
SmartNS: Enabling Line-rate and Flexible Network
Stack with SmartNIC

Anonymous Author(s)
Submission Id: 260

Abstract
As the gap between network and CPU speeds rapidly in-
creases, the CPU-centric network stack proves inadequate
due to excessive CPU and memory overheads. Though
hardware-offloaded network stacks alleviate these issues,
they suffer from limited flexibility in both control and data
planes. It seems promising to offload network stacks to Smart-
NICs to provide high flexibility. However, naive offloading
leads to low throughput due to the inherent architectural
limitations of widespread off-path SmartNICs. Even simple
operations on staged network traffic would overwhelm the
limited SmartNICmemory bandwidth. To this end, we design
SmartNS, a SmartNIC-centric network stack with software
transport programmability and line-rate packet processing
capabilities. To tackle the limitations of SmartNIC-induced
challenges, we propose a header-only offloading TX path
and an unlimited-working-set in-cache processing RX path
to minimize memory traffic to fit the wimpy SmartNIC mem-
ory bandwidth. To fully utilize the SmartNIC computing
resources, we propose a programmable offloading engine
to enable cloud providers to offload customized tasks along
with the network stack processing. We prototype SmartNS
using the widespread Nvidia BlueField-3 SmartNIC, and im-
plement RoCEv2 and Solar transport protocols by leveraging
SmartNS’s software programmability. SmartNS achieves 2.2×
higher throughput than the microkernel-based baseline in
block storage disaggregation and 1.3× higher throughput
than the hardware-offloaded baseline in KVCache transfer.

1 Introduction
In the modern cloud, the demand for network speed grows
quickly, with 200/400 Gigabit Ethernet (GbE) network inter-
face controllers (NICs) widely deployed [53, 54] and 800 GbE
expected in the near future [55]. Consequently, the network
stack must deliver elevated processing capacity. Moreover,
as deployments vary broadly (e.g., single/multi-tenant, loss-
less/lossy fabric [46, 58, 94]), and upper-layer applications
expand from HPC and disaggregated storage [21, 30, 56] to
GPU communication [18, 70], enhanced flexibility and pro-
grammability within network stack become indispensable.

CPU-centric network stacks, represented bymonolithic
kernel-based [88, 90, 97, 108] and microkernel-based [17, 22,
31, 35, 36, 52, 60, 65, 69] designs, offer certain programmabil-
ity via high-level software language (i.e., C/C++). However,
more portions of the CPU resources and memory bandwidth
have to be occupied to handle increasing network band-
width [6, 7] due to the slowing down of Moore’s law. Besides,

co-locating with other CPU workloads induces cache and
memory interference, resulting in high tail latency [17, 65].
Hardware-offloaded network stacks, represented by

Remote Direct Memory Access (RDMA) [26, 39] and TCP
Offload Engine (TOE) [59, 80], offer a compelling path to
achieve high throughput in the post-Moore’s Law era. Un-
fortunately, fixed-function hardware cannot meet the var-
ious requirements of numerous different upper-layer ap-
plications [23, 51, 56, 67, 70, 99, 106] and rapid release cy-
cles demanded by cloud environments [52, 56]. For exam-
ple, RDMA NIC only supports limited transport protocols
and is a black box for users, offering only limited “config-
urable” capabilities that are not truly programmable. Large
cloud vendors collaborate with NIC vendors to integrate cus-
tomized functions into next-gen NICs, which usually take
several years. FPGA-based NIC designs can offer a certain
programmability using hardware description languages such
as Verilog [3, 24, 59, 84, 93, 94], but they still need a much
longer development cycle and fail to meet the rapidly evolv-
ing demands of the cloud workloads [52, 56]. This leads to
an interesting question: How to build a line-rate, low-
overhead network stack while guaranteeing software
programmability to modern cloud providers?

One promising solution is the SmartNIC-centric network
stack, which allows offloading host workloads to the spe-
cially optimized SmartNIC processing units for better per-
formance/cost efficiency. According to the location of the
processing unit, SmartNIC is categorized into two types [50]:
on-path and off-path. The former uses the dedicated pro-
cessing framework and can only be programmed with low-
level vendor-specific microcode, posing significant burdens
on developers [77, 95]. The latter features an on-NIC Arm
SoC [5, 61, 63] and Linux, and developers can seamlessly mi-
grate existing programs. In this paper, we focus on off-path
SmartNIC, considering that off-path architecture is the de
facto SmartNIC architecture adopted by mainstream cloud
vendors (e.g., Alibaba CIPU [56], AWS Nitro [78]). Although
the off-path SmartNIC provides the modern cloud required
programmability, building a line-rate network stack with off-
path SmartNIC is non-trivial due to three identified unique
challenges caused by the inherent SmartNIC architecture:
1. High Bandwidth Contention on the Arm-NIC Switch
Link. Off-path SmartNIC features a NIC switch to connect
the NIC, the Arm, and the host interface. When outgoing
traffic and incoming traffic both travel through the Arm,
the link bandwidth between the Arm and the NIC switch
easily becomes the bottleneck. If each NIC switch endpoint

1

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 260

provides a 400 Gbps duplex bandwidth, a 400 Gbps outgoing
traffic from host → Arm → NIC would fully saturate the
Arm endpoint bandwidth, and thus leaves no link bandwidth
for incoming traffic from NIC to achieve duplex line-rate.
2. Constrained Arm Memory Bandwidth. The network
stack requires traffic to be temporarily staged in Arm mem-
ory, where both TX and RX paths incur twice the bandwidth
occupation. Consequently, consuming a 400 Gbps traffic de-
mands about 1600 Gbps memory bandwidth, far exceeding
the bandwidth capability of modern SmartNICs [5, 28, 61, 63],
which are commonly equipped with two DDR5 channels and
provide about 440 Gbps memory bandwidth. Our empirical
evaluation using “Echo Server” shows that this limitation
can degrade the attainable throughput by 3.3×.
3. Long latency of Small Packet due to High PCIe In-
terconnect Latency. To invoke the network stack function,
the Work Queue Entry (WQE) and Completion Queue Entry
(CQE) are not directly passed to the NIC but detoured to the
Arm, which introduces higher latency due to additional PCIe
hop and is fatal for latency-sensitive applications. We test on
the L2 Reflector application with 64B payload size, the Arm
detour incurs an average 10.1𝜇s latency, which is 2.2×/1.4×
higher than the RDMA NIC/microkernel-based design.
To this end, we design and implement SmartNS, a

SmartNIC-centric network stack with software transport
programmability and line-rate packet processing capabili-
ties. To address the above three challenges, SmartNS intro-
duces: 1) a header-only offloading TX path that constructs
the custom packet header on Arm and integrates the payload
within NIC; 2) an unlimited-working-set in-cache processing
RX path that receives packets into LLC, followed by cache
self-invalidation after transferring the payload to the host
destination; 3) a DMA-only notification pipe that leverages
high-performance DMA engines to communicate between
host and Arm; and 4) a programmable offloading engine that
empowers cloud providers to offload specialized tasks like
customize one-sided operations and network functions. In
sum, SmartNS achieves line-rate throughput and offers cloud
providers the required software transport programmability.
We prototype SmartNS on an off-the-shelf Nvidia

Bluefield-3 SmartNIC with 400 GbE [63] connectivity and
implemented various different network stacks. Benefitting
from our novel design, SmartNS can sustain full-duplex
line-rate and comparable single/multiple flow throughput
with RDMA NIC. SmartNS achieves 2.2× higher IOPS than
the microkernel-based baseline in disaggregated block stor-
age [110] and 1.3× higher throughput than the hardware-
offloaded baseline in KVCache transfer [71].
2 Background and Motivation
In modern data center, an ideal network stack should be
capable of 1) providing high throughput and low latency; 2)
minimizing the host overhead for stack processing (i.e., CPU
occupation); 3) avoiding memory bandwidth contention with
co-located applications; 4) providing high programmability

Table 1. Comparison of network stack approaches.

Solution Throughput Host
Overhead

Memory
Contention

Programm-
ability

Monolithic
kernel-

based [90]
low High High Medium

Microkernel-
based [52] Medium Medium High High

Hardware-
offloaded [54, 84] High Low None Low

Naïve SmartNS Low Low None High
SmartNS High Low None High

Figure 1. Comparison of different network stack designs.
to allow developers to customize data plane policy (transport
protocol and multi-path) and control plane policy (QoS, ac-
cess control and congestion control). However, the existing
designs fail to meet all the requirements as shown in Table 1.
2.1 CPU-centric Network Stack
2.1.1 Monolithic Kernel-based Network Stack. Fig-
ure 1a illustrates the data flow of a monolithic kernel-based
network stack. In the TX path, the user application invokes
a system call and switches to the kernel mode, where the
network stack processes protocols and constructs packet
headers. Then, it copies the user’s payload into a pinned
DMA-safe memory region and notifies the NIC to trans-
mit. In the RX path, the NIC places received packets in a
kernel-space reception queue and triggers an interrupt. Af-
ter protocol processing, the network stack copies the payload
to the user buffer and signals the user application. The sys-
tem call overhead can incur a slowdown of up to 75%, as
reported in prior research [60, 90, 97]. Besides, the high com-
plexity of developing kernel code significantly harms the
programmability of monolithic kernel-based network stacks.
2.1.2 Microkernel-based Network Stack. To mitigate
the aforementioned host CPU overhead and programming
complexity, many systems adopt the microkernel-based net-
work stack [17, 31, 35, 36, 52, 60, 65, 69] to replace costly
system calls with lightweight IPC (Inter-Process Commu-
nication), as illustrated in Figure 1b. There are three main
benefits. First, compared with system calls, the overhead
of IPC in modern CPUs is much lower as it preserves the
application cache locality [52]. Second, it allows applications
to directly use a pinned DMA-safe memory region, avoiding
the memcpy overhead in the TX path. Third, a microkernel-
based network stack has much higher programmability, as
developing and deploying userspace code is much easier.
2.1.3 Issues of CPU-centric Network Stack. AsMoore’s
law is slowing down, the gap between network and CPU

2

SmartNS: Enabling Line-rate and Flexible Network Stack with SmartNIC Conference’17, July 2017, Washington, DC, USA

(a) Network throughput (b) Host memory bandwidth

Figure 2. Comparison of different stacks achieved through-
put and corresponding host memory bandwidth usage.

speeds is rapidly increasing. With 200/400 GbE NICs already
deployed in modern datacenters [21, 70, 78] and 800 GbE
expected in the near future [55], both CPU-centric designs
face two key issues.
I1: High host CPU overhead. The host CPU overhead
mainly consists of payload copy, which spends more than
60% of CPU resources [6, 7]. Due to the limited Line Fill
Buffer (LFB) per CPU core [91], it can achieve only about
7GB/s memcpy speed per core. Cai et al. [7] propose the
decoupling data copy from application threads and using
multi-threaded memcpy, but it still needs more than 15 cores
to achieve the 400Gbps memcpy without protocol processing.
To illustrate the host CPU overhead, we construct an

“Echo Server" using a monolithic kernel-based [97] and a
microkernel-based [52] network stack, respectively, and com-
pare with the RDMA NIC [33]. This echo server has 8 DDR5
channels with up to 160GB/s memory bandwidth. Both ma-
chines are equipped with a 400 GbE NVIDIA ConnectX-7
NIC [54], and the packet size is 2KB, each CPU core serves 8
connections with 64 TX depth.
Figure 2a illustrates the throughput under different host

CPU cores.We observe that due to expensive system calls, the
monolithic kernel exhibits approximately 42% lower through-
put than the microkernel-based design, which achieves only
around 39% per-CPU-core throughput compared with RDMA
NIC, mainly due to the additional memcpy in RX path. We
predict that this performance disparity would be widened as
network speeds approach 800 Gbps in the near future.
I2: High host memory contention. The growth of net-
work speed also places contention on thememory subsystem,
which has been extensively explored in prior works [1, 89].

On the one hand, the extra memcpy adds significant mem-
ory pressure to the network stack. For example, only one
extra memcpy in the RX path of the 400Gbps network needs
at least 200GB/s memory bandwidth to achieve full-duplex
line-rate throughput, which requires at least 8 DDR5-4800
memory channels (typical single-socket Intel servers sup-
port up to 8 channels [29, 87]). As shown in Figure 2b, both
monolithic kernel and microkernel designs consume roughly
1.9×memory bandwidth compared with the RDMANIC. The
monolithic kernel almost fully saturates the available mem-
ory bandwidth when its throughput reaches 300Gbps.

(a) Monolithic kernel-based system (b)Microkernel-based system
Figure 3. Memory-intensive application causes interference
with the network stack.

On the other hand, CPU-centric network stacks suffer
severe interference from co-located memory-intensive appli-
cations in multi-tenant environments. As the CPU memory
controller is shared among all cores, a core would suffer high
memory access latency when other cores issue lots of mem-
ory transactions, resulting in high tail latency [17]. To quan-
tify this effect, we use one CPU core as an echo server and
other cores running Memory Latency Check (MLC) [27] to
simulate a memory-intensive garbage collection application.
Figure 3 illustrates the P99 latency of the echo server, MLC
starts at 2𝑠 and ends at 5𝑠 . We observe that the interference
increases P99 latency by 10.5×/9.2× for monolithic kernel
and microkernel-based designs, respectively. This indicates
that CPU-centric network stacks suffer from high tail latency
in the case of co-located memory-intensive applications.
2.2 Hardware-offloaded Network Stack
To address the three aforementioned issues, hardware of-
floading technologies, e.g., RDMA, are used to offload the
entire network stack to the NIC hardware to achieve high
throughput, low latency, and low host overhead [54, 75, 78,
84]. However, a hardwired network stack can not meet the
various requirements of numerous different upper-layer ap-
plications (e.g., GPU communication, disaggregated storage,
and high-performance computing). Specifically, their rigid
architecture introduces programmability limitations.
I3: Inadequate data/control plane programmability.
Commercial NICs only support a limited number of trans-
ports. For example, Nvidia ConnectX-7 [54] only supports
RoCEv2 [26] and InfiniBand [25]. However, extensive in-
novations have been proposed to customize the transport
layer to address specialized application requirements, like
Google Snap [52] 1RMA [84] and Falcon [20], AWS SRD [78],
Alibaba Solar [56, 110], Tesla TTPoE [72], and IRN [58].
Likewise, modern data centers impose diverse control plane
requirements: GPU communication needs high-precision
congestion control [41, 45, 92, 111] and multi-path rout-
ing [8, 43, 78]; VPC needs multi-tenancy performance iso-
lation [23, 39, 51, 106] and access control [67]. However,
commercial NICs are always treated as black boxes and offer
only limited “configurable" capabilities that are not truly
programmable. It takes years to collaborate with vendors to
integrate custom methods into the next-gen ASIC NIC.
To meet the need for programmability, researchers pro-

pose several FPGA-based NIC designs [80, 84, 93, 94], with
3

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 260

Figure 4. High-level system architecture and TX/RX data
flow of a naïve SmartNIC-centric network stack.

which users can update the on-NIC transport module us-
ing hardware description languages (HDL) such as Verilog.
However, developing using HDL has a much longer devel-
opment cycle, and fails to meet the rapidly evolving de-
mands of the cloud workloads, which could update weekly
or monthly [52, 56].

2.3 Naïve SmartNIC-centric Network Stack
Modern off-path SmartNICs(e.g., NVIDIA BlueField [61, 63],
Broadcom Stingray [5], Intel IPU [28]) feature an on-NIC
programmable SoC (usually consisting of Arm), and thus
provide an opportunity to offload the network stack to the
NIC while preserving software programmability.

Figure 4 sketches such a naïve SmartNIC-centric network
stack design. In the TX path, the user application notifies
Arm to send the packet (1), then Arm fetches the payload
into its memory (2), prepares the packet header, and en-
capsulates the header and payload into the corresponding
packet and send it out (3). In the RX path, the incoming
packet is first stored in the Arm memory (4). Then the Arm
parses the packet header, processes the protocol, and delivers
the payload to the corresponding host buffer (5), at last the
Arm signals the host CPU for notification (6). This naïve
design allows implementing the entire transport layer in the
Arm, thus providing software programmability while mini-
mizing host CPU consumption and host memory bandwidth.
However, it introduces three severe issues.
C1:High bandwidth contention on theArm-NIC switch
link.An off-path SmartNIC features a NIC switch to connect
the NIC, the Arm, and the host interface, as shown in Figure 4.
The Arm sits outside the host/NIC path, and that is why it
is called off-path SmartNIC. In an off-path architecture, the
link bandwidth between the Arm and NIC switch becomes
the bottleneck when outgoing traffic and incoming traffic
both travel through the Arm. If each NIC switch endpoint
provides a 400 Gbps duplex bandwidth, a 400 Gbps outgoing
traffic from host → Arm → NIC would fully saturate the
link bandwidth of the Arm endpoint, and there would be no
link bandwidth for incoming traffic.
C2: Constrained Armmemory bandwidth. Compared to
the host CPU, off-path SmartNICs offer comparable general-
purpose computing capabilities but feature a significantly
weaker memory subsystem [10]. For instance, the BF3 Smart-
NIC features two 5600MT/s DDR5 channels to deliver the
theoretical 716.8Gbps memory bandwidth, and its achievable

mixed read-write bandwidth is approximately 440Gbps [10].
However, the network stack requires traffic to be temporarily
staged in ArmDRAM, resulting in the payload going through
device memory four times, as illustrated in Figure 4. Thus,
400Gbps network throughput requires about 1600Gbps mem-
ory bandwidth—a requirement that far exceeds the capability
of BF3. BlueField-2, Intel IPU, and Broadcom PS1100R also
have similar memory bandwidth shortages.

To illustrate this, we implement a naïve SmartNIC-centric
network stack in Figure 4 and conduct the "Echo Server" ex-
periments again (§2.1). We find that it achieves only 120 Gbps
throughput (30% of the network link throughput). Through
the memory monitor on the Arm, we identify that the pri-
mary culprit behind its performance degradation is memory
bandwidth exhaustion.
C3: Long latency of small packet due to high PCIe in-
terconnect latency. As shown in Figure 4, to invoke the
network stack function, the WQE and CQE are not directly
passed to the NIC but detoured to the Arm, which introduces
extra PCIe interconnect latency (taking sub-microseconds).
Although throughput-sensitive applications are unaffected
by the additional latency, it still leads to performance degra-
dation for latency-sensitive applications, particularly when
the payload size falls within oneMTU.We test on L2 Reflector
application and use 64B payload size, the naïve SmartNIC-
centric network stack demonstrated an unexpectedly high
latency of roughly 10.1𝜇s , which is 2.2× higher than the
RDMA NIC and 1.4× higher than the microkernel-based
network stack.

3 Design of SmartNS
3.1 Overview
To address the above three challenges, we propose SmartNS,
a SmartNIC-centric network stack with software transport
programmability and line-rate packet processing capabilities.
Figure 5 presents the architecture overview of SmartNS. The
main network stack running on the on-NIC Arm cores as
a separate user process consists of 1) a header-only offload-
ing TX path (§ 3.2) that constructs custom packet headers
on the Arm and directly integrates the host payload within
the NIC; 2) a unlimited-working-set in-cache processing RX
path (§ 3.3) that receives packets into the LLC, followed by
cache self-invalidation after transferring the payload to the
host destination; 3) a DMA-only notification pipe (§ 3.4) that
solely leverages high performance on-NIC DMA engines
to notify the host or Arm core; and 4) a programmable of-
floading engine (§ 3.5) that allows cloud providers to offload
specialized functions like customized one-sided operations
and network functions. In contrast to prior works that focus
on specific protocols, SmartNS is architected as a general
network stack framework to allow for easy implementation
of various transport protocols and control plane mechanisms,
including QoS policies and congestion control algorithms. In

4

SmartNS: Enabling Line-rate and Flexible Network Stack with SmartNIC Conference’17, July 2017, Washington, DC, USA

Figure 5. Architecture overview of SmartNS.

Figure 6. Comparison of TX path strategies.

this paper, we have implemented two demonstrative trans-
port protocols: RoCEv2 [26] and Solar [56], along with the
widely adopted DCQCN [111] as the CCA.

On the host side, SmartNS provides end users 1) a user-
space runtime library linked to each application; and 2) a
kernel module that registers the entire system as a NIC device
and communicates with the network stack. This user library
forwards control verbs (like create_qp and modify_qp)
to the kernel module and directly passes data verbs (like
post_send and post_recv) to Arm through a DMA-only
notification pipe. Since all operations are offloaded to the
SmartNIC, this library introduces negligible overhead for the
host CPU. By registering the entire system as a NIC device
in a kernel module, users can enjoy out-of-the-box IBV verbs
compatibility [73], which is important for applying RDMA-
aware optimizations [12, 96, 97, 112]. Note that IBV Verbs
not only support RDMA RC/UD mode but also support Raw
packet mode, which can send/receive raw Ethernet packets.
SmartNS relies on Raw packet mode to customize the packet
header and support various transport protocols.
3.2 Header-only Offloading TX Path
To address the challenge #1 (C1), we propose the Header-
only offloading TX path. First, we discuss why the following
general and widely used TX path design is inadequate for
achieving high throughput.
Option: Naïve entirely offloading TX path. Figure 6a
depicts the process of naïve entirely offloading TX strategy,
which has been widely adopted in prior studies [30, 38, 40].

When the user application initiates packet transmission (1),
the Arm utilizes intra-node DMA/RDMA [10, 95] to read the
payload into the Arm memory (2). The Arm subsequently
constructs the corresponding packet header and merges it
with the payload into a contiguous buffer (3). At last, the
Arm transmits the assembled packet to the network (4).
This approach benefits from standard IBV verbs, making
it straightforward to implement. However, this approach
causes significant Arm memory subsystem pressure and
saturates the Arm endpoint’s full-duplex link bandwidth:
although it achieves line rate for TX traffic, there would be
no link bandwidth for RX traffic (discussed in §2.3).
Our approach: Header-only offloading TX path. To
address the limitations of the above design, we decouple
the packet header and payload across from Arm memory
and host memory, aiming to reduce the Arm endpoint’s
link occupation and minimize Arm memory bandwidth pres-
sure. Our key insight is that the network stack typically
neither accesses nor modifies the packet payload, thus, we
can construct custom header on Arm and allow the payload
be fetched directly by the NIC without any additional data
movement, while leveraging NIC hardware for residual op-
erations such as CRC computation, IP Checksum, and AES
encryptio. Figure 6b illustrates the process. After the Arm
prepares the packet header (2), both the header and the pay-
load are directly retrieved by the NIC (3). This simple yet
effective design offers three key advantages: (1) eliminates
the Arm-NIC switch link congestion, (2) reduces bandwidth
pressure on the Arm memory subsystem, and (3) decreases
the programming complexity of the network stack.

DMA/RDMA operations require the payload buffer to re-
side in a pre-registered memory region, each memory region
associated with a specific context. Since the context includes
hardware resources and can’t be shared between Arm and
host CPU, Arm can’t directly use payload information per-
taining to the host’s memory region to construct WQE. To
expose host payload buffer information to the network stack,
we introduce the shadow memory region. Each time the
user application registers a memory region, the kernel mod-
ule informs the (host VA, Size) to the Arm. The Arm then
selects an unused virtual address range (Arm VA), instructs
the NIC to establish a hardware mapping between the host
VA and the Arm VA, designates the (Arm VA, Size) as the
shadow memory region, and finally returns the Arm VA to
the user library. Importantly, this Arm VA is not mapped
to any physical address and cannot be directly accessed via
load/store instructions, thereby introducing no actual mem-
ory overhead. As shown in Figure 7a, when the user initiates
packet transmission, the library automatically translates the
host VA to Arm VA (1). Subsequently, the Arm utilizes the
Arm VA in the shadowmemory region to construct the WQE
and transmit the packet (2), thus, NIC hardware resolves the
corresponding host VA through that pre-established map-
ping (3), fetches the payload directly from host memory,

5

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 260

Figure 7. Architecture of Shadow Memory Region and High
Scalability Shared Send Queue.
and integrate the custom packet headers generated on Arm
(4). This header-only offloading TX path ensures zero-copy
while remaining transparent to the user application.

Another critical concern is the scalability of our software-
based TX mechanism. Assuming each SQ is assigned a dedi-
cated notification pipe, the overhead from software looping
is negligible when the number of SQs is relatively small (≤
100). However, as the number of SQs increases, this approach
becomes less efficient. The looping time for 2000 SQs can be
up to 50 µs [88]. To achieve low overhead and high scalabil-
ity, we propose the high-scalability shared send queue.
As shown in Figure 7b, instead of allocating one pipe per SQ,
we assign 𝑁 pipes per context, where 𝑁 equals the number
of Arm cores. Each Arm core is responsible for polling a
dedicated pipe within its assigned context. When a new SQ
is created in a given context, the driver selects an under-
loaded Arm core and utilizes its corresponding pipe for SQE
transmission. Given that RDMA-based systems typically cre-
ate a limited number of contexts [96, 101, 112], each Arm
core is required to poll only a small number of pipes. This
sharing mechanism doesn’t break the performance isolation
of resources because hardware resources are allocated at the
context level, and we only share notification pipes within
the same context. Furthermore, to efficiently manage unfin-
ished requests, we maintain an active SQ table that tracks
unfinished operations for each Arm core. An SQ is added
to the active SQ table when the Arm core receives an SQE
related to that SQ, and this SQ will be transitioned to the
non-active SQ pool when all the requests are finished.
3.3 Unlimited-working-set In-Cache

Processing RX Path
To address challenge #2 (C2), we propose unlimited-working-
set in-cache processing RX path. In the following, we discuss
the challenges, followed by its design.
Challenges. Although TX path optimizations can greatly
reduce the precious Arm memory bandwidth incurred by
the TX traffic because TX payload does not traverse through
the Arm memory, the limited Arm memory bandwidth is
still insufficient to support line-rate RX traffic if all RX traffic
passes through the Arm memory. Take BF3 as an example,
we observe that the Arm memory bandwidth is exhausted

when the RX traffic bandwidth is only 60% of the network
line rate in the previous "Echo Server" experiment.
Direct Cache Access (DCA) allows PCIe devices such as

NICs to write incoming packets to the LLC directly, and thus
is widely used in network applications to relieve memory
bandwidth problems [2, 13–16, 44, 100]. The Arm on the
SmartNIC also supports the DCAmechanism and can use the
whole LLC space to serve the DCA mechanism; thus, it can
potentially address the above-mentionedmemory bandwidth
challenge. However, we find that the benefits of DCA are
highly constrained: the working set size must be smaller
than the cache size.
Cache-fitting working set. Figure 8a demonstrates how a
network stack receives packets when the working set (i.e.,
receive buffer) can fit in the cache. We observe that every
address in the working set is cached, and an incoming packet
can be directly written into the cache without cache eviction.
In this case, the DCAmechanism can well address the limited
Arm memory bandwidth challenge.
Cache-exceeding working set. However, in a network
stack RX path, the working set (i.e., receive buffer) size is
usually very large, which far exceeds the cache size. Ideally,
the working set size only needs to be larger than the product
of the network bandwidth and the average packet processing
time. However, packet processing time varies significantly,
and the packets may arrive in a burst manner (i.e., a sudden
spike in packet arrivals) [1, 16]. To avoid dropping packets,
the network stack RX path must ensure that the working
set size can absorb the burst. Consequently, multi-hundred-
gigabit network stacks typically employ more than 512 de-
scriptors per RX queue [16, 68, 96]. Assuming that there is
one RX queue per Arm core and themaximum packet size is 4
KB, the total working set size would be 512∗16∗4𝐾𝐵 = 32𝑀𝐵
in the 16-core BF3 SmartNIC. Considering that the 16 MB
cache of BF3 is also shared with the TX path and other Smart-
NIC computations, the RX working set size would far exceed
the available cache size. Figure 8b demonstrates how a net-
work stack receives packets when the working set exceeds
the cache size. We observe that an incoming packet would
always incur a cache eviction, thus, the system performance
would be bottlenecked by the Arm memory bandwidth.
Unlimited-working-set in-cache processing RX. To this
end, we propose unlimited-working-set in-cache processing
RX, which avoids cache eviction even if the RX working set
size far exceeds the cache size. Our key idea is based on the
observation that the packet content is no longer needed by
Arm after the network stack RX processes the packet header
and forwards the packet to the host. As such, there is no
need to actually evict the processed packets from the cache
to the Arm memory. Therefore, after the Arm core processes
a packet and forwards the packet to the host, the Arm core
would explicitly invalidate the cachelines of the packet buffer

6

SmartNS: Enabling Line-rate and Flexible Network Stack with SmartNIC Conference’17, July 2017, Washington, DC, USA

Figure 8. Comparison of RX path strategies that motivate the design of unlimited-working-set in-cache processing RX path.
by invoking the BF3-provided API [64], which would set the
related cachelines “invalidate” flag1.
Generality. SmartNS relies on DCA and self cache-
invalidation mechanism to support unlimited-working-set
and high-performance RX path. Although our current im-
plementation relies on Nvidia’s domain-specific APIs, Intel
DDIO (the DCA implementation in x86 processors) has been
extensively studied in prior works [1, 14, 16, 44, 100], and
some RISC-V processors already support both DCA and self
cache-invalidation [2, 10]. We therefore believe our design
can be applied to future platforms and NICs.
Figure 8c demonstrates how SmartNS receives packets

when the working set exceeds the cache size. As the pro-
cessed packet is explicitly invalidated, there are always avail-
able cachelines for incoming packets, and cacheline stale
contents are discarded rather than written back, which al-
lows the incoming packet to overwrite the cacheline directly
and avoid unnecessary write back. In the rare case when a
packet arrival burst occurs or the processing rate slows down,
the incoming packets may find no invalidated cacheline to
fill in and incur an eviction. However, the packet would not
be dropped, and the eviction would disappear after the burst.
Out-of-order packet processing.Many transport proto-
cols employ Go-Back-N or Selective Repeat (SR) to handle
out-of-order packets. For Go-Back-N, SmartNS simply self-
invalidates the received packet buffer and sends a NACK sig-
nal to the client. For SR, SmartNSmaintains a per-connection
reorder buffer in Arm memory. When the Arm processor
receives an out-of-order packet, it writes back the packet
buffer from Arm LLC to Armmemory and sends SACK to the
client, followed by a self-invalidate operation. Thus, SmartNS
can flexibly support different out-of-order handling policies
while remaining compatible with unlimited working-set in-
cache processing.
Towards supporting 800 Gbps networks.With unlimited-
working-set in-cache processing RX, the required cache size
only needs to be larger than the product of the network
bandwidth and the average packet processing time. For a
400 Gbps network and a 10𝜇s average network stack pro-
cessing time, the required cache size is only 500 KB, which
is far smaller than the BF3 Arm LLC size (32× smaller). Even

1We align each packet buffer to the cacheline granularity (64B) to ensure
that the invalidation would not affect other packets.

when the network bandwidth scales to 800 Gbps and the
processing latency is doubled, our approach only needs
800𝐺𝑏𝑝𝑠 × 20𝑢𝑠 = 2𝑀𝐵 LLC. Therefore, it only requires
upgrading Arm LLC bandwidth from the current 1200 Gbps
to 1600 Gbps, which is relatively easy for the next genera-
tion Arm to accomplish. As such, we believe SmartNS RX
path can also fit the next-generation high-bandwidth
network.

3.4 DMA-only Notification Pipe
Common RNICs utilize WQE-by-MMIO and Doorbell mecha-
nisms to update SQ/RQ/CQ pointers with the RNIC [32, 74].
In the first case, the WQEs are transferred via 64B write-
combined MMIOs; in the second case, the host updates the
NIC Doorbell, followed by the NIC fetching WQEs using one
or more DMAs. Although these mechanisms perform well
for common RNIC, off-path SmartNICs adopt an emulated
MMIO interface between the Arm and the host CPU [61, 63]
and suffer from low MMIO throughput. Our observations
reveal that BF3 achieves fewer than 1K/s MMIO write rate,
which is markedly insufficient for the demands of 400Gbps
networks. Moreover, exclusively using the doorbell mecha-
nism incurs latency due to an extra PCIe round-trip.

Therefore, we propose a DMA-only notification pipe that
relies solely on a high-performance DMA engine for commu-
nication and coordination. Tomaximize efficiency, the design
enforces a single producer and a single consumer, ensuring
lockless access, and each element is aligned to the cache line
size. Each element contains a dedicated 1-bit flag signal to in-
dicate its validity. The producer sets this flag in the producer
buffer and initiates the DMA engine, while the consumer
continuously polls the next element in the consumer buffer
until its flag becomes valid. Upon reaching the buffer’s end,
the flag toggles to indicate wrap-around. Since the producer
typically batches multiple elements per DMA transfer, cache
contention is avoided [76]. For SQ/RQ, the user application
is the producer and the ARM is the consumer. To further
realize memory alignment and keep cache locality, SQ ele-
ments (64B) are transferred immediately, whereas RQ entries
are grouped in batches of four (4 × 16B). For the CQ element
(64B), roles are reversed: the Arm produces entries, and the
user application consumes them. But it involves a question
about how the ARM tracks the user application’s progress
in handling CQE. To address this, we implement a consumer

7

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 260

counter located in the user library: each time the consumer
processes an element, it automatically increases the counter,
and the producer periodically reads it via one DMA read
after every 𝑛 elements (customized by developers).
Latency-sensitive flow optimization. We observe that
latency-sensitive applications typically have payload sizes
limited to a single MTU and employ two-sided operations.
To address challenge #3 (C3), we introduce a low-latency
QP optimized for MTU-sized, two-sided operations, compris-
ing two complementary mechanisms: In the TX path, we
extend the SQE to carry inline payloads, thereby eliminating
one PCIe round-trip. Payloads are delivered to the Arm via
our high-performance notification pipe followed by inline
send [32]. In the RX path, we allow the NIC to directly place
the payload section in the application buffer while routing
the header section to the Arm. The application polls the
first byte of the receive buffer to detect incoming packets.
In this case, the transport protocol is still processed on the
SmartNIC, while the application should detect and handle
out-of-order and duplicate packets at the user level.
3.5 Programmable Offloading Engine
In addition to the network stack, exploiting the spare Smart-
NIC computing resources to mitigate the host CPU occupa-
tion is a trendy way to lower the data center tax [37, 49, 50].
However, prior works [10, 34, 83, 102, 103] require ad-hoc
design and deployment tailored to specific scenarios and
applications. SmartNS proposes a programmable offload-
ing engine, allowing easy offloading of various applications.
The engine runs on top of the network stack transport and
provides a rich set of programming APIs to enable cloud
providers to offload the application logic easily. In short, a
programmable offloading engine allows cloud providers to
register an unused transport opcode and hook up with a
customized function that runs on the spare SmartNIC Arm
cores. An incoming packet with a specific opcode would trig-
ger the execution of the hooked-up function after the packet
has been processed by the transport. This offloading engine
executes application-layer functions on dedicated Arm cores
isolated from the network stack and can invoke lookaside
accelerations on the SmartNIC to provide computing inten-
sity. Cloud providers configure the number of Arm cores
allocated to this engine at SmartNS startup.

This offloading engine provides a rich set of programming
API (Table 2) to help cloud providers deploy their offload-
ing tasks. As such, cloud providers can focus on task logic
instead of dealing with low-level network stack details. We
take a simple batched RDMA READ as an example and show
how to use these APIs to implement it; the example code is
provided in supplementary material. The programmer first
chooses an user-defined opcode and uses register_opcode
to register a batched RDMA READ handler function. Before
establishing the QP connection, the programmer invokes
register_dma_region to register a host memory region for
subsequent DMA accesses. Upon receiving a corresponding

Table 2. Programmable offloading engines APIs.
register_opcode(opcode, qp, func)
Registering the target opcode to the network stack, this
function will be invoked when a target packet is received.
register_dma_region(host_addr, size)
Registering the host memory on the Arm for
following DMA operations.
alloc_resp(context, size)
Allocating 𝑠𝑖𝑧𝑒 bytes on pinned Arm memory for
response packet, and return the address point.
submit_dma(context, op, host_addr, arm_addr, size)
Submit a DMA operation to the associated address, op
can be READ or WRITE, return an ID for trace.
wait_dma_finish(context, dma_id)
Wait the dma_id corresponding dma operation to finish.
submit_resp(context, addr, size)
Submit the response packet with the specific address.

request with the batched RDMA READ opcode, that regis-
tered handler function is invoked and executed as a user-
space coroutine. In this coroutine, alloc_resp is called to
allocate a pinned Arm memory for the response packet. The
programmer then invokes submit_dma to execute the DMA
operation, and all tasks are enqueued into a task pool and exe-
cuted asynchronously via coroutines; once the DMA transfer
completes, wait_dma_finish returns control and execution
resumes. Finally, the programmer uses submit_resp to de-
liver the response packet back to the client.

4 Implementation
We build a fully functional prototype of SmartNS using
Nvidia BlueField-3 SmartNIC [63] with a PCIe5.0×16 inter-
face and 2×200 Gbps Ethernet ports. SmartNS’s implementa-
tion consists of the core network stack running as a separate
user process on the Arm processor, the kernel modules run-
ning in the host kernel, and the user-space libraries linking
with user applications. The core network stack is imple-
mented in 6,890 lines of C++20 code, the kernel module in
1,350 lines of C98 code, and the user-space libraries in 3,012
lines of C++20 code. Moreover, we introduced several modi-
fications (500 lines of code) to the mlx5 driver on the Arm to
enable more efficient DMA and cache operation interfaces,
while keeping the host mlx5 driver unchanged. Our en-
tire system runs in an unmodified Linux environment. We
left more implementation details in supplementary material.

5 Evalution
Our evaluations aim to answer the following questions:
• How does the performance of SmartNS compare to other
network stacks (§5.2)?

• How effective is the header-only offloading TX path (§5.3)?
8

SmartNS: Enabling Line-rate and Flexible Network Stack with SmartNIC Conference’17, July 2017, Washington, DC, USA

• How effective is the unlimited-working-set in-cache pro-
cessing RX path (§5.4)?

• How effective is the DMA-only notification pipe (§5.5)?
• How effective is programmable offloading engine (§5.6)?
• Howmuch performance acceleration can SmartNS achieve

for block storage and KVCache transfer workloads (§5.7)?

5.1 Experimental Setup
Hardware Testbed. Our hardware testbed consists of two
servers, each having two 16-core Intel Xeon Gold 6426Y
running at 2.5GHz, 512 GiB (16x32 GiB) 4800 MHz DDR5
memory, and a 37.5 MiB LLC. Each server is equipped with
an Nvidia BlueField-3 B3220 400GbE NIC and connected
back-to-back using two 200GbE QSFP56 cables.
Snap Baseline.We implement the baseline "Snap" that runs
the network stack as a separate user program and dedicated
CPU cores. As a representative ofmicrokernel-based network
stacks, Snap leverages DPDK [11] to achieve high throughput
and adopts a simple go-back-N mechanism for packet loss
recovery. Since Snap [52] is not open-sourced, we construct
our network stack based on the descriptions provided in the
paper while minimizing any unnecessary CPU overhead.
RDMA NIC Baseline.We implement the baseline "RNIC"
that directly uses the hardware-offloaded RDMA stack pro-
vided by the state-of-the-art RNIC Nvidia ConnectX-7 [54],
leveraging RC mode and RoCEv2 protocol to achieve the
highest performance. We use dedicated busy-looping CPU
cores to execute IBV verbs like post_send and poll_cq.
Solar-CPU Baseline. We implement the Solar [56] trans-
port protocol on dedicated host CPU cores, strictly following
the specifications outlined in the paper. Solar is the storage
network stack for Alibaba Cloud’s EBS service and has been
deployed on a large scale. Due to the current lack of com-
modity RNIC support for the Solar protocol, we deploy it on
the host CPU and leverage CRC hardware offload along with
DSA engines to achieve optimal performance.

5.2 Comparison with other Network Stacks
In this section, we focus on two basic performance metrics:
throughput and latency. We use the LibR benchmark tool [9],
which is similar to perftest [19] but has finer-grained control.
These tools can run on SmartNS without any modification,
and the dedicated CPU cores assigned to the network stack
remain in a spin state to maximize performance.

Figure 9 illustrates the single connection throughput and
latency of the SEND/WRITE operations across various net-
work stacks. We set TX depth to 64 for the throughput test
and 1 for the latency test. We have two observations. First,
SmartNS achieves comparable throughput to RNIC and up
to 3.5× higher throughput than Snap in both SEND and
WRITE tests. This is because SmartNS offloads massive stack
workloads to NIC hardware similar to RNIC, but Snap relies
on the host CPU to execute, constraining single-connection
throughput. Second, SmartNS exhibits 1.5× higher latency

(a) SEND throughput, TX depth=64 (b)WRITE throughput, TX depth=64

(c) SEND latency, TX depth=1 (d) WRITE latency, TX depth=1

Figure 9. RDMA SEND/WRITE throughput and latency be-
tween a pair of connections on different hosts.

(a) Aggreagate WRITE throughput (b) Host memory bandwidth
occupation

Figure 10. Aggreagate RDMA WRITE throughput of multi-
ple connections and corresponding host memory bandwidth.

than RNIC but still 1.4× lower than Snap, because WQE and
CQE in SmartNS must cross the Arm-NIC switch link and
suffer PCIe interconnect latency relative to RNIC. However,
the proximity of the Arm to the NIC enables SmartNS to
reduce network latency compared to Snap.

Figure 10 shows the throughput ofWRITE operations with
multiple connections, and the corresponding host memory
bandwidth across various network stacks, where the TX
depth of each connection is set to 64 and payload size is
set to 2KB. We observe that SmartNS demonstrates nearly
linear scaling with the increase in connections, reaching
line rate with more than 5 connections, comparable to RNIC
and 1.4× higher than Snap. SmartNS also keeps minimal
host memory bandwidth occupation and reduces the 2.7×
bandwidth compared with Snap. This efficiency is attributed
to its SmartNIC-based packet handling and zero-overhead
on the host CPU.
5.3 Header-only Offloading TX Path
In this section, we examine the performance of our header-
only offloading TX path. As the baseline, we implement
the naïve RDMA-assisted entirely offloading TX and DMA-
assisted entirely offloading TX approaches discussed in (§3.2).
Moreover, since BF3 has two ports and each connection only
uses one port, we use two connections and set TX depth to
64, finally we collect and count the aggregated bandwidth.

9

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 260

(a) WRITE throughput, TX depth=64 (b) Arm memory bandwidth
occupation

Figure 11. Comparison of RDMAWRITE throughput under
2 connections across three TX Path choices and correspond-
ing Arm memory bandwidth.

Figure 12. Using 8 connections and 2KB RDMA WRITE
payload to achieve each TX design upper limit, and insert a
400Gbps RX flow at the 1 second that lasts 5 seconds.

Figure 11a shows the different TX approaches achieved
throughput, and Figure 11b illustrates the corresponding
Arm memory bandwidth occupation. We have three obser-
vations. First, when the payload size is below 8KB, header-
only offloading TX achieves 2.7× and 1.5× higher through-
put, because this mechanism only needs to construct the
packet header and achieve zero copy, and thus significantly
reduces the Arm core and memory subsystem pressure. Sec-
ond, header-only offloading TX and DMA-assisted entirely
offloading TX reach line rate, whereas RDMA-assisted en-
tirely offloading TX is constrained by Arm-NIC switch link
utilization, as discussed in Section (§3.2). Third, header-only
offloading TX maintains Arm memory usage below 0.5GB/s,
independent of network throughput and 70× lower than
DMA-assisted TX. This efficiency is achieved by the header-
only offloading TX bypassing the packet payload storage.

To further illustrate the benefits, we use 8 connections and
2KB payload to repeat the above experiment. Once through-
put stabilized at its maximum, we insert a 400 Gbps RX flow
on different cores from the server Arm core to the client
Arm core, running for 5 seconds. Figure 12 shows the aggre-
gated TX throughput achieved by the various approaches.
Notably, our approachmaintains line rate despite the RX flow,
whereas the other two experience 72% and 35% throughput
reduction. This is because our mechanism avoids contention
on the Arm-NIC switch link with the RX flow.

5.4 Unlimited-working-set In-Cache
Processing RX Path

In this section, we evaluate the effectiveness of the unlimited-
working-set in-cache processing RX path. We use 12 Arm
cores on both client and server, each core handles a single

(a) WRITE throughput, 8KB payload (b) Arm memory bandwidth
occupation

Figure 13. Comparison of 8KB RDMA WRITE through-
put under different working set sizes across three RX path
choices and corresponding Arm memory bandwidth.

connection. We equip each RX queue with 8KB queue ele-
ment to receive jumbo packets. On the server, we vary the
number of RX queue elements to emulate different work-
ing set sizes. The client sends 8KB RDMAWRITE requests,
which are processed by the server’s Arm cores, and then
the payload is transferred to the host buffer by inter-node
RDMA/DMA. Similar to the TX path, we compare three
strategies: (1) using naïve intra-node RDMA for transfer-
ring payload from Arm to Host, (2) using naïve DMA for
transferring, and (3) using unlimited-working-set in-cache
processing RX.
Figure 13a shows the different RX working set sizes

achieved throughput, while Figure 13b illustrates the corre-
sponding Arm memory bandwidth. We have two observa-
tions. First, the unlimited-working-set mechanism maintains
line-rate throughput even as the working set far exceeds
LLC size; specifically, SmartNS achieves 1.6×/2.9× higher
throughput than naïve DMA/RDMA transfer when the work-
ing set size is above 48MB, primarily due to a significant re-
duction in pressure on the Arm memory subsystem. Notably,
even under 48MB working set size, each RX queue only con-
tains fewer than 512 elements, which is relatively small. Sec-
ond, the unlimited-working-set mechanism in-cache process-
ing RX introduces less than 0.8GB/s of memory bandwidth
usage even when throughput reaches line rate, demonstrat-
ing that nearly all operations (receive, process, and transfer)
are processed in cache, without incurring additional memory
bandwidth overhead. Third, the naïve RDMA/DMA exhibits
substantial Arm bandwidth utilization once the working set
size exceeds the LLC, indicating a pronounced leaky DMA
problem effect that limits achievable throughput.
5.5 DMA-only Notification Pipe
In this section, we compare Doorbell, WQE-by-MMIO, and
DMA-only notification mechanisms for WQE submission
latency and achieved throughput. Here, we define latency
as the elapsed time between host submission of a 64-byte
WQE and its receipt by the Arm; both tests employ one host
CPU and one Arm core. Figure 14a shows the throughput and
latency of different notifymechanisms.We have two observa-
tions. First, DMA-only notification pipe achieves comparable
latency with MMIO, and 2.6× lower than Doorbell, this is

10

SmartNS: Enabling Line-rate and Flexible Network Stack with SmartNIC Conference’17, July 2017, Washington, DC, USA

(a) Throughput and latency of
different notify mechanisms

(b) L2 reflector latency for
different network stack

Figure 14. Performance of DMA-only notification pipe and
low-latency QP.

mainly because it omits the additional PCIe round-trip. Sec-
ond, it delivers the highest throughput, which is 2.4× higher
than the Doorbell mechanism; this is also caused by the extra
PCIe round trip. Surprisingly, the MMIO mechanism exhibits
such low throughput, less than 1K/s. This is because most off-
path SmartNICs suffer limited capabilities emulated MMIO
interface, the Arm must communicate with NIC firmware to
get the content of incoming requests, which is very costly.
We also evaluate the latency of different network stacks

via an L2-reflector application. The client sends a 64-byte
packet to the server, and the server swaps the source and
destination MAC addresses of each packet and returns it to
the client. As shown in Figure 14b, unoptimized SmartNS
suffers 2.2×/1.4× higher latency than RNIC and Snap, re-
spectively. However, with our TX inline and RX direct data
placement optimization, SmartNS can achieve 1.11× lower
latency than Snap. Although it is still approximately 2𝜇s
slower than RNIC, this margin is modest. Consequently, de-
velopers can freely choose SmartNS for its programmability
or RNIC when the absolute lowest latency is required.
5.6 Programmable Offloading Engine
In this section, we evaluate the performance advantage of
two programmable offloading functions. First is linked list
traversal; we consider a short linked list where each element
contains an 8-bytes unique key and 64-bytes value. To locate
a target key, the list is traversed starting from the head until
a match is found, then returns the value pointed by the value
pointer to the client. While RNIC performs the traversal on
the client side, SmartNS executes the traversal within the pro-
grammable offloading engine using lightweight intra-node
DMA operations instead of expensive inter-node RDMA op-
erations. Second is batched RDMA READ. As the baseline,
RNIC sends a series of 64-bytes RDMA READ packets. In
our design, the client-side network stack aggregates multiple
target addresses into one consolidated request, after which
the server-side offloading engine issues concurrent DMA
transfers to fetch all requested values in parallel and returns
the aggregated data in a single response.
Figure 15a shows the traversal latency for varying hop

counts, SmartNS achieves 1.7× reduction in latency com-
pared to RNIC, owing to the lightweight intra-node DMA op-
erations, which incur lower latency than inter-node RDMA

(a) Linked list traversal (b) Batched RDMA READ

Figure 15. Programmable offloading functions performance.

Figure 16. Performance comparison when running the block
storage application with Solar protocol.
operations. SmartNS also exhibits more stable latency per-
formance, primarily because intra-node DMA operations are
less susceptible to network fluctuations. Figure 15b shows
the throughput achieved by Batched RDMA READ on a sin-
gle connection, SmartNS achieved 3.5× higher throughput
than RNIC, this is mainly because RDMA READ has limited
outstanding number and simply increasing READ operations
number doesn’t increase throughput, but SmartNS can per-
form READ concurrently with the powerful DMA engine,
thereby enabling significantly enhanced throughput.

5.7 End-to-end Application Performance
Disaggregate block storage. The compute-storage sepa-
ration architecture has become the de facto paradigm in
modern data centers [57, 81, 82, 105]. In this design, com-
pute servers and storage servers are organized into separate
clusters, allowing each to be independently designed and
optimized for specific workloads. The storage agent (SA),
embedded within compute servers, converts storage oper-
ations into network transactions. Alibaba Solar [56] is the
transport protocol used in SA and has been widely deployed.
Leveraging the high flexibility offered by SmartNS, we im-
plemented the Solar protocol in fewer than 2,000 lines of C++
code. As the baseline, we executed the protocol on dedicated
CPU cores, similar to Snap. Additionally, we employ CRC
NIC offload and Intel Data Streaming Accelerator (DSA) [42]
engine to further improve CPU performance. Similar to So-
lar [56, 110], we select widely used 4KB READ request IOPS
as metrics and limit the Solar-CPU network stack to 8 dedi-
cated CPU cores. Each client is assigned to a dedicated core
and set TX depth to 32.
Figure 16 illustrates the IOPS achieved by various ap-

proaches. We have two observations. First, SmartNS reaches
line rate with more than 8 clients, delivering 2.5× (2.2×)
higher IOPS compared to the "CPU-only" baseline for 1 client
(12 clients). This is because SmartNS offloads intensive CRC

11

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 260

(a) CPU mem to CPU mem (b) CPU mem to GPU mem
Figure 17. Throughput comparison of KVCache transfer.
calculation to NIC hardware and massive memcpy to DMA
engine, leaving only lightweight in-cache protocol process-
ing for the Arm core. Second, even utilizing CRC offload and
DSA engine, SmartNS still achieves 1.5× higher IOPS than
"Solar-CPU". Benefit from header-only offloading TX and
unlimited-working-set in-cache processing RX, SmartNS can
easily operate at line rate, while "Solar-CPU" is constrained
by the limitations of the CPU and DSA engine.
KVCache Transfer. Modern large language models (LLMs)
are based on the Transformer architecture, and each infer-
ence request is logically divided into two stages: the prefill
(P) stage and the decoding (D) stage. To meet stringent SLO
requirements, the P/D disaggregation architecture is widely
discussed and adopted [47, 66, 71, 109]. In this architecture,
prefill nodes generate the KVCache and transfer it to the
decoding nodes to continue decoding. Thus, efficient KV-
Cache transfer from the prefill node pool to the decoding
node pool is crucial. The Mooncake transfer engine [71] pro-
vides a high-performance data transfer framework support-
ing RDMA/TCP protocols and Nvidia GPUDirect. However,
Mooncake only chooses limited QP connections for each
transfer task, which induces QP hash collision and one of
the physical ports is underutilized (similar to ECMP hash
collision [70, 98]). Therefore, we integrated the packet spray-
ing mechanism [8, 78] in SmartNS that dynamically varies
the source UDP port on each packet, substantially mitigat-
ing hash collisions and fully utilizing the bandwidth of both
physical ports. We replace Mooncake RDMA with SmartNS
and compare it with the original Mooncake performance. No-
tably, SmartNS also supports Nvidia GPUDirect, enabling the
network stack to transfer payloads directly to/from pinned
GPU memory. For our evaluation, we utilize 8 CPU cores to
submit transfer tasks, bond two ports to one mlx5_bond_0
port [62], and set TX Depth to 1.

Figure 17a shows the transfer latency for various KVCache
sizes between CPU memories, while Figure 17b shows the
latency for transfers from CPUmemory to pinned GPUmem-
ory. Leveraging header-only offloading TX and unlimited-
working-set in-cache processing RX, SmartNS achieves line
rate performance for KVCache sizes exceeding 16MB, ex-
hibits 3.2× lower transfer latency compared to Mooncake
TCP. Remarkably, SmartNS also outperforms Mooncake
RDMA by 1.3×, attributed to the flexibility of SmartNS can
easily adopt the packet spraying mechanism to fully utilize
the bandwidth of both ports.

6 Related Work
Network Stack as a Service. IsoStack [79], ZygOS [69],
TAS [35], NetKernel [60], FreeFlow [36], and RoUD [22] use
dedicated CPU cores to construct an efficient and low-latency
network stack. Snap [52] is an industry framework proposed
by Google and provided in a general-purpose, multi-tenant
cloud environment. Shenango [65] designs a busy looping
IOKernel and uses an entire core to thread scheduling and
packet steering functions. SRM [88] and KRCORE [97] share
QP connections in kernel mode and user mode, respectively,
and perform as a network stack. However, they all intro-
duce the extra memcpy and cause host overhead, memory
bandwidth pressure, and application interference. In con-
trast, SmartNS offloads the entire network stack to off-path
SmartNIC, minimizing the host overhead and interference.
Hardware-offloaded Network Stack. Extensive studies
have offloaded the entire network stack to hardware and
customized RDMA transport. From the industry, Google
1RMA [84] and Falcon [20], AWS SRD [78], Meta [18] andMi-
crosoft Hyperscale [4, 21], Alibaba Solar [56] and HPN [70],
are driving RDMA transport customizations at scale. This
is supplemented by academic contributions like SRNIC [94]
and StaR [93] focus on scalability, SmartDS [103] and RPC-
NIC [102] focus on message split. ZeroNIC [85] splits the
packet header to host kernel stack and passes the payload
directly to the destination. All of them can achieve high
throughput but offer low programmability and low flexibil-
ity. Instead, SmartNS maintains line-rate and high flexibility
through the novel designs.
Offloading to SmartNIC. Offloading host workloads to
SmartNICs has recently attracted significant attention in
both academia and industry. Many prior works [30, 38, 48,
86, 95, 104] offload tasks to off-path SmartNICs. IO-TCP [38]
offloads disk I/O and TCP packet transfer to SmartNIC and
reduces the burden on the CPU for online content deliv-
ery. Xenic [77] offloads distributed transactions to SmartNIC.
SCR [107] uses datapath accelerator (DPA) to fine-grain per-
form the congestion control algorithm. These works leverage
SmartNIC to alleviate host CPU pressure but do not provide
a comprehensive study on the offload network stack.

7 Conclusioin
This paper presents SmartNS, a SmartNIC-centric network
stack with software transport programmability and line-rate
packet processing capabilities. To tackle the limitations of
SmartNIC-induced challenges, SmartNS introduces a header-
only offloading TX path, an unlimited-working-set in-cache
processing RX path, a DMA-only notification pipe, and a
programmable offloading engine. SmartNS is immediately
deployable, which maintains compatibility with IBV verbs
and leverages off-the-shelf SmartNICs. The experimental
results show that SmartNS achieves 2.2× higher IOPS in block
storage and 1.3× higher throughput in KVCache transfer.We
will make SmartNS open-source to benefit our community.

12

SmartNS: Enabling Line-rate and Flexible Network Stack with SmartNIC Conference’17, July 2017, Washington, DC, USA

References
[1] Mohammad Alian, Siddharth Agarwal, Jongmin Shin, Neel Patel,

Yifan Yuan, Daehoon Kim, Ren Wang, and Nam Sung Kim. Idio:
Network-driven, inbound network data orchestration on server pro-
cessors. In MICRO. IEEE, 2022.

[2] Shashank Anand, Michal Friedman, Michael Giardino, and Gustavo
Alonso. Skip it: Take control of your cache! In ASPLOS, 2024.

[3] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer
Rexford, DavidWalker, and DavidWentzlaff. Enabling programmable
transport protocols in {High-Speed}{NICs}. In NSDI, 2020.

[4] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre,
Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman,
Lei Cao, Ahmad Cheema, et al. Empowering azure storage with
{RDMA}. In NSDI, 2023.

[5] Broadcom. BCM958804-PS1100R. https://gtmteknoloji.com/wp-
content/uploads/2020/08/PS1100R-PB100.pdf, 2020.

[6] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun
Hwang, and Rachit Agarwal. Understanding host network stack
overheads. In SIGCOMM, 2021.

[7] Qizhe Cai, Midhul Vuppalapati, Jaehyun Hwang, Christos Kozyrakis,
and Rachit Agarwal. Towards 𝜇 s tail latency and terabit ethernet:
disaggregating the host network stack. In SIGCOMM, 2022.

[8] Guo Chen, Yuanwei Lu, Bojie Li, Kun Tan, Yongqiang Xiong, Peng
Cheng, Jiansong Zhang, and Thomas Moscibroda. Mp-rdma: enabling
rdma with multi-path transport in datacenters. TON, 2019.

[9] Xuzheng Chen and Jie Zhang. Libr: Yet another rdma perftest. https:
//github.com/carlzhang4/libr, 2025.

[10] Xuzheng Chen, Jie Zhang, Ting Fu, Yifan Shen, Shu Ma, Kun Qian,
Lingjun Zhu, Chao Shi, Yin Zhang, Ming Liu, et al. Demystifying
datapath accelerator enhanced off-path smartnic. arXiv preprint
arXiv:2402.03041, 2024.

[11] DPDK. Data Plane Development Kit. https://www.dpdk.org/, 2025.
[12] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B Nightin-

gale, MatthewRenzelmann, Alex Shamis, Anirudh Badam, andMiguel
Castro. No compromises: distributed transactions with consistency,
availability, and performance. In SOSP, 2015.

[13] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q Maguire Jr,
and Dejan Kostić. Packetmill: toward per-core 100-gbps networking.
In ASPLOS, 2021.

[14] Alireza Farshin, Amir Roozbeh, Gerald QMaguire Jr, and Dejan Kostić.
Make the most out of last level cache in intel processors. In EuroSys,
2019.

[15] Alireza Farshin, Amir Roozbeh, Gerald QMaguire Jr, and Dejan Kostić.
Make the most out of last level cache in intel processors. In EuroSys,
2019.

[16] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan
Kostić. Reexamining direct cache access to optimize {I/O} intensive
applications for multi-hundred-gigabit networks. In ATC, 2020.

[17] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
Caladan: Mitigating interference at microsecond timescales. In OSDI,
2020.

[18] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu,
Guilherme Goes, Hany Morsy, Rohit Puri, Mohammad Riftadi,
Ashmitha Jeevaraj Shetty, Jingyi Yang, et al. Rdma over ethernet
for distributed training at meta scale. In SIGCOMM, 2024.

[19] sshaulnv gilr8, HassanKhadour. perftest: Infiniband verbs perfor-
mance tests. https://github.com/linux-rdma/perftest, 2025.

[20] Google Falcon. Google Falcon. https://github.com/
opencomputeproject/OCP-NET-Falcon, 2024.

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. Rdma over commodity ethernet
at scale. In SIGCOMM, 2016.

[22] Zhiqiang He, Yuxin Chen, and Bei Hua. Roud: Scalable rdma over ud
in lossy data center networks. In CCGrid, 2023.

[23] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan, Bei Hua, Zhi-
Li Zhang, and Kai Zheng. Masq: Rdma for virtual private cloud. In
SIGCOMM, 2020.

[24] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muham-
mad Shahbaz, Changhoon Kim, and Nick McKeown. The nanopu: A
nanosecond network stack for datacenters. In OSDI, 2021.

[25] Infiniband. Infiniband architecture. https://www.infinibandta.org/,
2008.

[26] Infiniband. RoCEv2 Update from the IBTA. https:
//www.openfabrics.org/images/eventpresos/workshops2014/
DevWorkshop/presos/Wednesday/pdf/02_RoCEv2forOFA.pdf, 2014.

[27] Intel. Intel Memory Latency Checker. https://www.intel.com/
content/www/us/en/developer/articles/tool/intelr-memory-
latency-checker.html, 2024.

[28] Intel. Intel® Infrastructure Processing Unit. https://www.intel.com/
content/www/us/en/products/details/network-io/ipu.html, 2024.

[29] JEDEC. JEDEC DDR5 compare. https://www.jedec.org/category/
technology-focus-area/main-memory-ddr3-ddr4-sdram, 2024.

[30] Zhen Jin, Yiquan Chen, Mingxu Liang, Yijing Wang, Guoju Fang,
Ao Zhou, Keyao Zhang, Jiexiong Xu, Wenhai Lin, Yiquan Lin, et al.
Os2g: A high-performance dpu offloading architecture for gpu-based
deep learning with object storage. In ASPLOS, 2025.

[31] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. Shinjuku: Preemptive sched-
uling for {𝜇second-scale} tail latency. In NSDI, 2019.

[32] Anuj Kalia, Michael Kaminsky, and David G Andersen. Design guide-
lines for high performance {RDMA} systems. In ATC, 2016.

[33] Anuj Kalia, Michael Kaminsky, and David G Andersen. {FaSST}:
Fast, scalable and simple distributed transactions with two-sided
rdma datagram rpcs. In OSDI, 2016.

[34] Sagar Karandikar, Aniruddha NUdipi, Junsun Choi, JoonhoWhangbo,
Jerry Zhao, Svilen Kanev, Edwin Lim, Jyrki Alakuijala, Vrishab Mad-
duri, Yakun Sophia Shao, et al. Cdpu: Co-designing compression and
decompression processing units for hyperscale systems. In ISCA,
2023.

[35] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr Sharma,
Arvind Krishnamurthy, and Thomas Anderson. Tas: Tcp acceleration
as an os service. In EuroSys, 2019.

[36] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, Yibo Zhu, Jitu
Padhye, Shachar Raindel, Chuanxiong Guo, Vyas Sekar, and Srini-
vasan Seshan. {FreeFlow}: Software-based virtual {RDMA} net-
working for containerized clouds. In NSDI, 2019.

[37] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini,
Dejan Kostić, Youngjin Kwon, Simon Peter, and Emmett Witchel.
Linefs: Efficient smartnic offload of a distributed file system with
pipeline parallelism. In SOSP, 2021.

[38] Taehyun Kim, Deondre Martin Ng, Junzhi Gong, Youngjin Kwon,
Minlan Yu, and KyoungSoo Park. Rearchitecting the tcp stack for
i/o-offloaded content delivery. In NSDI, 2023.

[39] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu, Mahmoud Elhad-
dad, Shachar Raindel, Jitendra Padhye, Alvin R Lebeck, and Danyang
Zhuo. Understanding {RDMA} microarchitecture resources for per-
formance isolation. In NSDI, 2023.

[40] Adithya Kumar, Anand Sivasubramaniam, and Timothy Zhu. Splitrpc:
A {Control+ Data} path splitting rpc stack for ml inference serving.
POMACS, 2023.

[41] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel,
Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,
Christopher Alfeld, Michael Ryan, et al. Swift: Delay is simple and
effective for congestion control in the datacenter. In SIGCOMM, 2020.

[42] Reese Kuper, Ipoom Jeong, Yifan Yuan, Ren Wang, Narayan Ran-
ganathan, Nikhil Rao, Jiayu Hu, Sanjay Kumar, Philip Lantz, and
Nam Sung Kim. A quantitative analysis and guidelines of data stream-
ing accelerator in modern intel xeon scalable processors. In ASPLOS,

13

https://gtmteknoloji.com/wp-content/uploads/2020/08/PS1100R-PB100.pdf
https://gtmteknoloji.com/wp-content/uploads/2020/08/PS1100R-PB100.pdf
https://github.com/carlzhang4/libr
https://github.com/carlzhang4/libr
https://www.dpdk.org/
https://github.com/linux-rdma/perftest
https://github.com/opencomputeproject/OCP-NET-Falcon
https://github.com/opencomputeproject/OCP-NET-Falcon
https://www.infinibandta.org/
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Wednesday/pdf/02_RoCEv2forOFA.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Wednesday/pdf/02_RoCEv2forOFA.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Wednesday/pdf/02_RoCEv2forOFA.pdf
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.jedec.org/category/technology-focus-area/main-memory-ddr3-ddr4-sdram
https://www.jedec.org/category/technology-focus-area/main-memory-ddr3-ddr4-sdram

Conference’17, July 2017, Washington, DC, USA Anon. Submission Id: 260

2024.
[43] Jialong Li, Haotian Gong, Federico De Marchi, Aoyu Gong, Yiming

Lei, Wei Bai, and Yiting Xia. Uniform-cost multi-path routing for
reconfigurable data center networks. In SIGCOMM, 2024.

[44] Qiang Li, Qiao Xiang, Derui Liu, Yuxin Wang, Haonan Qiu, Xiaoliang
Wang, Jie Zhang, Ridi Wen, Haohao Song, Gexiao Tian, et al. From
rdma to rdca: Toward high-speed last mile of data center networks
using remote direct cache access. arXiv preprint arXiv:2211.05975,
2022.

[45] Qijing Li, Xinyang Huang, Bowen Liu, Pengbo Li, Junxue Zhang, and
Kai Chen. Cache-aware i/o rate control for rdma. In APNet, 2025.

[46] Wenxue Li, Xiangzhou Liu, Yunxuan Zhang, ZihaoWang,Wei Gu, Tao
Qian, Gaoxiong Zeng, Shoushou Ren, Xinyang Huang, Zhenghang
Ren, et al. Revisiting rdma reliability for lossy fabrics. In SIGCOMM,
2025.

[47] Aixin Liu, Bei Feng, Bing Xue, BingxuanWang, BochaoWu, Chengda
Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437,
2024.

[48] Bowen Liu, Xinyang Huang, Qijing Li, Zhuobin Huang, Yijun Sun,
Wenxue Li, Junxue Zhang, Ping Yin, and Kai Chen. Ceio: A cache-
efficient network i/o architecture for nic-cpu data paths. In SIGCOMM,
2025.

[49] Guowei Liu, Laiping Zhao, Yiming Li, Zhaolin Duan, Sheng Chen,
Yitao Hu, Zhiyuan Su, and Wenyu Qu. Fuyao: Dpu-enabled direct
data transfer for serverless computing. In ASPLOS, 2024.

[50] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon
Peter, and Karan Gupta. Offloading distributed applications onto
smartnics using ipipe. In SIGCOMM. 2019.

[51] Jiaqi Lou, Xinhao Kong, Jinghan Huang, Wei Bai, Nam Sung Kim, and
Danyang Zhuo. Harmonic: Hardware-assisted {RDMA} performance
isolation for public clouds. In NSDI, 2024.

[52] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C Evans, Steve Gribble, et al. Snap: A microkernel approach
to host networking. In SOSP, 2019.

[53] Mellanox. ConnectX®-6 DX Card. https://www.nvidia.com/content/
dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-
dx-datasheet.pdf, 2022.

[54] Mellanox. ConnectX®-7 EN Card. https://www.nvidia.com/content/
dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-
datasheet-Final.pdf, 2023.

[55] Mellanox. ConnectX®-8 EN Card. https://resources.nvidia.com/en-
us-accelerated-networking-resource-library/connectx-datasheet-c,
2024.

[56] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li,
Shuguang Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, et al.
From luna to solar: the evolutions of the compute-to-storage networks
in alibaba cloud. In SIGCOMM, 2022.

[57] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew
Wei, In Hwan Doh, and Arvind Krishnamurthy. Gimbal: enabling
multi-tenant storage disaggregation on smartnic jbofs. In SIGCOMM,
2021.

[58] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. Revis-
iting network support for rdma. In SIGCOMM, 2018.

[59] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and
KyoungSoo Park. AccelTCP: Accelerating network applications with
stateful TCP offloading. In NSDI, 2020.

[60] Zhixiong Niu, Qiang Su, Peng Cheng, Yongqiang Xiong, Dongsu Han,
Keith Winstein, Chun Jason Xue, and Hong Xu. Netkernel: Making
network stack part of the virtualized infrastructure. TON, 2021.

[61] Nvidia. NVIDIA BLUEFIELD-2 DPU. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/documents/datasheet-

nvidia-bluefield-2-dpu.pdf, 2022.
[62] Nvidia. Link Aggregation. https://docs.nvidia.com/networking/

display/bluefielddpubspv422/link+aggregation, 2024.
[63] Nvidia. NVIDIA BLUEFIELD-3 DPU. https://www.nvidia.com/

content/dam/en-zz/Solutions/Data-Center/documents/datasheet-
nvidia-bluefield-3-dpu.pdf, 2024.

[64] NVIDIA. Cache Invalidate Operation. https://docs.nvidia.
com/doca/sdk/mmap+advise/index.html#src-3543226633_id-
.MmapAdvisev2.10.0-CacheInvalidateOperation, 2025.

[65] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving high {CPU} efficiency for
latency-sensitive datacenter workloads. In NSDI, 2019.

[66] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo
Goiri, Saeed Maleki, and Ricardo Bianchini. Splitwise: Efficient gen-
erative llm inference using phase splitting. In ISCA. IEEE, 2024.

[67] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
et al. The design and implementation of open {vSwitch}. In NSDI,
2015.

[68] Boris Pismenny, Adam Morrison, and Dan Tsafrir. {ShRing}: Net-
working with shared receive rings. In OSDI, 2023.

[69] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achiev-
ing low tail latency for microsecond-scale networked tasks. In SOSP,
2017.

[70] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan,
Binzhang Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, et al. Alibaba hpn: A
data center network for large language model training. In SIGCOMM,
2024.

[71] Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing
Zhang, Yongwei Wu, Weimin Zheng, and Xinran Xu. Mooncake:
Trading more storage for less computation—a {KVCache-centric}
architecture for serving {LLM} chatbot. In FAST, 2025.

[72] Eric Quinnell. Tesla transport protocol over ethernet (ttpoe): A new
lossy, exa-scale fabric for the dojo ai supercomputer. In HCS, 2024.

[73] RDMA Core. RDMA core userspace libraries and daemons. https:
//github.com/linux-rdma/rdma-core, 2024.

[74] Feng Ren, Mingxing Zhang, Kang Chen, Huaxia Xia, Zuoning Chen,
and Yongwei Wu. Scaling up memory disaggregated applications
with smart. In ASPLOS, 2024.

[75] Zhenghang Ren, Yuxuan Li, Zilong Wang, Xinyang Huang, Wenxue
Li, Kaiqiang Xu, Xudong Liao, Yijun Sun, Bowen Liu, Han Tian, et al.
Enabling efficient {GPU} communication over multiple {NICs} with
{FuseLink}. In OSDI, 2025.

[76] Hugo Sadok, Nirav Atre, Zhipeng Zhao, Daniel S Berger, James C Hoe,
Aurojit Panda, Justine Sherry, and Ren Wang. {Ensō}: A streaming
interface for {NIC-Application} communication. In OSDI, 2023.

[77] Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind
Krishnamurthy. Xenic: Smartnic-accelerated distributed transactions.
In ASPLOS, 2021.

[78] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. A cloud-
optimized transport protocol for elastic and scalable hpc. IEEE micro,
2020.

[79] Leah Shalev, Julian Satran, Eran Borovik, and Muli Ben-Yehuda.
IsoStack—Highly efficient network processing on dedicated cores. In
ATC, 2010.

[80] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon
Peter. {FlexTOE}: Flexible {TCP} offload with {Fine-Grained} par-
allelism. In NSDI, 2022.

[81] Junyi Shu, Kun Qian, Ennan Zhai, Xuanzhe Liu, and Xin Jin. Burstable
cloud block storage with data processing units. In OSDI, 2024.

[82] Junyi Shu, Ruidong Zhu, Yun Ma, Gang Huang, Hong Mei, Xuanzhe
Liu, and Xin Jin. Disaggregated raid storage in modern datacenters.
In ASPLOS, 2023.

14

https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/connectx-datasheet-c
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/connectx-datasheet-c
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://docs.nvidia.com/networking/display/bluefielddpubspv422/link+aggregation
https://docs.nvidia.com/networking/display/bluefielddpubspv422/link+aggregation
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://docs.nvidia.com/doca/sdk/mmap+advise/index.html#src-3543226633_id-.MmapAdvisev2.10.0-CacheInvalidateOperation
https://docs.nvidia.com/doca/sdk/mmap+advise/index.html#src-3543226633_id-.MmapAdvisev2.10.0-CacheInvalidateOperation
https://docs.nvidia.com/doca/sdk/mmap+advise/index.html#src-3543226633_id-.MmapAdvisev2.10.0-CacheInvalidateOperation
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core

SmartNS: Enabling Line-rate and Flexible Network Stack with SmartNIC Conference’17, July 2017, Washington, DC, USA

[83] David Sidler, ZekeWang, Monica Chiosa, Amit Kulkarni, and Gustavo
Alonso. Strom: smart remote memory. In EuroSys, 2020.

[84] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F Wenisch,
Monica Wong-Chan, Sean Clark, Milo MK Martin, Moray McLaren,
Prashant Chandra, Rob Cauble, et al. 1rma: Re-envisioning remote
memory access for multi-tenant datacenters. In SIGCOMM, 2020.

[85] Athinagoras Skiadopoulos, Zhiqiang Xie, Mark Zhao, Qizhe Cai,
Saksham Agarwal, Jacob Adelmann, David Ahern, Carlo Contavalli,
Michael Goldflam, Vitaly Mayatskikh, et al. High-throughput and
flexible host networking for accelerated computing. In OSDI, 2024.

[86] Qiang Su, Shaofeng Wu, Zhixiong Niu, Ran Shu, Peng Cheng,
Yongqiang Xiong, Zaoxing Liu, and Hong Xu. Meili: Enabling smart-
nic as a service in the cloud. arXiv preprint arXiv:2312.11871, 2023.

[87] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan
Huang, Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong,
et al. Demystifying cxl memory with genuine cxl-ready systems and
devices. In MICRO, 2023.

[88] Jian Tang, XiaoliangWang, and Huichen Dai. Scalable rdma transport
with efficient connection sharing. In INFOCOM. IEEE, 2023.

[89] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Ka-
terina Argyraki, Sylvia Ratnasamy, and Scott Shenker. {ResQ}: En-
abling {SLOs} in network function virtualization. In NSDI, 2018.

[90] Shin-Yeh Tsai and Yiying Zhang. Lite kernel rdma support for data-
center applications. In SOSP, 2017.

[91] Midhul Vuppalapati, Saksham Agarwal, Henry Schuh, Baris Kasikci,
Arvind Krishnamurthy, and Rachit Agarwal. Understanding the host
network. In SIGCOMM, 2024.

[92] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia,
Gaoxiong Zeng,Wei Bai, Junchen Jiang, YongWang, and Kai Chen. To-
wards {Domain-Specific} network transport for distributed {DNN}
training. In NSDI, 2024.

[93] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bojie Li, Binzhang
Fu, and Kun Tan. Star: Breaking the scalability limit for rdma. In
ICNP, 2021.

[94] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue
Li, Xinchen Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, et al.
{SRNIC}: A scalable architecture for {RDMA}{NICs}. In NSDI, 2023.

[95] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo
Chen. Characterizing off-path smartnic for accelerating distributed
systems. In OSDI, 2023.

[96] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. Decon-
structing {RDMA-enabled} distributed transactions: Hybrid is better!
In OSDI, 2018.

[97] Xingda Wei, Fangming Lu, Rong Chen, and Haibo Chen. {KRCORE}:
A microsecond-scale {RDMA} control plane for elastic computing.
In ATC, 2022.

[98] Yunhong Xu, Keqiang He, Rui Wang, Minlan Yu, Nick Duffield, Has-
san Wassel, Shidong Zhang, Leon Poutievski, Junlan Zhou, and Amin
Vahdat. Hashing design in modern networks: Challenges and mitiga-
tion techniques. In ATC, 2022.

[99] Zhuolong Yu, Bowen Su, Wei Bai, Shachar Raindel, Vladimir Braver-
man, and Xin Jin. Understanding the micro-behaviors of hardware
offloaded network stacks with lumina. In SIGCOMM, 2023.

[100] Yifan Yuan, Mohammad Alian, YipengWang, RenWang, Ilia Kurakin,
Charlie Tai, and Nam Sung Kim. Don’t forget the i/o when allocating
your llc. In ISCA. IEEE, 2021.

[101] Rohit Zambre, Aparna Chandramowlishwaran, and Pavan Balaji.
Scalable communication endpoints for mpi+ threads applications. In
ICPADS. IEEE, 2018.

[102] Jie Zhang, Hongjing Huang, Xuzheng Chen, Xiang Li, Ming Liu,
and Zeke Wang. Rpcacc: A high-performance and reconfigurable
pcie-attached rpc accelerator. arXiv preprint arXiv:2411.07632, 2024.

[103] Jie Zhang, Hongjing Huang, Lingjun Zhu, Shu Ma, Dazhong Rong,
Yijun Hou, Mo Sun, Chaojie Gu, Peng Cheng, Chao Shi, et al. Smartds:

Middle-tier-centric smartnic enabling application-aware message
split for disaggregated block storage. In ISCA, 2023.

[104] Qizhen Zhang, Philip Bernstein, Badrish Chandramouli, Jiasheng Hu,
and Yiming Zheng. Dds: Dpu-optimized disaggregated storage. arXiv
preprint arXiv:2407.13618, 2024.

[105] Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong,
Sebastian Angel, Ang Chen, Vincent Liu, and Boon Thau Loo. Op-
timizing data-intensive systems in disaggregated data centers with
teleport. In SIGMOD, 2022.

[106] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf Chowdhury.
Justitia: Software {Multi-Tenancy} in hardware {Kernel-Bypass}
networks. In NSDI, 2022.

[107] Chenxingyu Zhao, Jaehong Min, Ming Liu, and Arvind Krishna-
murthy. {White-Boxing}{RDMA} with {Packet-Granular} software
control. In NSDI, 2025.

[108] Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar. Zd:
a scalable zero-drop network stack at end hosts. In CoNEXT, 2019.

[109] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. {DistServe}: Disaggregating
prefill and decoding for goodput-optimized large language model
serving. In OSDI, 2024.

[110] Lingjun Zhu, Yifan Shen, Erci Xu, Bo Shi, Ting Fu, Shu Ma, Shuguang
Chen, Zhongyu Wang, Haonan Wu, Xingyu Liao, et al. Deploying
user-space {TCP} at cloud scale with {LUNA}. In ATC, 2023.

[111] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, andMing Zhang. Congestion control for large-scale
rdma deployments. SIGCOMM, 2015.

[112] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua.
One-sided {RDMA-Conscious} extendible hashing for disaggregated
memory. In ATC, 2021.

15

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 CPU-centric Network Stack
	2.2 Hardware-offloaded Network Stack
	2.3 Naïve SmartNIC-centric Network Stack

	3 Design of SmartNS
	3.1 Overview
	3.2 Header-only Offloading TX Path
	3.3 Unlimited-working-set In-Cache Processing RX Path
	3.4 DMA-only Notification Pipe
	3.5 Programmable Offloading Engine

	4 Implementation
	5 Evalution
	5.1 Experimental Setup
	5.2 Comparison with other Network Stacks
	5.3 Header-only Offloading TX Path
	5.4 Unlimited-working-set In-Cache Processing RX Path
	5.5 DMA-only Notification Pipe
	5.6 Programmable Offloading Engine
	5.7 End-to-end Application Performance

	6 Related Work
	7 Conclusioin
	References

