
Boyi can enable higher programmer productivity, as it eases the first
and most important step of the optimization process of OpenCL
programs, which is the selection of the most suitable execution
model. Our work is thus complementary to other studies that focus
on conventional optimizations [12, 23, 25, 37, 41, 44, 46, 47, 50, 52,
54, 59, 61, 63]. Boyi source code and the performance results of our
experiments are freely available at [22].

The main contributions of this paper are as follows:
• We identify four OpenCL execution models, which have different
levels of suitability for different workloads mapped to an FPGA.
We connect these four execution models to three typical OpenCL
patterns that are present in OpenCL kernels for GPUs.

• We present Boyi, a systematic framework that automatically
determines the most suitable execution model for a given applica-
tion, without requiring any effort from the OpenCL programmer.

• We evaluate the effectiveness of Boyi and show that Boyi 1)
chooses the right execution model, which determines the perfor-
mance upper bound that conventional optimizations can achieve,
for 10 of 11 tested applications, and 2) reduces the exploration
space of conventional optimizations by up to 5.9×.

2 BACKGROUND
In this section, we first provide an overview of the conventional
OpenCL execution model. Second, we describe two major conven-
tional optimizations for OpenCL kernels mapped to FPGAs. Third,
we present two new OpenCL features on FPGAs.
Conventional OpenCL Programming Model. Conceptually,
OpenCL [26] divides a problem into equal partitions, with the gran-
ularity of a work-item, which represents the basic unit of execution.
Work-items are organized into work-groups and multiple work-
groups compose a three-dimensional index space called NDRange.
The NDRange dimensions are defined in host code. The NDRange
kernel is the default OpenCL execution model on FPGAs.
Conventional Optimizations. Next, we describe two FPGA-
specific optimizations that are typically applied to the NDRange
kernel. We refer the reader to the related work [21, 54, 66] for other
conventional optimizations.
Multiple Compute Units (CUs). If the FPGA has enough hardware re-
sources, this optimization replicates the kernel pipeline to generate
multiple compute units, enabling more parallelism.
Loop Unrolling (LU). In a kernel pipeline with many loop iterations,
some loop iterations can be on the critical path due to load imbal-
ance. Unrolling the loop increases the pipeline throughput at the
expense of more hardware resources.
New OpenCL Features on FPGAs. Intel OpenCL SDK [21] in-
cludes two new features that can increase the performance upper
bound of OpenCL applications mapped to an FPGA.
Single Work-Item (SWI) Kernel. The SWI kernel follows a sequential
model like C programs. It deploys only one work-group with one
single work-item. In the SWI kernel, parallelism is implicit. The

2

OpenCL SDK extracts pipelined parallelism at compile time based
on dependency analyses. The SWI kernel resembles the traditional
deep-pipeline nature of an FPGA.
OpenCL Channel. This feature enables direct communication be-
tween two OpenCL kernels without accessing global memory. The
OpenCL channel implements FIFO buffers between the kernels,
thereby reducing memory traffic. The OpenCL channel resembles
direct on-chip communication on an FPGA.
3 OVERVIEW OF BOYI
The conventional NDRange kernel (Section 2) represents the default
OpenCL execution model. By leveraging the emerging OpenCL
features, we identify three more execution models on FPGA: SWI,
NDR+C, and SWI+C. As we observe the first-order influence of the
execution model on the performance upper bound of an OpenCL
application (see Figure 1), we aim for an automatic detection of the
most suitable execution model for any application.

We present Boyi, a systematic framework that assists OpenCL
programmers to determine the most suitable execution model for
an OpenCL application. Figure 2 depicts the different components
of Boyi. Boyi takes the source code of the OpenCL kernels and the
C/C++ host code as inputs, and outputs the most suitable execution
model for the target OpenCL application.

OpenCL Kernel
Source Code

MPS Recognition

KKC Recognition

AO Recognition

Direct
Prediction

Potential
Evolution

LLVM
IR

Host C/C++
Source Code

Most Suitable
Execution Model

Four Execution Models

OpenCL
Channel

SWI
NDR

SWI

NDR+C

SWI+CClang
Frontend

OpenCL Pattern Recognition Execution Model Prediction

Figure 2: Overview of Boyi.
Boyi consists of two main components: 1) the OpenCL pat-

tern recognition, and 2) the execution model prediction. First, the
OpenCL pattern recognition (Section 4) analyzes the input OpenCL
kernel and host codes and looks for the presence or absence of
three OpenCL patterns: AO, MPS and KKC. These three patterns
appear frequently in NDRange kernels. Boyi relies on the LLVM
framework [29] to perform code analysis, transformation, and op-
timization on the LLVM intermediate representation (IR) assem-
bly language. Second, the execution model prediction (Section 5)
determines the most suitable execution model. There is a direct
prediction and a potential evolution to SWI+C for SWI.
4 OPENCL PATTERN RECOGNITION
We present the first component of Boyi, OpenCL pattern recog-
nition. First, we discuss the properties of three common OpenCL
patterns. Second, we describe our LLVM-based OpenCL pattern
recognitionmechanism, which identifies the three OpenCL patterns
in the target OpenCL application.3

4.1 Three OpenCL Patterns
For each OpenCL pattern, we identify several issues when the
pattern is mapped to an FPGA, and discuss potential optimization
directions based on the four possible OpenCL execution models.
4.1.1 Atomic Operation (AO). NDRange kernels require the use of
atomic instructions to avoid data races, when multiple work-items
try to update the same memory location [14, 15, 39, 48]. Since the
3Boyi can be extended to recognize more OpenCL patterns. We leave this extension
for future work.

hardware for atomic instructions has greatly improved in recent
GPU generations (e.g., NVIDIA Pascal [35]), the AO pattern works
efficiently on GPUs [11]. As an example, we use the histogram
calculation in Listing 1. Each work-item (tid) updates one bin of
the shared hist atomically.

int tid = get_global_id (0);// global work -item
int d = data[tid]; //fetch the data from memory
int h_d = hash(d); // compute the hash index
atomic_add (&hist[h_d],1); // atomically add to hist

Listing 1: AO-based histogram calculation.
Issues on FPGAs. We identify three issues for the AO pattern on
FPGAs. First, implementing atomic operations on an FPGA is rela-
tively complex, as it requires a large amount of FPGA resources [21].
Second, if an OpenCL kernel contains the AO pattern, all memory
transactions (i.e., both atomic and non-atomic memory accesses)
have to enter the atomic module, which detects and resolves all
potential address conflicts among the in-flight memory transac-
tions. This increases the latency of all memory accesses, and also
potentially leads to lower memory bandwidth. Third, the clock fre-
quency of an OpenCL kernel implementation with the AO pattern
on FPGAs is slightly lower than that of an OpenCL kernel without
the AO pattern [21]. This leads to lower performance. Due to these
three issues, we conclude that the AO pattern is rarely a good fit
for FPGAs.
Potential on FPGAs. The SWI OpenCL execution model allows
us to avoid the AO pattern on FPGAs, without compromising pro-
grammability. Since the SWI kernel uses one single work-item, it
avoids any data races and skips the need for atomic instructions.
The SWI execution model on FPGAs exploits pipelined parallelism
(a good fit for FPGAs), not thread-level parallelism, which is com-
monplace on GPUs (but not a good fit for FPGAs). We can convert
the AO-based histogram calculation in Listing 1 into an SWI kernel,
which does not need atomic instructions, as shown in Listing 2.

for (t=0; t<size; t++) { //for loop instead of multiple work -items
int d = data[t]; //fetch the data from memory
int h_d = hash(d); // compute the hash index
hist[h_d] += 1; // accumulate into hist

}

Listing 2: SWI-based histogram calculation.
4.1.2 Kernel-to-Kernel Communication (KKC). The communica-
tion between producer kernels and consumer kernels in the default
OpenCL execution model has to use global memory. In particular,
the producer kernel writes intermediate data to global memory, and
the consumer kernel reads the data from global memory, as shown
in Figure 3a. The KKC pattern is suitable for GPUs, since their
multithreaded architecture can hide the latency of global memory
accesses.

Consumer
kernel

Producer
kernel

Global memory

FPGA

Consumer
kernel

Producer
kernel

Global memory

FPGA

(a)

Consumer
kernel

Producer
kernel

Global memory

FPGA

Consumer
kernel

Producer
kernel

Global memory

FPGA

(b)
Figure 3: Kernel-to-kernel communication without (a) and
with (b) OpenCL channels.
Issues on FPGAs. Since the memory bandwidth of FPGAs is
typically much smaller than that of GPUs, KKC via global memory
is usually not a good fit for FPGAs.

3

Potential on FPGAs. With OpenCL channels, a producer kernel
can directly send intermediate data to a consumer kernel at the
register level (i.e., FIFO queues), without using global memory, as
illustrated in Figure 3b. This approach has two main advantages.
First, it can eliminate a large amount of global memory accesses.
Second, producer and consumer kernels can execute concurrently,
if there are enough hardware resources. Thus, not only intra-kernel
parallelism (i.e., pipeline parallelism) but also inter-kernel paral-
lelism (i.e., concurrent kernel execution) can be exploited.
4.1.3 Multi-Pass Scheme (MPS). In the default OpenCL execution
model, the only way to communicate intermediate results across
different work-groups is via the global memory. To ensure mem-
ory consistency, this communication requires kernel termination,
which represents a global synchronization point. As a result, multi-
pass algorithms, where data is scanned (i.e., read from/written to
global memory) multiple times, are a common way of implement-
ing OpenCL applications. On GPUs, this multi-pass pattern works
efficiently, since GPUs contain many compute units or streaming
multiprocessors (SMs), which can runmanywork-groups in parallel,
thereby hiding the latency of global memory accesses. An example
of the multi-pass pattern is the parallel prefix sum [18]. Listing 3
shows a pseudocode of the MPS-based prefix sum as implemented
in OpenCL. This implementation requires three steps to compute
the prefix sum of input array in of size N and store the output in
array out. In step 1, B work-groups (WGs) execute concurrently.
Each WG b computes the prefix sum (kernel prefix_sum_wg) of its
own part of in, which starts at address &in[N*b/B] and contains
N/B input elements. Each WG stores its local sum into local_sum.
In step 2, one single WG computes the prefix sum local_sum and
stores it into pre_bsum. In step 3, each WG adds the corresponding
scalar value pre_bsum[b] to its part of out to produce the final
prefix sum.

//Step 1: Each WG b computes the prefix sum of its part of in
#pragma parallel in B work -groups
for (b = 0, b < B, b++)

local_sum[b] = prefix_sum_wg(out[N*b/B],in[N*b/B],N/B);

//Step 2: One WG computes the prefix sum on "local_sum"
prefix_sum_wg(pre_bsum , local_sum , B);

//Step 3: out[b*N/B] += pre_bsum[b]
#pragma parallel in B work -groups
for (b = 0, b < B, b++)

vec_add(out[N*b/B], out[N*b/B], pre_bsum[b], N/B);

Listing 3: MPS-based prefix sum.
Issues on FPGAs. MPS-based implementations require off-chip
global memory accesses (i.e., loading inputs and storing interme-
diate results) in each pass of the algorithm. On GPUs, MPS-based
implementations rely on a powerful memory subsystem that pro-
vides high global memory bandwidth. For example, an NVIDIA
Tesla P100 GPU achieves a global memory bandwidth of up to
732GB/s [35], and its SMs can leverage this bandwidth due to their
multithreaded architecture. However, the typical global memory
bandwidth in an FPGA board is much smaller (e.g., 18GB/s in the
Terasic DE5a-Net [45] that we use in our evaluation4). As a result,
MPS is usually not a desirable pattern on FPGAs.

4Some recent FPGA cards, e.g., the Xilinx Alveo U280 [60], feature high bandwidth
memory (HBM) with up to 460GB/s bandwidth. However, leveraging that bandwidth
is extremely challenging as it requires a very careful and time-consuming hardware
design effort.

Potential on FPGAs. The SWI execution model can implement
multiple-pass algorithms with a single-pass approach, as illustrated
in Listing 4. The single-pass approach reduces the global memory
traffic significantly, because it reads from in and writes to out only
once, not twice as the multi-pass algorithm.

out[0] = 0;
for (t=1; t<N; t++) //for loop instead of multiple work -items

out[t] = out[t-1] + in[t]; // prefix sum of element t

Listing 4: SWI-based prefix sum.

4.2 LLVM-based OpenCL Pattern Recognition
In this section, we describe Boyi’s LLVM-based OpenCL pattern
recognition mechanism, which identifies the presence or absence
of three OpenCL patterns (Section 4.1) without programmer in-
tervention. The pattern recognition mechanism consists of nine
built-in LLVM passes that analyze OpenCL kernels and host code
to automatically find the patterns.
4.2.1 AO Recognition. The recognition of the AO pattern is
straightforward, as each atomic instruction in an OpenCL kernel is
converted to an atomic LLVM IR instruction. Accordingly, we de-
velop an LLVM analysis pass called HasAO (see Figure 4(a)), based
on the llvm::ModulePass class [29], to find all AO instructions in
OpenCL kernels.

#Kernels >1?

#Kernels >1? #KKCTrue = 0

R1: NumKernels

R2: IsSameBuff

#R2Triplets > 0?

#Kernels

Y

N

#R2Triplets

#KKCTrue

Pass for host C/C++ analysis

Pass for OpenCL kernel analysis

Y

#MPSTrue = 0

#Kernels

Y

N

#R4Triplets

#MPSTrue = 0
N

Y

Buffs

#MPSTrue

R2BuffTriplets

#KKCTrue = 0
N

#R2Triplets

Y

R2BuffTriplets

#MPSTrue = 0
N

R4SeqTriplets

R1: NumOfKernels

R2: IsSameBuff

R2: IsRdWr

R2: IsRdWr

R3: IsSameMAP

R4: IsSequential

R5: VarBuffInHost

R5: BuffInKernel

#AOTrue

(c) MPS recognition

(b) KKC recognition

(a) AO recognition

#R2Triplets > 0?

#R4Triplets > 0?

HasAO

R5: VarInKernel

Vars, VarVals

Args, ArgVals

Figure 4: OpenCL pattern recognition: identifying three
OpenCL patterns using nine LLVM built-in analysis passes.
4.2.2 KKC Recognition. Figure 4(b) depicts the flowchart for KKC
recognition. An OpenCL application contains the KKC pattern
(i.e., #KKCTrue = 1), if the application code satisfies exactly three
requirements (R1, R2, and R3). We describe R1, R2, and R3 next.
R1: The OpenCL Application Has Two or More OpenCL Ker-
nels. The KKC pattern can only exist when the number of kernels
(#Kernels) of the OpenCL application is greater than one. Accord-
ingly, we develop an LLVM pass called NumKernels, based on the
llvm::ModulePass class, which obtains the value of #Kernels. If #Ker-
nels = 1, #KKCTrue = 0.
R2: A Consumer Kernel Reads from the Same Buffer Object
(in Global Memory) as a Producer Kernel Writes to. This re-
quirement of the KKC pattern establishes a data dependence be-
tween two kernels. This data dependence stems from two facts:

4

1) two kernels access the same buffer object in global memory,
and 2) one kernel (the producer) writes to this buffer object before
another kernel (the consumer) reads from the same buffer object.
Accordingly, we design two LLVM passes (IsSameBuff and IsRdWr)
that capture appropriate candidate buffer-kernel triplets (buffer, k1,
k2), which satisfy R2. k1 and k2 are the candidate producer kernel
and the candidate consumer kernel, respectively. The two LLVM
passes analyze both OpenCL kernels and host code. Next, we briefly
present the design details of these two passes.

The first LLVM pass, IsSameBuff, parses the clSetKernelArg func-
tions [26] in the host code to determine all references to each
buffer object in global memory. More precisely, this pass deter-
mines whether two kernels k1 and k2 access the same buffer.

The second LLVM pass, IsRdWr, examines the OpenCL kernel
codes to determine whether k1 writes data to buffer before k2 reads
data from the same buffer.

After these two passes, we obtain a list of candidate triplets
(R2BuffTriplets). The number of candidate triplets is #R2Triplets.
R3: The Producer and the Consumer Kernels Access the
Buffer Object with the Same Memory Access Pattern (MAP).
KKC exists if the candidate consumer kernel can directly consume
the data generated by the candidate producer kernel, which is only
possible when the two kernels have the same MAP to the common
buffer. The same MAP occurs when work-items with the same ID in
the two kernels access the same buffer elements in the same order.
If this happens, the communication between two kernels can be
done via an OpenCL channel, instead of via global memory. If not,
the two kernels have to communicate via global memory, which
implies that the first kernel needs to terminate before the second
kernel starts to guarantee memory consistency, i.e., the two kernels
have to run sequentially. To recognize whether the two kernels k1
and k2 of a candidate triplet from R2BuffTriplets have the same
MAP to the buffer object buffer, we develop an LLVM pass called
IsSameMAP.

IsSameMAP recognizes regular and irregular MAPs. To this end,
this pass checks 1) whether the address of a store instruction to
buffer in k1 is the same as the address of a load instruction from
buffer in k2, and 2) whether the execution conditions for both
instructions are the same in both kernels. The execution conditions
are related to the location of the instructions in the code, e.g., in a
sequential structure, in a loop structure, or in a branch structure.
The control flow structure should be the same in both kernels. For
a loop structure, the loop control logic and the initial index value
should be the same in both kernels. For a branch structure, the
branch condition should be the same in both kernels. If a candidate
triplet satisfies R3, KKC is possible between the producer kernel k1
and the consumer kernel k2 (i.e., #KKCTrue = 1).

4.2.3 MPS Recognition. Figure 4(c) shows the flowchart for MPS
recognition. An OpenCL application contains the MPS pattern (i.e.,
#MPSTrue = 1), if the application code satisfies four requirements
(R1, R2, R4, and R5). R1 and R2 are the same requirements that KKC
has. Thus, we can use the same three passes (NumKernels from R1,
and IsSameBuff and IsRdWr from R2) explained in Section 4.2.2 to
obtain a list of candidate triplets R2BuffTriplets. Then, we check
whether any triplets in R2BuffTriplets satisfy R4 and R5.We describe
these two requirements next.

R4: Two Kernels Access the Same Buffer Object with Differ-
ent MAPs. In a multi-pass algorithm, the second kernel can access
intermediate data generated by the first kernel only after the first
kernel finishes writing to the buffer object. Thus, the two kernels
execute sequentially. Accordingly, we develop an LLVM pass, IsSe-
quential, that identifies if two kernels need to execute sequentially
due to different MAPs to the same buffer object. Essentially, R4 is
the opposite of R3, since R4 does not allow the concurrent execu-
tion of two kernels. Therefore, the triplets from R2BuffTriplets that
satisfy R4 are the triplets that do not satisfy R3. For MPS, the candi-
date triplets are in a list R4SeqTriplets with a number of #R4Triplets
candidate triplets. If the R4SeqTriplets list is empty, MPS does not
exist in the application code.
R5: Intermediate Buffer Objects are Not Needed when the
OpenCLApplication is Mapped to OneWork-Group.Amulti-
pass algorithm requires multiple passes because kernel termination
is the only way to communicate across different work-groups in
the default NDR execution model. In the NDR execution model, the
number of work-groups can be either 1) a function of the dataset
size (i.e., each work-group processes one portion of the dataset),
or 2) an arbitrary number (set by the user), e.g., if the NDR kernel
uses thread coarsening [33] (i.e., each work-group runs multiple
iterations/portions until the whole dataset is processed). A multi-
pass algorithm can be implemented as a single-pass approach, if
one single work-group produces correct results (i.e., it processes
the entire dataset), which requires that the work-group can access
all intermediate results of one pass of the multi-pass algorithm
in the next pass. Thus, the key idea in R5 is to analyze the multi-
pass algorithm when NDRange contains one single work-group.
If all intermediate results of one pass of the multi-pass algorithm
are visible to the work-group in the next pass, the intermediate
buffer objects are not needed. The intermediate data can be kept
in registers of the work-group, and the single-pass approach is
feasible. To perform this analysis, we use symbolic execution [27] to
determine whether the intermediate buffer objects in R4SeqTriplets
are still required when #WG is set to one. In particular, we can
transform a multi-pass algorithm into a single-pass approach if,
each buffer object buffer satisfies one of the following two cases:
1) the size of buffer becomes one, when #WG is 1 (Case C1), or 2)
the second kernel k2 does not need to access buffer (Case C2). If
so, the MPS pattern (Section 4.1.3) exists. We develop three LLVM
passes (VarBuffInHost, VarInKernel and BuffInKernel) to recognize
R5, as shown in Figure 4(c).

The first LLVM pass, VarBuffInHost, analyzes numeric values
and buffer objects in the host code when #WG = 1. VarBuffInHost
parses the clSetKernelArg functions for each kernel invocation in
the host code, to identify arguments that are a function of #WG. In
particular, we employ symbolic execution to examine two types of
candidate arguments: 1) numeric values, and 2) buffer objects in
global memory. For each numeric value (e.g., int, long), VarBuffIn-
Host generates a pair (Arg, ArgVal), where Arg is the argument
and ArgVal is its value when #WG = 1. For example, if the size of
an argument len is 2×#WG, VarBuffInHost generates the pair (len,
2). These pairs are further processed in the second pass. For each
buffer object (i.e., cl_mem), VarBuffInHost checks whether its size
becomes one when #WG = 1, i.e., the size of an argument of type

5

cl_mem is #WG. If so, the buffer object satisfies C1. It is added to a
buffer pool, Buffs, that the third pass uses.

The second LLVM pass, VarInKernel, analyzes variables in the
OpenCL kernels when #WG = 1. VarInKernel consists of two steps.
First, VarInKernel analyzes the OpenCL kernels of the application
to find variables of size that is a function of get_num_groups (built-
in function that returns the number of work-groups #WG of an
OpenCL kernel) [26]. For each of these variables, VarInKernel cre-
ates a pair (Var, VarVal), where Var is the variable and VarVal is
its size when #WG = 1. Second, VarInKernel identifies variables in
the OpenCL kernels that take the value from candidate numeric
arguments from the first pass, i.e., pairs (Arg, ArgVal). For them,
VarInKernel creates the corresponding pairs (Var, VarVal).

The third LLVM pass, BuffInKernel, uses the outcomes of the
previous two passes to check if buffer objects satisfy C1 or C2.
BuffInKernel analyzes the OpenCL kernels to determine whether
the intermediate buffer objects in R4SeqTriplets are still required
when the variables Var from the candidate pairs (Var, VarVal) have
the values VarVal (with #WG = 1). Essentially, the intermediate
buffers are not required if they satisfy either C1 or C2. The buffer
objects in Buffs from the first pass satisfy C1. The remaining buffer
objects (RBOs) from R4SeqTriplets that are not in Buffs may satisfy
C2 or not. BuffInKernel examines whether the load/store instruc-
tions to the RBOs make sense for execution with the variable pairs
(Var, VarVal) (with #WG = 1). For example, if a memory operation
becomes array[index]+=0, the corresponding load/store instruc-
tions do not need to be executed since array is not modified. In
such cases, the RBOs satisfy C2.
5 EXECUTION MODEL PREDICTION
In this section, we first describe four OpenCL execution models that
we identify.We analyze their programmability, compute parallelism,
and memory traffic. Second, we present Boyi’s execution model
prediction.
5.1 Four OpenCL Execution Models
We present four execution models (NDR, SWI, NDR+C, and SWI+C),
which have different degrees of programmability, compute paral-
lelism, and memory traffic (see Table 1). We use histogram calcula-
tion (HSTO [13]) as our running example. For each execution model,
we show pseudocode with the best combination of conventional
optimizations.

NDR SWI NDR+C SWI+C
Programmability 2 3 1 1 to 2

Compute Parallelism 3 1 3 2 to 3
Memory Traffic 1 3 2 3

Table 1: Programmability, compute parallelism, and mem-
ory traffic of four OpenCL execution models. “3" stands for
the best score (i.e., high programmability, high compute par-
allelism, or low memory traffic) and “1" indicates the worst
score, according to our experience and analysis.
5.1.1 NDRange (NDR) Execution Model. The NDR execution model
employs the NDR kernel, which is the conventional OpenCL kernel,
widely-used in GPU programming. The NDR kernel exploits thread-
level parallelism. Optimization techniques that are used on GPUs
can also apply to FPGAs, e.g., the use of on-chip local memory for
data reuse.
Programmability. Similar to other parallel programming lan-
guages, programming NDR kernels naturally requires more effort

from OpenCL programmers than programming sequential code,
since programmers need to control the execution of many work-
items. For example, in the NDR-based histogram calculation of
Listing 5, a programmer needs to use atomic instructions to guar-
antee memory consistency inside each work-group (WG). Though
more challenging than sequential programming, the learning curve
of the NDR execution model is much lower than that of RTL pro-
gramming. We rate the programmability of the NDR execution
model as moderate (2) in Table 1.

NDR -based kernel: __attribute ((num_compute_units (6))) // number of CUs
int gid = get_global_id (0); // global work -item ID
int tid = get_local_id (0); //local work -item ID
int gs = get_global_size (0); // global size (#work -items in NDRange)
int ls = get_local_size (0); //local size (#work -items in WG)
//Step 1: each WG computes the local histogram on its own data.
for (t = gid; t < N; t += gs) {

int d = data[t]; //fetch the data from global memory
int h_d = hash(d); // compute the hash index
atomic_add (& l_hist[h_d],1);// atomically add to the local histogram

}
barrier(CLK_LOCAL_MEM_FENCE); //intra -WG synchronization
//Step 2: atomically add the local histogram to the global histogram
for (pos = tid; pos < BINS , pos += ls)

atomic_add (&hist[pos],l_hist[pos]); // atomically add l_hist to hist

Listing 5: NDR-based histogram calculation.
Compute Parallelism. The NDR kernel expresses parallelism us-
ing a large number of work-items that run in multiple compute
units inside specialized hardware synthesized on an FPGA. The
number of compute units is limited only by the available hardware
resources. For example, Listing 5 uses 6 compute units. Thus, the
NDR execution model can potentially achieve high (3) compute
parallelism, as shown in Table 1.
Memory Traffic. The NDR execution model resorts to MPS and/or
AO patterns to guarantee memory consistency across work-groups
(MPS) or inside a work-group (AO). Both patterns entail high mem-
ory traffic requirements. MPS performs communication across ker-
nels via global memory, thereby requiring global memory traffic to
read inputs and write intermediate results. AO does not allow the
OpenCL compiler to coalesce multiple memory requests to generate
large burst memory transactions, thereby requiring memory traffic
for each request. We rate the memory traffic of the NDR execution
model as high (1) in Table 1.
5.1.2 Single Work-item (SWI) Execution Model. The SWI execution
model is based on sequential programming, as it employs one single
work-item.
Programmability. As the SWI kernel uses one single work-item,
it is easy to program. Listing 6 shows the SWI-based histogram
calculation, wherewe do not need atomic instructions as in Listing 5.
Instead, it uses multiple local histograms (32 in Listing 6) to achieve
more parallelism with loop unrolling. We rate the programmability
of the SWI execution model as high (3) in Table 1.
Compute Parallelism. The SWI kernel relies on an offline com-
piler to extract pipelined parallelism. To guarantee correct execu-
tion of memory accesses, the compiler imposes an initiation interval
I I , which is the number of cycles between the start of consecutive
pipeline iterations. For example, in Listing 6 I I = 2, which means
that a new iteration starts every 2 cycles. In this case, these two
cycles stem from the updates to the local histograms l_hist, where
one read and one write (i.e., 2 cycles) per update are needed. Due to
the need for such ordering and delay between pipeline iterations,
we rate the compute parallelism of SWI as low (1) in Table 1.

6

SWI -based kernel:
//Step 1: compute 32 local histograms
for(i = 0; i < N/32; i++) { //II = 2

int16 d0=((__global int16*)data)[i*2]; //read the data from memory
int16 d1=((__global int16*)data)[i*2+1];
#pragma unroll
for(j = 0; j < 16; j++) {

h_d_0j = hash(d0.sj); // compute the hash index
h_d_1j = hash(d1.sj);
l_hist_0j[h_d_0j] += 1; // compute the local histogram
l_hist_1j[h_d_1j] += 1;

}
}
//Step 2: accumulate all 32 local histograms to the global histogram
for(pos = 0; pos < BINS; pos++)

hist[pos] =l_hist_00[pos] +...+ l_hist_0F[pos]
+l_hist_10[pos] +...+ l_hist_1F[pos];//add to global hist

Listing 6: SWI-based histogram calculation.
Memory Traffic. The SWI execution model has significantly lower
memory traffic requirements than NDR. First, it can leverage a
single-pass approach, which entails less memory traffic than the
multi-pass approach. Second, it does not need atomic instructions
because there is only one single work-item (see Listing 6). We rate
the memory traffic of SWI as low (3) in Table 1.
5.1.3 NDRange+Channel (NDR+C) Execution Model. The NDR+C
execution model divides a large NDR kernel into multiple small
NDR kernels connected via OpenCL channels.

Channel int C_IN [16]; //16 channels for inter -kernel communication

Data_in kernel:
for (t = gid; t < N/16; t += gs) { //gs = global size

int16 d = ((__global int16*)data)[t]; //read data from memory
#pragma unroll
for(c = 0; c < 16; c++)

write_channel_intel (C_IN[c], d.sc); //write channel (Intel SDK)
}

Data_out kernel k (k = 0,1,...,15):
//Step 1: each WG computes the local histogram on its own data
for(t = gid; t < N/16; t += gs) {

int d = read_channel_intel (C_IN[k]); //read data from channel
int h_d = hash(d); // compute the hash index
atomic_add (& l_hist[h_d],1); // atomically add to the local histogram

}
barrier(CLK_LOCAL_MEM_FENCE); //intra -WG synchronization
//Step 2: atomically add each local histogram to the global histogram
for (pos = tid; pos < BINS , pos += ls)

atomic_add (&hist[pos],l_hist[pos]);// atomically add to global hist

Listing 7: NDR+channel-based histogram calculation.
Programmability. Programming with OpenCL channels increases
the programming difficulty. First, the producer kernel has to pro-
duce the data flow in the same order as it is expected by the con-
sumer kernel. This is challenging because work-items can execute
out-of-order due to load imbalance and, thus, the data flow may
not be predictable. Second, we have to explicitly instantiate each in-
volved kernel. Listing 7 shows the NDR+C-based histogram calcula-
tion, which instantiates multiple NDR kernels to work concurrently
(one Data_in kernel and 16 Data_out kernels). The Data_in ker-
nel reads 16 integers from global memory per cycle, and dispatches
one integer to each Data_out kernel via an OpenCL channel. We
rate the programmability of NDR+C as low (1) in Table 1.
Compute Parallelism. The OpenCL channel allows producer/-
consumer NDR kernels to execute concurrently, leading to high
compute parallelism. Listing 7 shows one producer kernel and 16
consumer kernels that can run concurrently. We rate the compute
parallelism of NDR+C as high (3) in Table 1.
MemoryTraffic.OpenCL channels can potentially reduce the high
memory traffic of the NDR execution model. However, the NDR+C

execution model still needs to use costly atomic instructions. Thus,
the memory traffic of NDR+C is moderate (2) in Table 6.
5.1.4 Single Work-item+Channel (SWI+C) Execution Model. The
SWI+C execution model employs OpenCL channels to connect
multiple SWI kernels that can run concurrently (see Listing 8).
Programmability. The programmability of an SWI kernel is lower
when using OpenCL channels. Thus, we rate the programmability
of SWI+C as low (1) to moderate (2) in Table 1.
Compute Parallelism. Even though one SWI kernel has low com-
pute parallelism, OpenCL channels can significantly increase the
compute parallelism by allowing multiple producer/consumer SWI
kernels to execute concurrently. Listing 8 divides the SWI kernel
into one producer kernel (Data_in), which reads frommemory, and
one consumer kernel (Data_out), which calculates the histogram. It
uses two channels for the two input elements processed in each iter-
ation. Therefore, SWI+C’s overall compute parallelism is moderate
(2) to high (3) in Table 1.

Channel int16 C_IN [2];

Data_in kernel:
for(i = 0; i < N/32; i++) {

int16 d0=((__global int16*)data)[i*2]; //read data from memory
int16 d1=((__global int16*)data)[i*2+1];
write_channel_intel(C_IN[0], d0); //write channel (Intel SDK)
write_channel_intel(C_IN[1], d1);

}

Data_out kernel:
//Step 1: compute 32 local histograms
for(i = 0; i < N/32; i++) {

int16 d0 = read_channel_intel(C_IN [0]);//read data from channel
int16 d1 = read_channel_intel(C_IN [1]);
#pragma unroll
for(j = 0; j < 16; j++) {

h_d_0j = hash(d0.sj); // compute the hash index
h_d_1j = hash(d1.sj);
l_hist_0j[h_d_0j] += 1; // compute the local histogram
l_hist_1j[h_d_1j] += 1;

}
}
//Step 2: accumulate all 32 local histograms to the global histogram
for(pos = 0; pos < BINS; pos++)

hist[pos] =l_hist_00[pos] +...+ l_hist_0F[pos]
+l_hist_10[pos] +...+ l_hist_1F[pos];//add to global hist

Listing 8: SWI+channel-based histogram calculation.
Memory Traffic. The low memory traffic of the SWI execution
model can be further reduced by using OpenCL channels in the
SWI+C execution model. Therefore, we rate the memory traffic of
the SWI+C execution model as low (3) in Table 1.
5.2 Execution Model Prediction
We present the second component of Boyi, execution model predic-
tion. First, we present the direct prediction of the execution model,
which is based on the presence or absence of the three OpenCL
patterns. Second, we discuss the potential evolution of the SWI
execution model to SWI+C to achieve higher compute parallelism.
5.2.1 Direct Prediction. We can directly predict the most suitable
execution model for a target OpenCL application (see “Direct pre-
diction" column in Table 2), based on the presence or absence of
the three OpenCL patterns (the three leftmost columns of Table 2).
For each pattern combination, the direct prediction stems from the
potential implementations on FPGAs using the two new OpenCL
features, as we discussed in Section 4.1. Essentially, OpenCL ap-
plications with the AO and/or MPS patterns benefit from the SWI
execution model, while OpenCL applications with the KKC pattern
benefit from OpenCL channels.

7

AO MPS KKC Direct prediction Potential SWI evolution
N N N NDR -
Y N N SWI SWI+C
N Y N SWI SWI+C
Y Y N SWI SWI+C
N N Y NDR+C -
Y N Y SWI+C SWI+C
N Y Y SWI+C SWI+C
Y Y Y SWI+C SWI+C

Table 2: Directly predicted execution model (based on the
presence or absence of AO, MPS, and KKC patterns) and po-
tential SWI evolution.
5.2.2 Potential Evolution of SWI to SWI+C. If the direct prediction
for an OpenCL application is SWI, the execution model can poten-
tially evolve to SWI+C (see the “Potential SWI evolution" column in
Table 2) for higher compute parallelism, if the application satisfies
two conditions (S1 and S2). The evolution of the SWI execution
model consists of dividing an SWI kernel into multiple smaller
SWI kernels, which can run concurrently, connected via OpenCL
channels. Doing so increases compute parallelism at the expense of
higher programming complexity.
S1: Sufficient FPGA Resources Available. The evolution can
only happen if there are sufficient FPGA resources available. The
SWI+C execution model instantiates more than one SWI kernel con-
nected via OpenCL channels, which requires more FPGA resources
than a single SWI kernel.
S2: The SWI Kernel is Compute-Bound and I I > 1. The evolu-
tion can only happen when the original SWI kernel, before applying
conventional optimizations, is 1) compute-bound and 2) its I I is
greater than 1. First, the SWI kernel should be compute-bound,
because the goal of the evolution is to increase the compute paral-
lelism, which is in general not effective for a memory-bound kernel,
as it is already bottlenecked by memory traffic. Second, I I should
be greater than 1, because I I = 1 means that the hardware is fully
pipelined. Thus, no potential improvement is possible in terms of
pipelined parallelism.

To determine whether an SWI kernel is compute-bound, we
propose a cost model that estimates the number of compute cycles
(Ccomp) and memory cycles (Cmem) of the SWI kernel. The SWI
kernel is compute-bound ifCcomp is greater than or equal toCmem ,
as shown in Equation 1. For the estimation of Ccomp and Cmem ,
we focus on the analysis of loops, as they typically represent the
main body of a kernel. First, we present the cycle count estimation
for an entire SWI kernel. Second, we describe how we estimate the
compute and memory cycles for each loop.

Ccomp ≥ Cmem (1)
Estimation of Kernel Cycles.We assume that an OpenCL kernel
consists of n outer loops that are executed sequentially. We esti-
mate Ccomp and Cmem as the sum of the estimated numbers of
computation cycles (Ccomp

l for loop l) and memory cycles (Cmem
l

for loop l), respectively, for all outer loops, as shown in Equation 2.5

Ccomp =

n∑
l=1

C
comp
l , Cmem =

n∑
l=1

Cmem
l (2)

Estimating Ccomp
l .We estimate Ccomp

l as the trip count LTCl of
loop l multiplied by its initiation interval I Il , as shown in Equation 3.
This gives us the number of cycles for all loop iterations.
5We do not consider nested loops in this paper, but our work can be easily extended
to consider them.

C
comp
l = LTCl × I Il (3)

Estimating Cmem
l .We estimate Cmem

l as the sum of memory cy-
cles required by all sequential and random memory accesses, as
Equation 4 shows. Cseqi and Crandi stand for the number of cy-
cles for all sequential and random memory transactions in loop l ,
respectively.

Cmem
l = C

seq
l +Crandl (4)

We estimate Cseql (or Crandl) as the total number of sequential
(or random) memory transactions MT

seq
l (or MT randl) in loop l

multiplied by the number of cycles CPT seq (or CPT rand) per se-
quential (or random) memory transaction, as Equation 5 shows. We
obtain CPT seq and CPT rand with microbenchmarks. In particular,
we measure the throughput of a kernel with many back-to-back
sequential (or random) memory accesses. CPT seq (or CPT rand)
is the inverse of the throughput. Our measured CPT seq = 1.0 (or
CPT rand = 2.0) means that one sequential (or random) memory
transaction finishes every cycle (or every two cycles).

C
seq
l = MT

seq
l ×CPT seq , Crandl = MT randl ×CPT rand (5)

We estimate MT
seq
l as the loop trip count (left factor in Equa-

tion 6) multiplied by the number of sequential memory transactions
in one loop iteration (right factor in Equation 6). We assume that
the body of loop l has N seq

l sequential memory instructions and the
s-th sequential memory instruction references Bs bytes each time,
where 1 ≤ s ≤ N

seq
l . Since sequential memory accesses are coa-

lesced, i.e., they merge into a single wide memory transaction, we
divide the number of bytes by the wide transaction size (or memory
burst size, which is up to #BS=64 bytes in our FPGA board).

MT
seq
l = LTCl ×

N seq
l∑
s=1

Bs
#BS (6)

We estimate MT randl as the loop trip count LTCl multiplied
by the number of random memory transactions N rand

l (random
accesses cannot be coalesced), as Equation 7 shows.

MT randl = LTCl × N rand
l (7)

6 EVALUATION
This section presents our experimental setup (Section 6.1), compares
the performance of 11 OpenCL applications using the four execu-
tion models (Section 6.2), and validates Boyi’s execution model
prediction (Section 6.3).
6.1 Experimental Setup
Hardware Configuration. We run our experiments on a Tera-
sic DE5a-Net board [45] with an Intel Arria 10 GX FPGA
(10AX115N2F45E1SG) and 8GB 2-bank DDR3 device memory. We
employ Intel OpenCL SDK version 16.1 [21].
Workloads.We use with 11 OpenCL applications, listed in Table 3.
Seven applications are from the Chai benchmark suite [4, 13], which
is originally designed for GPUs. The GPU implementation of each
application serves as baseline for our comparisons.
6.2 Performance Comparison
We analyze the performance impact of different execution models
and conventional optimizations.

8

Application Description AO MPS KKC Datasets
BFS [13] Breadth-First Search Y N N NY, NE, UT
RSCD [13] RANSAC Y N Y 2000 iterations
TQH [13] Task Queue System Y N N Basket
HSTO [13] Histogram Y N N 256 bins
SC [13] Stream Compaction Y N N 50%
PAD [13] Padding Y N N 200*199
CEDD [13] Canny Edge Detection N N Y Peppa, Maradona, Paw
KM [5] KMeans N N N 25600 points, 8 features
MM [20] Matrix Multiplication N N N A: 2k*1k, B: 1k*1k
MS [20] Mandelbrot Set N N N 640*800, 2000 iterations
PS [18] Prefix Sum N Y N 4194304 points

Table 3: Benchmarks, OpenCL patterns, and datasets.
Exploring Optimization Combinations. For each OpenCL ap-
plication, we implement versions with the four execution mod-
els and multiple combinations of conventional optimizations (see
Table 4). We apply the conventional optimizations following the
step-by-step approach proposed in [54]. Our exploration of the opti-
mization space considers all possible combinations of optimization
factors (e.g., number of CUs, unrolling factor) until either the FPGA
resources are exhausted or the performance saturates. To illustrate
our optimization exploration, we use KMeans as an example. Fig-
ure 5 shows, for each execution model, the speedup of a subset of
optimization combinations over the baseline GPU code [5]. The
x-axis shows the optimization combinations for the four execu-
tion models. We observe that different execution models yield a
performance difference as large as 4.7×. In particular, the best opti-
mization combination under the NDR execution model achieves a
speedup of 147.7× over the GPU baseline, while the best optimiza-
tion combination under the SWI+C execution model achieves 31.4×
speedup.
Comparison of Execution Models. Table 4 shows the number
of optimization combinations for the four execution models and
the maximum speedup achieved with the best combination for each
execution model over the baseline. We make three observations.
First, different execution models result in significant performance
differences. For example, for HSTO, the most suitable execution
model (SWI+C) obtains a speedup of 32.4× over the baseline, while
the least suitable executionmodel (NDR) achieves only 2.7×. Second,
different OpenCL applications prefer different execution models.
For example, TQH favors SWI+C, while MM favors NDR. Third,
finding the most suitable execution model is critical and nontrivial,
as tens of optimization combinations should be tested for each
application and execution model.

App Number of combinations Maximum speedup
NDR SWI NDR+C SWI+C NDR SWI NDR+C SWI+C

BFS 17 7 7 9 1.9 3.1 1.2 3.1
RSCD 25 10 24 46 15.8 4.6 73.8 39.7
TQH 9 15 23 1.1 1.3 21.0
HSTO 13 37 11 29 2.7 5.1 16.9 32.4
SC 15 34 10 1.5 4.5 17.1
PAD 10 10 14 1.2 1.6 4.8
CEDD 57 15 22 7 2.7 0.3 2.7 0.4
KM 33 11 10 18 147.7 32.8 136.4 31.4
MM 25 9 6 837.1 13.3 6.6
MS 7 6 7 34.7 0.02 3.2
PS 26 20 12 15.8 44.4 46.2

Table 4: Exploration of optimization combinations andmax-
imum speedup for each execution model. An empty slot in-
dicates that the particular executionmodel cannot be imple-
mented due to limitations of the OpenCL channel.
Effect of New OpenCL Features. As discussed in Section 4.1, the
two new OpenCL features have the potential to reduce memory
traffic. Figure 6 shows the memory traffic (a) and execution time
(b) of four applications with the four execution models (using the

best optimization combination). We make two observations. First,
the SWI execution model provides a dramatic reduction in mem-
ory traffic over the NDR execution model (Figure 6a). SWI kernels
employ single-pass approaches, which require less global memory
accesses than the multi-pass approaches employed by NDR kernels.
Second, even though SWI and SWI+C execution models require
the same memory traffic, their performance difference is signifi-
cant (Figure 6b). The SWI execution model cannot always provide
enough compute parallelism to the application. OpenCL channels
allow higher compute parallelism (concurrent kernel execution),
leading to higher performance on compute-bound applications.
We conclude that the two new features can greatly improve the
performance of OpenCL programs on FPGAs.
Comparison to Previous Work. Table 5 shows the comparison
of our implementations (with the best optimization combination)
of 6 applications with previous implementations on FPGAs [19, 20].
We observe that our implementations achieve 1.5-38.3× higher
throughput, validating the effectiveness of our Boyi approach. The
speedups are mainly due to the use of SWI kernels and OpenCL
channels, which are not used in [19, 20].

App Boyi (ms) Previous work (ms) Speedup
RSCD 0.8 28.9 [19] 38.3
TQH 66.9 150.6 [19] 2.3
HSTO 38.8 487.9 [19] 12.6
CEDD 161.9 237.8 [19] 1.5
MM 9.1 34.3 [20] 3.8
MS 27.2 944.1 [20] 34.7

Table 5: Execution time of our Boyi-driven implementations
for 6 applications and comparison to previous implementa-
tions [19, 20] on FPGAs.
6.3 Execution Model Prediction
We validate that Boyi can predict the most suitable execution model
for each OpenCL application. Table 6 shows the predicted execu-
tion model, as well as the actual most suitable execution model that
achieves the highest performance in our experiments. We make two
observations. First, Boyi execution model prediction is accurate for
all workloads except RSCD. In RSCD, the only atomic instruction6 is
executed after one loop with many iterations (5922 for our dataset),
so it has negligible impact on the overall performance. Thus, the
existing AO pattern does not affect performance. As a result, the
predicted execution model does not match the actual most suitable
execution model. We leave the study of such corner cases for fu-
ture work. Second, Boyi’s potential SWI evolution (Section 5.2.2)
significantly increases the prediction accuracy. Table 6 shows that
four out of five correct “SWI+C⋆" predictions are due to potential
evolution. Potential evolution provides speedups of up to 16.2×
over the SWI execution model.
7 RELATEDWORK
To our knowledge, Boyi is the first systematic study to help OpenCL
programmers find the most suitable OpenCL execution model (i.e.,
NDR, SWI, NDR+C, SWI+C) for a particular application on FPGAs.
After determining the most suitable execution model, programmers
can apply conventional optimizations for OpenCL on FPGAs.
Conventional Optimization Methods. Previous works [3, 16,
23, 25, 30, 37, 41–44, 46, 47, 50, 51, 55, 57–59, 61–63, 65] focus on
improving the performance of applications on FPGAs. However,
6The original version of RSCD [13] uses two atomic instructions. We refactored the
code and got rid of one atomic instruction that was on the critical path.

9

2.3
9.0

2.0 3.9 5.1

51.2

73.5

7.7

28.8

51.3

114.9

89.3

147.7

122.0

2.3 2.5 2.7 0.1 0.1
4.9 8.8

16.6

32.8

1.2

14.7

124.9
136.4

2.2

14.4

90.3

119.0
112.6

31.4

1.9
9.9

17.5
29.0

0

20

40

60

80

100

120

140

160
Sp

ee
d

u
p

 o
ve

r
th

e
G

P
U

 b
as

el
in

e NDR SWI+CNDR+CSWI

Figure 5: Speedup of a subset of optimization combinations over baseline for KM. “CUx” indicates x CUs, “SIMDx” indicates
the kernel vectorization factor x, “ULx-y-z” indicates the loop unrolling factors x,y,z of the inner, middle and outer loops,
respectively. “1-x" indicates a multi-kernel design with one producer kernel and x consumer kernel(s). “P” indicates the use of
private memory for the input feature array and “T” indicates the transposition of the input feature array for a more regular
memory access pattern.

6.1

2
3

8.5

1.3 1 1 1 1 1 1 1 1

0

2

4

6

8

10

HSTO SC PAD PS

N
o

rm
al

iz
ed

 m
em

o
ry

 t
ra

ff
ic

NDR NDR+C SWI SWI+C

(a) Memory traffic

12.1
11.3

4.2
2.8

1.9

6.3

3.8
3.0

1 1 1 1 1

0

5

10

15

HSTO SC PAD PS

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

NDR NDR+C SWI SWI+C

(b) Execution time
Figure 6: Comparison of four execution models.

Application AO MPS KKC Actual Prediction Speedup of SWI+C over SWI
BFS Y N N SWI SWI
RSCD Y N Y NDR+C SWI+C
TQH Y N N SWI+C SWI+C⋆ 16.2
HSTO Y N N SWI+C SWI+C⋆ 6.3
SC Y N N SWI+C SWI+C⋆ 3.8
PAD Y N N SWI+C SWI+C⋆ 3.0
CEDD N N Y NDR+C NDR+C
KM N N N NDR NDR
MM N N N NDR NDR
MS N N N NDR NDR
PS N Y N SWI SWI

Table 6: Actual and predicted most suitable execution mod-
els for each application. “SWI+C⋆" indicates the potential
evolution of SWI. The "Speedup" column shows the speedup
of SWI+C over SWI due to potential SWI evolution.

these works are limited to High Level Synthesis (HLS) codes or
conventional OpenCL NDR kernels, which usually fail to exploit
the full potential of an FPGA. In contrast, our work is a systematic
study on the suitability of four OpenCL execution models. Three
of these models are based on two new OpenCL features (i.e., SWI
kernel, OpenCL channel) that are intended to fully leverage the
FPGA compute capability.
Optimizations with Two New OpenCL Features. Previous
works [2, 6, 24, 34, 49, 53, 56, 67] employ the two new OpenCL
features to accelerate OpenCL applications on FPGAs. However,
these works focus on specific applications. Thus, their findings

cannot directly generalize to other OpenCL applications. In con-
trast, our work provides an automatic tool to decide on the OpenCL
execution model, and thus the use of the two new OpenCL features.
Optimization Frameworks. Prior works propose a number of
performance frameworks and auto-tuning tools [7–10, 17, 28, 31,
38, 40, 52, 54, 64, 66]. For example, Wang et al. [54] present a per-
formance analysis framework to identify bottlenecks of OpenCL
kernels on FPGAs. However, they only cover analytical models
for the conventional NDRange kernel. In [40], the authors present
seven empirically-guided code optimization versions, which in-
clude the usage of the two new OpenCL features, for optimizing
OpenCL kernels on FPGAs. They do not explicitly determine which
code version to use for a given application. Our work provides a
systematic framework to assist programmers on the selection of
the most suitable execution model for an application.
8 CONCLUSION
The conventional OpenCL execution model on FPGAs cannot fully
harvest the performance potential of FPGAs. To address this prob-
lem, we identify three other execution models and design Boyi, a
systematic framework that determines the most suitable execution
model for an application, based on the presence or absence of three
OpenCL patterns. Our experimental results show that Boyi’s pre-
dicted execution model matches very accurately the actual most
suitable execution model for a given application. We believe Boyi
can greatly alleviate the programming burden on FPGA workload
optimization exploration. Although we demonstrate Boyi with the
Intel OpenCL SDK, Boyi can also be applied to the Xilinx OpenCL
tool. We believe Boyi is the first step towards automated code trans-
formations that convert the conventional OpenCL execution model
to other execution models. We freely release Boyi [22] so that future
work can build on it seamlessly.
Acknowledgement. We thank Intel FPGA Academic Program
who denoted Terasic’s DE5a-Net FPGA board and licenses for our re-
search. This work was supported by the National Key R&D Program
of China (2017YFC0805005 and 2018YFB1702000), the Joint Funds
of the National Natural Science Foundation of China (U1908212),
and the National Natural Science Foundation of China (61871107
and 61602104). Onur Mutlu and Juan Gómez-Luna acknowledge
support from the SAFARI Group’s industrial partners, especially
Facebook, Google, Huawei, Intel, Microsoft, SRC, and VMware.

10

REFERENCES
[1] Yi (husbandman). https://en.wikipedia.org/wiki/Yi_(husbandman). Accessed:

2019-12-09.
[2] M. S. Abdelfattah, A. Hagiescu, and D. Singh. Gzip on a chip: High performance

lossless data compression on FPGAs using OpenCL. In IWOCL, 2014.
[3] Y. Afsharnejad, A. Yassine, O. Ragheb, P. Chow, and V. Betz. HLS-based FPGA

acceleration of light propagation simulation in turbid media. In HEART, 2018.
[4] L.-W. Chang, J. Gómez-Luna, I. El Hajj, S. Huang, D. Chen, and W.-m. Hwu.

Collaborative computing for heterogeneous integrated systems. In ICPE, 2017.
[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron. Rodinia:

A benchmark suite for heterogeneous computing. In IISWC, 2009.
[6] X. Chen, R. Bajaj, Y. Chen, J. He, B. He, W. Wong, and D. Chen. On-the-fly parallel

data shuffling for graph processing on OpenCL-based FPGAs. In FPL, 2019.
[7] Y. T. Chen and J. H. Anderson. Automated generation of banked memory archi-

tectures in the high-level synthesis of multi-threaded software. In FPL, 2017.
[8] J. Cong, Z. Fang, Y. Hao, P. Wei, C. H. Yu, C. Zhang, and P. Zhou. Best-effort

FPGA programming: A few steps can go a long way. In Arxiv, 2018.
[9] J. Cong, P. Wei, C. H. Yu, and P. Zhang. Automated accelerator generation and

optimization with composable, parallel and pipeline architecture. In DAC, 2018.
[10] N. Engelhardt, C. D. Hung, and H. K. So. Performance-driven system generation

for distributed vertex-centric graph processing on multi-FPGA systems. In FPL,
2018.

[11] S. Garcia de Gonzalo, S. Huang, J. Gómez-Luna, S. Hammond, O. Mutlu, and
W. Hwu. Automatic generation of warp-level primitives and atomic instructions
for fast and portable parallel reduction on GPUs. In CGO, 2019.

[12] Q. Gautier, A. Althoff, and R. Kastner. Spector: An OpenCL FPGA benchmark
suite. In FPT, 2016.

[13] J. Gómez-Luna, I. El Hajj, V. Chang, Li-Wen Garcia-Flores, S. Garcia de Gon-
zalo, T. Jablin, A. J. Pena, and W.-m. Hwu. Chai: Collaborative heterogeneous
applications for integrated-architectures. In ISPASS, 2017.

[14] J. Gómez-Luna, J. González-Linares, J. Benavides, and N. Guil. An optimized
approach to histogram computation on GPU. Machine Vision and Applications,
2013.

[15] J. Gómez-Luna, J. González-Linares, J. Benavides, and N. Guil. Performance
modeling of atomic additions on GPU scratchpad memory. TPDS, 2013.

[16] Y. Guan, Z. Yuan, G. Sun, and J. Cong. FPGA-based accelerator for long short-term
memory recurrent neural networks. In ASPDAC, 2017.

[17] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W. Hwu, and D. Chen.
FPGA/DNN co-design: An efficient design methodology for IoT intelligence on
the edge. In DAC, 2019.

[18] M. Harris. Parallel prefix sum (scan) with CUDA. Technical re-
port, Nvidia, https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-
computing/chapter-39-parallel-prefix-sum-scan-cuda, 2007.

[19] S. Huang, L.-W. Chang, I. El Hajj, S. Garcia de Gonzalo, J. Gómez-Luna, S. R.
Chalamalasetti, M. El-Hadedy, D. Milojicic, O. Mutlu, D. Chen, and W.-m. Hwu.
Analysis and modeling of collaborative execution strategies for heterogeneous
CPU-FPGA architectures. In ICPE, 2019.

[20] Intel. Intel SDK for OpenCL Design Examples. 2018.
[21] Intel. Intel SDK for OpenCL Optimization Guide. 2018.
[22] J. Jiang. Boyi (FPGA2020 version). https://doi.org/10.5281/zenodo.3575234, Dec.

2019. Zenodo.
[23] Z. Jin and H. Finkel. Optimizing an atomics-based reduction kernel on OpenCL

FPGA platform. In IPDPSW, 2018.
[24] T. Kenter, J. Förstner, and C. Plessl. Flexible FPGA design for FDTD using OpenCL.

In FPL, 2017.
[25] T. Kenter, G. Mahale, S. Alhaddad, Y. Grynko, C. Schmitt, A. Afzal, F. Hannig,

J. Förstner, and C. Plessl. OpenCL-based FPGA design to accelerate the nodal
discontinuous galerkin method for unstructured meshes. In FCCM, 2018.

[26] Khronos group. The OpenCL specification, July 2019.
[27] J. C. King. Symbolic execution and program testing. Commun. ACM, 1976.
[28] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and Z. Zhang.

HeteroCL: A multi-paradigm programming infrastructure for software-defined
reconfigurable computing. In FPGA, 2019.

[29] C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. 2004.

[30] Q. Li, X. Zhang, J. Xiong, W. Hwu, and D. Chen. Implementing neural machine
translation with bi-directional GRU and attention mechanism on FPGAs using
HLS. In ASPDAC, 2019.

[31] Y. Liang, S. Wang, and W. Zhang. FlexCL: A model of performance and power
for OpenCL workloads on FPGAs. TC, 2018.

[32] Loring Wirbel. Xilinx SDAccel, a unified development environment for tomor-
row’s data center. 2014.

[33] A. Magni, C. Dubach, and M. O’Boyle. A large-scale cross-architecture evaluation
of thread-coarsening. In SC, 2013.

[34] V. Mirian and P. Chow. Exploring pipe implementations using an OpenCL
framework for FPGAs. In FPT, 2015.

[35] NVIDIA. NVIDIA Tesla P100. White paper, 2016.
[36] NVIDIA. CUDA C programming guide v. 10.0, November 2019.
[37] H. Peng, X. Zhang, and L. Huang. An energy efficient approach for C4.5 algorithm

using OpenCL design flow. In FPT, 2017.
[38] A. Powell, C. Bouganis, and P. Y. K. Cheung. High-level power and performance

estimation of FPGA-based soft processors and its application to design space
exploration. JSA, 2013.

[39] N. Ramanathan, J. Wickerson, F. Winterstein, and G. A. Constantinides. A case
for work-stealing on FPGAs with OpenCL atomics. In FPGA, 2016.

[40] A. Sanaullah, R. Patel, and M. C. Herbordt. An empirically guided optimization
framework for FPGA OpenCL. In FPT, 2018.

[41] S. Sridharan, P. Durante, C. Faerber, and N. Neufeld. Accelerating particle identi-
fication for high-speed data-filtering using OpenCL on FPGAs and other archi-
tectures. In FPL, pages 1–7, 2016.

[42] N. K. Srivastava, S. Dai, R. Manohar, and Z. Zhang. Accelerating face detection
on programmable SoC using C-based synthesis. In FPGA, 2017.

[43] J. Su, N. J. Fraser, G. Gambardella, M. Blott, G. Durelli, D. B. Thomas, P. H. W.
Leong, and P. Y. K. Cheung. Accuracy to throughput trade-offs for reduced
precision neural networks on reconfigurable logic. In ARC, 2018.

[44] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. B. K. Vrudhula, J. Seo, and
Y. Cao. Throughput-optimized OpenCL-based FPGA accelerator for large-scale
convolutional neural networks. In FPGA, 2016.

[45] Terasic. DE5-Net User Manual, 2018.
[46] L. D. Tucci, K. O’Brien, M. Blott, and M. D. Santambrogio. Architectural optimiza-

tions for high performance and energy efficient Smith-Waterman implementation
on FPGAs using OpenCL. In DATE, 2017.

[47] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside. Resource elastic virtualization
for FPGAs using OpenCL. In FPL, 2018.

[48] G. van den Braak, J. Gómez-Luna, H. Corporaal, J. M. González-Linares, and
N. Guil. Simulation and architecture improvements of atomic operations on GPU
scratchpad memory. In ICCD, 2013.

[49] D. Wang, K. Xu, and D. Jiang. PipeCNN: An OpenCL-based open-source FPGA
accelerator for convolution neural networks. In FPT, 2017.

[50] H. Wang, M. Zhang, T. Prabu, and O. Sinnen. FPGA-based acceleration of FDAS
module using OpenCL. In FPT, 2016.

[51] S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang. C-LSTM: enabling
efficient LSTM using structured compression techniques on FPGAs. In FPGA,
2018.

[52] S. Wang, Y. Liang, and W. Zhang. FlexCL: An analytical performance model for
OpenCL workloads on flexible FPGAs. In DAC, 2017.

[53] Z. Wang, B. He, and W. Zhang. A study of data partitioning on OpenCL-based
FPGAs. In FPL, 2015.

[54] Z. Wang, B. He, W. Zhang, and S. Jiang. A performance analysis framework for
optimizing OpenCL applications on FPGAs. In HPCA, 2016.

[55] Z. Wang, J. Paul, H. Y. Cheah, B. He, and W. Zhang. Relational query processing
on OpenCL-based FPGAs. In FPL, 2016.

[56] Z. Wang, J. Paul, B. He, andW. Zhang. Multikernel data partitioning with channel
on OpenCL-based FPGAs. TVLSI, 2017.

[57] Z. Wang, S. Zhang, B. He, and W. Zhang. Melia: A MapReduce framework on
OpenCL-based FPGAs. TPDS, 2016.

[58] X. Wei, Y. Liang, and J. Cong. Overcoming data transfer bottlenecks in FPGA-
based DNN accelerators via layer conscious memory management. In DAC,
2019.

[59] D. Weller, F. Oboril, D. Lukarski, J. Becker, and M. B. Tahoori. Energy efficient
scientific computing on FPGAs using OpenCL. In FPGA, 2017.

[60] Xilinx. Xilinx Alveo U230, product brief, 2019.
[61] C. Yang, J. Sheng, R. Patel, A. Sanaullah, V. Sachdeva, andM. C. Herbordt. OpenCL

for HPC with FPGAs: Case study in molecular electrostatics. In HPEC, 2017.
[62] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella, M. Blott, L. Lavagno,

K. A. Vissers, J. Wawrzynek, and K. Keutzer. Synetgy: Algorithm-hardware
co-design for convnet accelerators on embedded FPGAs. In FPGA, 2019.

[63] J. Zhang and J. Li. Improving the performance of OpenCL-based FPGA accelerator
for convolutional neural network. In FPGA, 2017.

[64] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He. Comba: A comprehensive
model-based analysis framework for high level synthesis of real applications. In
ICCAD, 2017.

[65] R. Zhao, W. Song, W. Zhang, T. Xing, J. Lin, M. B. Srivastava, R. Gupta, and
Z. Zhang. Accelerating binarized convolutional neural networks with software-
programmable FPGAs. In FPGA, 2017.

[66] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka. Evaluating
and optimizing OpenCL kernels for high performance computing with FPGAs.
In SC, 2016.

[67] H. R. Zohouri, A. Podobas, and S. Matsuoka. Combined spatial and temporal
blocking for high-performance stencil computation on FPGAs using OpenCL. In
FPGA, 2018.

11

https://en.wikipedia.org/wiki/Yi_(husbandman)
https://doi.org/10.5281/zenodo.3575234

	Abstract
	1 Introduction
	2 Background
	3 Overview of Boyi
	4 OpenCL Pattern Recognition
	4.1 Three OpenCL Patterns
	4.2 LLVM-based OpenCL Pattern Recognition

	5 Execution Model Prediction
	5.1 Four OpenCL Execution Models
	5.2 Execution Model Prediction

	6 Evaluation
	6.1 Experimental Setup
	6.2 Performance Comparison
	6.3 Execution Model Prediction

	7 Related Work
	8 Conclusion
	References

