
SmartDS: Middle-Tier-centric SmartNIC Enabling
Application-aware Message Split for Disaggregated Block Storage

Jie Zhang†, Hongjing Huang†, Lingjun Zhu⋄, Shu Ma⋄, Dazhong Rong†, Yijun Hou⋄, Mo Sun†,
Chaojie Gu‡, Peng Cheng‡, Chao Shi⋄, Zeke Wang†

†Collaborative Innovation Center of Artificial Intelligence, College of Computer Science and Technology, Zhejiang University, Hangzhou, China
⋄Alibaba Group, Hangzhou, China

‡State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China

ABSTRACT
The widespread deployment of storage disaggregation in the cloud
has facilitated flexible scaling and storage overprovisioning, allow-
ing for high utilization of storage capacity and IOPS. Instead of uti-
lizing remote storage protocols to access remote disks, a middle-tier
is introduced between compute servers and storage servers in order
to serve I/O requests from compute servers and provide computa-
tions such as compression and decompression. However, due to the
need for a cloud to concurrently serve millions of VMs that require
access to disaggregated storage, the middle-tier requires a massive
number of servers to process network traffic between computing
and storage nodes. For example, a major cloud companymay deploy
hundreds of thousands of high-end servers to provide such a service
for its cloud storage, because the existing CPU-based middle-tier
suffers from a severe issue of compute-intensive compression/de-
compression on high-throughput storage traffic. To address this
issue, we introduce SmartDS, a middle-tier-centric SmartNIC that
serves storage I/O requests with low latency and high through-
put, while maintaining high flexibility and programmability. The
key idea behind SmartDS is the application-aware message split
(AAMS) mechanism, which allows for the processing of the mes-
sage’s header on the host CPU to achieve high flexibility, and the
message’s payload on the SmartDS. Experimental results demon-
strate that SmartDS provides up to 4.3× more throughput than a
CPU-based middle-tier and enables the linear scale-up of multiple
network ports and multiple SmartNICs, thus significantly reducing
cloud infrastructure costs for disaggregated block storage.

CCS CONCEPTS
• Hardware→ Networking hardware; • Networks → Layering.

KEYWORDS
SmartNIC, Middle Tier, Disaggregated Block Storage, Payload/-
Header Split
ACM Reference Format:
Jie Zhang†, Hongjing Huang†, Lingjun Zhu⋄ , Shu Ma⋄ , Dazhong Rong†,
Yijun Hou⋄ , Mo Sun†, Chaojie Gu‡, Peng Cheng‡, Chao Shi⋄ , Zeke Wang† .

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589077

2023. SmartDS: Middle-Tier-centric SmartNIC Enabling Application-aware
Message Split for Disaggregated Block Storage. In Proceedings of the 50th
Annual International Symposium on Computer Architecture (ISCA ’23), June
17–21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3579371.3589077

1 INTRODUCTION
Storage disaggregation is a widely adopted approach in cloud com-
puting, with prominent examples including Amazon’s Elastic Block
Store (EBS) [6], Alibaba cloud’s Elastic Block Storage [25, 53], and
WindowsAzure Storage (WAS) [15]. By decoupling compute servers
(hosting virtual machines) and storage servers (hosting disks), stor-
age disaggregation enables scaling CPU and flash resources indepen-
dently in a cost-effective manner [41]. Additionally, cloud vendors
can over-provision storage resources, thus decreasing monetary
costs.

Rather than relying on remote storage protocols such as iSCSI
and NVMe-oF to access remote disks, disaggregated block storage
requires amiddle-tier between compute servers and storage servers
in real clouds [15, 25, 41, 53]. The middle tier is composed of a
large number of middle-tier servers, which serve storage I/O re-
quests from compute servers and forward data from these requests
to remote storage servers. Furthermore, the middle-tier provides
maintenance services such as replication, fail-over, and snapshot
functionality, making them a critical component of modern stor-
age disaggregation systems. Given that a cloud must serve a vast
number of VMs simultaneously, a significant number of middle-tier
servers are present in commodity block storage systems. For ex-
ample, Alibaba Cloud’s Elastic Block Storage contains over 100,000
middle-tier servers [53]. In the following, we outline the key char-
acteristics of middle-tier servers, which include high computing
intensity and flexibility.
R1: High Computing Intensity. To reduce storage costs, the
middle-tier compresses data blocks before writing them to remote
storage server disks. When serving read requests, the middle-tier
must decompress the data returned from the remote storage server
and return it to virtual machines (VMs). Although data compression
is beneficial in terms of storage costs, it comes at the expense of
computational cost [1, 16].
R2: High Flexibility. Commodity disaggregated block storage
systems must not only provide high performance but also high
flexibility [2, 21]. As block storage systems are fundamental com-
ponents of cloud applications, vendors must ensure that they can
evolve quickly enough to keep up with customers’ various needs
and the development of new technologies such as faster networking

https://doi.org/10.1145/3579371.3589077
https://doi.org/10.1145/3579371.3589077
https://doi.org/10.1145/3579371.3589077

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jie Zhang, et al.

Figure 1: Comparison of different middle-tier designs. The
colored components indicate that they are heavily used.

and storage mediums. This agility allows vendors to offer competi-
tive solutions to customers.

However, the existing middle-tier design fails to satisfy the above
two requirements concurrently.
CPU-only Middle-tier. Compression occupies the majority of
CPU cores in a CPU-based middle-tier [53], as shown in Figure 1a.
Even worse, this traditional design faces two trends that exacerbate
its performance issue. First, network speeds grow rapidly [62], with
100 [11, 51] and 200 [52] Gigabit Ethernet (GbE) network interface
controllers (NICs) already widely available, 400 [10] GbE arriving
in 2021 and 800 [19] GbE expected in the near future. Second, PCIe-
based flash devices are increasingly prevalent in clouds, providing
high-performance storage services with I/O operations per second
(IOPS) in the millions and latencies in the tens of microseconds [34].
Accelerator-based Middle-tier. In order to address computing
challenges from compression, prior studies leverage GPUs [60, 72,
86], FPGAs [23, 66], and specialized accelerators [31] such as Intel
QuickAssist Technology (QAT) [33] to alleviate the computational
cost of the compression/decompression. We categorize the middle-
tier that leverages these approaches as the accelerator-enhanced
middle-tier. The accelerator-enhanced middle-tier can save a lot
of CPU cores from compression. However, such a design doubles
PCIe traffic, which can easily become a new bottleneck as shown
in Figure 1b.
Naive FPGA-based SmartNIC. In order to address the PCIe over-
head, offloading the entire middle-tier logic into FPGA-based Smart-
NIC becomes a new option. However, middle-tier logic iterates very
fast, thus offloading control logic to FPGA hardware logic lacks
flexibility, as shown in Figure 1c.
SoC-based SmartNIC. SoC-based SmartNIC features small CPU
cores and hardware engines to provide both flexibility and comput-
ing intensity as shown in Figure 1d. However, current off-the-shelf
and upcoming SoC-based SmartNIC have certain limitations in the
scenario of middle-tier due to the form factor and power constraints.
Firstly, these SmartNICs lack sufficient compression engines, and
their CPUs are too wimpy to perform compute-intensive tasks
on line-rate network traffic. Secondly, their memory subsystem is
relatively weak, compared with their networking capabilities.

Figure 2: The typical architecture of a disaggregated block
storage system

To this end, we propose SmartDS, a middle-tier-centric Smart-
NIC that can serve storage I/O requests with low latency and high
throughput while maintaining high flexibility and high programma-
bility. SmartDS consists of three key innovations. First, it features
an application-aware message split (AAMS) mechanism that en-
ables the processing of message headers on the host CPU, providing
flexibility, while the message payload is processed on the SmartDS,
achieving high throughput. Second, due to its low CPU and PCIe
overheads, SmartDS enables efficiently utilizing multiple network
ports on the SmartNIC and enables linear scaling by installing mul-
tiple SmartNICs on a server. Third, SmartDS exposes a RDMA-like
high-level API to guarantee high programmability.

We prototype SmartDS on an HBM-enhanced Xilinx VCU128
FPGA. SmartDS enables us to fully leverage multiple 100Gbps net-
work ports (up to 6) on SmartNIC. The experimental results show
that our prototype can provide up to 4.3× throughput than CPU-
based middle-tier, and reduce the average latency, 99th percentile
latency, and 999th percentile latency by 2.6×, 3.4× and 3.5×, respec-
tively. And SmartDS enables linear scale-up by installing multiple
SmartNICs (up to 8 in our 4U server) to improve achievable through-
put. As such, SmartDS reduces the required number of middle-tier
servers by 51.6× and thus significantly reduces cloud infrastructure
cost for disaggregated block storage.

2 BACKGROUND
2.1 Disaggregated Block Storage
Figure 2 demonstrates the typical architecture of a block storage
system that adopts a storage disaggregation design. It provides per-
sistent data hosting in virtualized disks (VDs) to cloud users. This
architecture places compute servers (that host virtual machines,
VMs) and storage servers (that host VDs) in separate clusters. VMs
in a compute server organizes data in logical block addressing (LBA).
There is a mapping of LBA to the segment address of the physical
disks. Segments (e.g., 32GB) are managed by middle-tier, which
would divide them into chunks (e.g., 64MB), and each I/O request
(e.g., 4KB data block) from a VM targets a chunk. Each write re-
quest would be replicated to several (usually three) different storage
servers, which are in charge of the standalone back-end storage of

SmartDS: Middle-Tier-centric SmartNIC Enabling Application-aware Message Split for Disaggregated Block Storage ISCA ’23, June 17–21, 2023, Orlando, FL, USA

(a) Write requests (b) Read requests

Figure 3: Middle-tier server data flow when serving I/O re-
quests

the blocks and device management. There are three main advan-
tages of the disaggregated design. First, compute and storage servers
can be designed independently to optimize either type of server
for its target workloads, resulting in more cost-efficient specialized
servers [53]. Second, vendors can over-provision storage resources,
thus decreasing monetary costs. Third, with persistent states stored
in storage servers, migrating application services across compute
servers is fast and straightforward.

When a VM sends an I/O request through its storage agent, the
request is forwarded to the corresponding middle-tier server. The
addition of a middle-tier between compute servers and storage
servers provides three main benefits. Firstly, running storage oper-
ations such as LSM-Tree compaction and periodical data scrubbing
on compute servers requires additional processing and mainte-
nance services (e.g., snapshot, fail-over, replication), all of which
can cause significant and often imbalanced overhead to the precious
CPU resources in compute servers. Secondly, in the absence of a
middle-tier, sharing a Virtual Disk (VD) among compute servers
requires maintaining shared states among them with strong con-
sistency, which is much more challenging than maintaining them
in the middle tier. Thirdly, to reduce the monetary cost of storage,
data is compressed before being written to disk, and this operation
is expensive for the precious CPU resources in compute servers.

2.2 Roles of Middle-tier
In this section, we provide a detailed description of the roles that
the middle-tier plays in modern commodity disaggregated block
storage systems. We can categorize these roles into two classes:
real-time services (serving read or write requests) and maintenance
services (LSM-tree compaction, fail-over, snapshot, etc).

2.2.1 Serving Write Requests. As illustrated in Figure 3a, the pro-
cess of writing a data block (usually 4 KB) from a VM involves
issuing a network request to the middle-tier server responsible for
the chunk to which the block belongs (1). The network message
comprises a block storage header containing the VM’s unique ID,
service type, block offset, segment ID, and other relevant infor-
mation, as well as a payload (the data block to be written). The
reliability of themessage is guaranteed by the transport layer, which
is typically RDMA or a variant.

When the message arrives at the middle-tier server’s memory,
the server first parses the block storage header (2) and makes some
decisions including:

• Choose several remote storage servers (usually three [53])
according to disk usage, distribution of switches, loads of
storage servers, and disaster recovery strategy.

• Whether the block should be compressed and what compres-
sion effort should be used according to service type and CPU
load. Generally, workloads’ higher tolerance for latency and
more idleness of the middle-tier server CPU means that the
data block would be compressed with more computing time
(thus a better compression ratio). Some data blocks may even
be compressed many times for a better compression ratio.

After that, the software would compress the data block (3) and send
the compressed block to three chosen storage servers (4). Storage
servers would write the data into the disk in an appended way
and return with success to the middle-tier server (5). Once all the
storage servers have confirmed the successful write, the middle-tier
would acknowledge the VM with a success (6) and then the write
request completes.
Why Compression is in Middle Tier? Compression at the com-
pute server can reduce network traffic earlier while saving storage
capacity. However, in the modern cloud, compression at the com-
pute server means each compute server’s hypervisor card must re-
serve enough compression resources (CPU/FPGA/ASIC) according
to the peak storage traffic, wasting computing power when storage
traffic is under-loaded. Compression at the middle tier means that
compression ability can serve different compute servers dynami-
cally, achieving high utilization of compression resources.

2.2.2 Serving Read Requests. As shown in Figure 3b, when a VM
issues a read request to the middle-tier server (1), the middle-tier
server identifies the corresponding data block and sends read re-
quests to one of the storage servers (2). The storage server then
read the requested data blocks from the disk and sends them back
to the middle-tier server (3). The middle-tier server parses the
message header sent from the VM (4). Based on the parsed results,
the middle-tier server decompresses the received payload (5). Fi-
nally, the middle-tier server generates a new message header and
assembles it with the decompressed data into a complete message,
which is sent back to the VM (6).

2.2.3 Maintenance Services. There are maintenance services run-
ning in the middle-tier such as LSM-tree compaction, disk garbage
collection, fail-over, and snapshot.

When handling write requests, the middle-tier server would
not release the memory that holds the write request even if the
request has finished. Once the number of writes in a chunk reaches
a threshold, the LSM-tree compaction service running in the middle-
tier server performs compaction on the blocks stored in memory.
The result of the compaction is sent to remote storage servers for
persistence. Additionally, the garbage collection service releases
the disk space of the data blocks that have been compacted.

In a commodity middle-tier server, real-time services occupy
more than half of the CPU resources. This paper focuses on the
processing of write requests for two reasons: (1) The number of
write requests is much more than that of read requests (around
5× [53]); (2) A CPU core’s decompression throughput is much
higher than compression (more than 7× [49]).

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jie Zhang, et al.

3 MOTIVATION
Amiddle-tier server needs to be capable of (1) handling I/O pressure
on the host memory subsystem and PCIe interconnect, (2) handling
computation pressure, and (3) providing flexibility for the entire
middle-tier server applications. In the following, we analyze exist-
ing solutions that only partially meet these requirements, which
motivates the design of SmartDS.

3.1 Traditional CPU-based Middle-tier Server
Figure 1a illustrates the primary data flow of a CPU-based middle-
tier server. Network messages are transmitted to the middle-tier
server’s host memory via PCIe and NIC (1). Two types of large-
size messages are primarily handled: the write request (from VM),
which includes the data block that needs compression, and the read
reply (from the storage server), which contains the data block that
needs to be decompressed. After receiving the message, the CPU
parses the message header (2) and performs compression or decom-
pression (3) on the message payload. Finally, the CPU forwards
the processed message to storage servers (or VMs) through PCIe
and NIC (4). A CPU-based middle-tier server allows for explicit
control over each network message by the host CPU, providing
adequate flexibility. However, the high volume ofmessages can over-
whelm the host memory subsystem and PCIe bandwidth. Moreover,
compute-intensive compression on message payloads can exhaust
CPU cores.

3.1.1 Computation Pressure. Compression can reduce the storage
cost and alleviate the network amplification caused by replication.
However, the benefits of data compression come at the expense of
computational cost [1, 16].

An Intel i7-9700K CPU @ 4.9GHz with turbo boost can run
LZ4 [8] lossless compression at 780 MB/s [49] per core, while
100/200 Gigabit Ethernet (GbE) network interface controller is al-
ready widely available [52] in modern clouds. In a typical middle-
tier server, to saturate network bandwidth, nearly half of the CPU
resource is occupied by data compression.

Moreover, network bandwidth is increasing at a faster rate than
CPU performance [61], making it increasingly difficult for CPU-
based middle-tier servers to keep up with the demands of modern
clouds.

3.1.2 Memory Bandwidth Pressure. The growth of network band-
width not only places computational pressure on the CPU but also
on the memory subsystem, which has been extensively explored in
prior works [3, 74, 77, 78].

To illustrate the memory interference caused by network packets,
we use Intel Memory Latency Check (MLC) [36] tool to inject
dummy memory requests at different rates. All CPU cores in the
server are runningMLC. The server has eight memory channels and
its achievable memory bandwidth is around 120 GB/s. The server
has a 16 MB last-level cache and DDIO occupies 2 out of total
11 ways. To minimize the influence of CPU interference, we use
one-sided RDMA to simulate a packet forwarding application. The
client uses RDMA READ and RDMA WRITE to access remote memory
in the server. Both machines are equipped with a 100 GbE NVIDIA
ConnectX-5 NIC [51] and the RDMA message size is large (4 MB).

Figure 4: RDMA throughput at different memory pressure lev-
els

Table 1: PCIe latency under different pressure

H2D Latency (us) D2H Latency (us)
Under Loaded 1.4 1.4
Heavily Loaded 11.3 6.6

Figure 4 illustrates the achieved RDMA throughput and total
MLC throughput of all cores when varying the delay between
injected memory requests. We observe that RDMA throughput sig-
nificantly drops when memory pressure from MLC increases. At
the maximum memory pressure (i.e., no delay), the one-sided RDMA-
based packet forwarding can only deliver ∼46% of the achieved
bandwidth without interference. This demonstrates that memory
pressure can significantly intervenewith achievable network through-
put.

3.1.3 Interconnect Pressure. In cloud servers, the PCIe interconnect
is typically used to connect the NIC and host. However, when
the network is heavily loaded, the PCIe interconnect can become
saturated and cause performance degradation.

We designed a micro-benchmark to illustrate that heavily loaded
PCIe interconnect can contribute to extra network latency. As NIC
leverages its DMA to read data from or write data to host memory
through PCIe, we use a Xilinx U280 FPGA [82] to call its DMA
to read from or write to host memory and measure PCIe latency.
We adjust the duration that the FPGA issues request to make PCIe
interconnect under-loaded or heavily loaded.

We measure the H2D (Host to Device, DMA read) latency and
D2H (Device to Host, DMA write) latency and the results are pre-
sented in Table 1. Both H2D and D2H latency increase significantly
when the PCIe interconnect is heavily loaded. This suggests that
when the network is heavily loaded, the PCIe interconnect may
introduce additional latency to the end-to-end network latency.

This issue cannot be resolved by simply upgrading the PCIe
interconnect, as current NIC products provide comparable PCIe
bandwidth and network bandwidth. For example, NICs with PCIe
3.0X16 can achieve a throughput of around 104 Gbps and are typi-
cally equipped with a single 100 Gbps networking port [51], while
NICs with PCIe 4.0X16 are equipped with a 200 Gbps networking
port [52].

SmartDS: Middle-Tier-centric SmartNIC Enabling Application-aware Message Split for Disaggregated Block Storage ISCA ’23, June 17–21, 2023, Orlando, FL, USA

3.2 Accelerator-enhanced Middle-tier Server
Since CPU-based middle-tier server suffers from severe computa-
tion pressures, it is natural to offload compute-intensive compres-
sion/decompression into accelerators and thus relieve the pressures.
To our knowledge, this design has been deployed in the real disag-
gregated block storage system at a large scale.

Figure 1b describes the data flow in an accelerator-enhanced
middle-tier server. First, data blocks are written into the middle-tier
server’s host memory through NIC and PCIe (1). Second, the host
CPU parses the message header (2) and controls the accelerator
(3) to fetch the message payload in the host memory (4). When
processing completes, the accelerator writes results back to the
host memory and notifies the CPU (5). At last, the CPU sends the
compressed message out through PCIe and NIC (6).

Therefore, the accelerator-enhanced middle-tier server can re-
lieve computation pressure while maintaining flexibility, because
each network message is explicitly controlled by the host CPU.
However, the messages’ payload still stays at the host memory,
thus the memory pressure still keeps the same as the CPU-based
middle-tier server (Subsection 3.1), and PCIe interconnect pressure
doubles because messages’ payload goes through PCIe twice as that
of CPU-based middle-tier server.
Potential Optimization with DDIO. After a received packet that
occupies a cache line has been processed and sent to the network,
the occupied cache line does not need to be evicted to host memory,
but instead, can be immediately reused for the following packets.
Ideally, a packet-forwarding application with a receive ring small
enough to fit within the Direct data I/O (DDIO) capacity [32] would
not occupy memory bandwidth. DDIO technology can serve DMA
reads of I/O devices (e.g., NIC, accelerators) from the last level cache
(LLC), and it allows DMA writes to allocate up to two LLC ways,
thereby bypassing memory [62]. Thus NIC and the accelerator
can exchange data using LLC. However, Subsection 2.2.3 mentions
that the middle-tier server requires to store the exchanged data
between NIC and accelerator in the host memory. We collect the
intermediate buffer lifetime in a commodity cloudmiddle-tier server
(equipped with a 100 GbE NIC), and the average lifetime is around
32 ms. According to Little’s law, the intermediate buffer size is
around 100Gbps * 32ms = 400MB, which is much more than the
LLC capacity of a modern CPU. Therefore, DDIO cannot avoid
storing messages in host memory. Meanwhile, DDIO cannot relieve
PCIe pressure.

3.3 Naive FPGA-based SmartNIC solution
In recent years, there are many studies on offloading tasks to Smart-
NICs [7, 14, 17, 21, 28, 44, 46–48, 61, 63, 68]. Figure 1c describes the
data flow of the naive FPGA-based SmartNIC solution that offloads
both computation-intensive and control logic to SmartNIC. First,
network messages are written into SmartNIC’s device memory (1).
Second, the hardware logic parses the message header (2) and
invokes hardware engines (3). Hardware engines fetch message
payloads and process them, then write the results into the device
memory (4). At last, hardware logic sends the results out through
the network (5).

Compared to a conventional middle-tier server, the naive FPGA-
based SmartNIC solution is cheaper and has lower active power [55].

However, offloading the control logic to hardware sacrifices flexibil-
ity, which is unacceptable in the cloud as it provides the cloud with
the ability to evolve quickly. From the information of a mainstream
cloud vendor, the control logic software has released around 7major
updates over the last 4 months, while the compression computation
only releases 2 major updates over the last 2 years.

3.4 SoC-based SmartNIC solution
Current off-the-shelf and upcoming SoC-based SmartNIC (e.g.,
Nvidia BlueField [58, 59], Broadcom Stingray [13], Intel IPU [35])
features both CPU cores and hardware engines to provide flexibility
and computing intensity. Figure 1d illustrates the data flow of a
middle-tier server implemented with a typical SoC-based Smart-
NIC. First, network messages are written into SmartNIC’s device
memory (1). Second, the Arm core parses the message header 2 .
Third, the off-path accelerator fetches message payloads and pro-
cesses them, then write the results into the device memory (3). At
last, the Arm core sends the results out through the network (4).
However, today’s SoC-based SmartNICs are not well provisioned
due to the form factor and power constraints. There are mainly two
limitations of SoC-based SmartNIC solution:
First, these SmartNICs have limited compression ability com-
pared with their networking ability. BlueField-2 [58] only de-
livers ∼40 Gbps compression throughput while providing up to
2x100 Gbps networking. Broadcom Stingray PS1100R [13] does not
support compression. The upcoming BlueField-3 [59] does not have
a compression engine neither. BlueField-3 has a 16-core RISC-V
programmable datapath accelerator (PDA) that sits in the place
of “Inline Accelerator" in Figure 1d. BlueField-3 engineers say that
PDA is not suitable for compression, but can do lightweight compu-
tation along the datapath. They suggest performing compression
in BlueField-3’s 16-core Arm that can only deliver ∼50 Gbps com-
pression throughput, which is significantly less than the network
bandwidth (400 Gbps).
Second, these SmartNICs have limited memory bandwidth
compared with their networking ability. As shown in Figure 1d,
SoC-based SmartNIC has two kinds of accelerator: inline accelera-
tor and off-path accelerator. SoC-based SmartNIC is more expert
at accelerating inline simple applications using inline accelerators
(traffic from the network is directly processed by inline acceler-
ators and then forwarded to the host, without interacting with
the Arm subsystem). SoC-based SmartNIC’s Arm CPU is usually
wimpy and the memory bandwidth is usually designed to match
the ability of the Arm CPU. However, the middle-tier application
requires network traffic to be temporarily stored in large DRAM,
which results in the payload going through device memory four
times as shown in Figure 1d. Considering the effect of compression
and 3-way replication, this number is around 3.5× in reality. Let’s
assume that these SoC-based SmartNICs are equipped with a hypo-
thetical compression engine that can consume the network data at
line rate. Take BlueField-3 (400 Gbps networking) for example, 400
Gbps write request needs 3.5×memory bandwidth 1400 Gbps. How-
ever, BlueField-3 features two 5600MT/s DDR5 channels to provide
theoretical 716.8 Gbps memory bandwidth. Its achievable memory
bandwidth is around 0.7× the theoretical bandwidth, around 500
Gbps, which is far less than the required bandwidth. BlueField-2,

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jie Zhang, et al.

Stingray PS1100R, and IPU also have similar memory bandwidth
shortages. Given the cost, power, and form factor constraints, the
limitation of memory bandwidth on SoC-based SmartNICs is not
likely to be solved in the near future.

4 DESIGN AND IMPLEMENTATION OF
SMARTDS

In addition to the limitations of existing approaches, SmartDS is
motivated by two key observations.

• First, network speed grows faster than other relevant compo-
nents within a host system [62]: CPU [26, 56], memory [50,
76] and the PCIe interconnect [42, 57, 73]. Various products
or sub-products from different vendors provide higher net-
work volume than PCIe links [9, 12, 19, 51, 52, 58, 59, 71, 82,
84].

• Second, the I/O size in the middle-tier is relatively large (e.g.,
4 KB). The majority of the network message needs heavy
computation, while only a small part (e.g., 64 bytes) requires
flexible processing.

Considering hundreds of thousands of middle-tier servers de-
ployed in the cloud, it is of utmost importance to design a high-
performance middle-tier server architecture to meet the perfor-
mance and flexibility requirements at the same time. When design-
ing SmartDS, we keep the following three goals in mind.
G1: High throughput and low latency.With the same amount
of storage I/O bandwidth, the higher throughput of a middle-tier
server means that fewer servers are needed, thus reducing the
cloud’s total cost of ownership (TCO). Therefore, SmartDSmust pro-
vide as higher throughput as possible. The explicit goal of SmartDS
is to deliver near-peak network bandwidth even on SmartNICs
with multiple networking ports. Over the past few years, there has
been a significant reduction in network and storage device laten-
cies within the datacenter [25, 29, 53, 69]. Our design must provide
possibly lower latency when serving storage I/O requests.
G2: High Flexibility. As we discussed in Section 3.3, flexibility
is one of the most important factors of the cloud to enable vari-
ous strategies and to meet the requirements of different types of
workloads at a low cost.
G3: High Programmability. SmartDS must be easy to use and
allow developers to focus solely on implementing the high-level
functionalities, rather than low-level details regarding SmartNIC
and RDMA mechanism. The high programmability also enables
fast upgrades of high-level software in the cloud.

To achieve the above three goals, we propose SmartDS, a middle-
tier-centric SmartNIC that can serve storage I/O requests with low
latency and high throughput, while maintaining high flexibility
and programmability. The key idea behind SmartDS is a SmartNIC-
based application-aware message split (AAMS) mechanism that
allows processing the message’s header on the host CPU, so as
to achieve high flexibility (G2), and to process the message’s pay-
load on the SmartNIC, so as to achieve high throughput (G1). The
header/payload split mechanism has been studied in several prior
works to accelerate data mover applications [27, 62, 67]. CacheDi-
rector [20] and IDIO [3] split packets’ headers and payloads to
better utilize DDIO. SmartDS is the first to process different parts

Figure 5: Architecture of SmartDS that enables application-
aware message-split mechanism

of a network message with different computing resources, thus
achieving lower costs and minimizing resource interference.

In the following, we present the detailed design of AAMS (Sub-
section 4.1), followed by the multiple port design (Subsection 4.2)
and a running example with SmartDS (Subsection 4.3).

4.1 Application-aware Message Split
Mechanism

Figure 5 demonstrates the overall architecture of the middle-tier
server equipped with SmartDS. SmartDS connects the host through
PCIe, and SmartDS consists of a hardware engine, a large off-chip
device memory, and a RoCE network transport.
Network Module. The network stack used in SmartDS is a modi-
fied version of earlier work [18, 70], which implements a RoCE stack
on FPGAs. The changes introduced in this paper aim to implement
application-aware message split on RDMA messages. In addition to
accessing host memory using one-sided and two-sided RDMA verbs,
the key difference of our RoCE stack is to directly access SmartDS’s
large device memory and to allow a single RDMA message to span
host memory and SmartDS’s device memory according to the de-
scriptors posted by the software (Subsection 4.3).

On the receive side, the application posts recv descriptors to the
𝑅𝑒𝑐𝑣 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 𝑡𝑎𝑏𝑙𝑒 associated with the 𝑆𝑝𝑙𝑖𝑡 module. When an
RDMAmessage from the 𝑅𝑜𝐶𝐸 module arrives in the 𝑆𝑝𝑙𝑖𝑡 module, it
will find the corresponding descriptor in the 𝑅𝑒𝑐𝑣 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 𝑡𝑎𝑏𝑙𝑒 .
The descriptor contains a host memory address ℎ_𝑏𝑢𝑓 , a host mem-
ory buffer size ℎ_𝑠𝑖𝑧𝑒 , a device memory address 𝑑_𝑏𝑢𝑓 , a device
memory buffer size 𝑑_𝑠𝑖𝑧𝑒 and information of the queue pair (e.g.,
queue id). The 𝑆𝑝𝑙𝑖𝑡 module would write the first ℎ_𝑠𝑖𝑧𝑒 bytes of
the RDMA message into ℎ_𝑏𝑢𝑓 , and write the remaining bytes of the
RDMA message into 𝑑_𝑏𝑢𝑓 . At last, it notifies the host CPU.

On the send side, the application posts send descriptors to the
𝑆𝑒𝑛𝑑 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 𝑡𝑎𝑏𝑙𝑒 associated with the 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒 module. Sim-
ilarly, the descriptor contains a host memory address ℎ_𝑏𝑢𝑓 , a
host memory buffer size ℎ_𝑠𝑖𝑧𝑒 , a device memory address 𝑑_𝑏𝑢𝑓 ,
a device memory buffer size 𝑑_𝑠𝑖𝑧𝑒 and information of the queue
pair. The 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒 module would read ℎ_𝑠𝑖𝑧𝑒 bytes from ℎ_𝑏𝑢𝑓
and read 𝑑_𝑠𝑖𝑧𝑒 bytes from 𝑑_𝑏𝑢𝑓 . When data is returned by the
𝐷𝑀𝐴 module and device memory, the 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒 module uses the
returned data to make up an RDMA message using the information

SmartDS: Middle-Tier-centric SmartNIC Enabling Application-aware Message Split for Disaggregated Block Storage ISCA ’23, June 17–21, 2023, Orlando, FL, USA

in the descriptor. The 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒 module sends the message to the
𝑅𝑜𝐶𝐸 stack, which would send the message to the network. Finally,
it notifies the host CPU.
Offloaded hardware engine. The software can explicitly invoke
a hardware engine in SmartDS to process message payload residing
in SmartDS’s device memory. To simplify the programming model,
the engine follows a simple I/O mechanism. The engine fetches
data from the device memory and writes results to the device mem-
ory. In the scenario of the middle-tier server, we implement LZ4
compression [8] as it is the most computation-intensive operation
in the middle-tier server. Nevertheless, SmartDS provides a simple
interface to deploy different hardware engines according to the
application scenario.
Benefits. In our design, only a small portion of the network mes-
sage, i.e., the message header, would be forwarded to the CPU, thus
reducingmuch PCIe bandwidth andmemory bandwidth occupation.
In particular, there are mainly two benefits:

• Reduced memory bandwidth occupation indicates that the
performance of serving I/O requests would be less affected
by other maintenance services in the middle-tier server. We
could achieve performance isolation without partitioning
memory bandwidth.

• Reduced PCIe bandwidth occupation indicates that we could
easily scale up SmartDSwith muchmore network bandwidth
than PCIe bandwidth.

4.2 Extending to Multiple Networking Ports
There is a wide variety of NIC/SmartNIC products from different
vendors that provide more network volume than PCIe link band-
width. The CPU-based and the accelerator-enhanced middle-tier
servers can not benefit from this asymmetric network/PCIe band-
width, because all network messages have to travel through PCIe
whose bandwidth becomes a bottleneck. Therefore, the remaining
networking ports can only be used as a backup link to improve
reliability.

In SmartDS, all networking ports can be fully leveraged, be-
cause SmartDS only forwards the message header to host memory
through PCIe, while the majority of the network message stays
in SmartDS’s device memory, leaving the PCIe link under-loaded.
All the networking ports can be utilized as long as the SmartDS’s
device memory bandwidth is enough. Fortunately, many FPGA-
based SmartNICs (with multiple networking ports) have a large
off-chip high-bandwidth memory. For example, our prototype is
built with Xilinx VCU128 FPGA [83], which has a 6x100 Gbps net-
working volume and an 8 GB High Bandwidth Memory (HBM). Its
HBM has 16 memory channels, providing up to 3.4 Tbps memory
bandwidth [79].

Figure 6 demonstrates the overall architecture of SmartDS which
is able to take advantage of multiple networking ports. For each
networking port, SmartDS instantiates an extended RoCE stack
instance, configured with an individual IP address. The extended
RoCE stack includes the RoCE stack in prior work [70], 𝑆𝑝𝑙𝑖𝑡 mod-
ule, and 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒 module mentioned in Subsection 4.1. At the
same time, a hardware engine is instantiated to process the mes-
sage payload from the extended ROCE stack. As such, SmartDS is

able to concurrently provide real-time services coming from multi-
ple networking ports. This design enables SmartDS fully utilize the
asymmetric bandwidth of PCIe and network.

4.3 A Running Example with SmartDS
In order to allow programmers to easily harvest the performance
potential of SmartDS, SmartDS exposes RDMA-like high-level appli-
cation programming interface (API) to guarantee high programma-
bility. Table 2 demonstrates the APIs of SmartDS. Listing 1 demon-
strates a simplified example using SmartDS to serve write requests
in a disaggregated block storage system:
Memory allocation. The software first allocates both host mem-
ory for headers (Lines 2-3) and SmartDS’s device memory for pay-
loads (Lines 4-5).
Connect queue pair. After memory allocation, the software calls
function 𝑜𝑝𝑒𝑛_𝑟𝑜𝑐𝑒_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 to get the context of the first RoCE
network instance in SmartDS (Line 8). Then it connects one queue
pair with a remote VM (Line 10) and the other queue pair with
a remote storage server (Line 11). The code here is simplified for
better understanding.
Receive message. The software posts a recv work descriptor to
the SmartDS (Line 15) and polls its completion. After receiving
the write request, the software can know the received payload size
through the completion event 𝑒 .
Flexible and changeful processing. The software parses the mes-
sage header in the host memory ℎ_𝑏𝑢𝑓 _𝑟𝑒𝑐𝑣 (Line 20). Then the
software prepares ℎ_𝑏𝑢𝑓 _𝑠𝑒𝑛𝑑 according to the parsed results (Line

Table 2: High-level APIs of SmartDS

host_alloc(size)
Allocating 𝑠𝑖𝑧𝑒 bytes buffer in the host memory.
dev_alloc(size)
Allocating 𝑠𝑖𝑧𝑒 bytes buffer in the SmartDS’s device memory.
open_roce_instance(instance_index)
Open one of the RoCE instances in the SmartDS and return the
context.
dev_mixed_recv(qp, h_buf, h_size, d_buf, d_size)
Post a recv work request, the received RDMA message would be
split, the first ℎ_𝑠𝑖𝑧𝑒 bytes would be stored in host memory
ℎ_𝑏𝑢𝑓 , while the remaining would be stored in SmartDS’s
device memory 𝑑_𝑏𝑢𝑓 . It would return an asynchronous event.
dev_mixed_send(qp, h_buf, h_size, d_buf, d_size)
Post a send work request, the SmartDS would assemble the
ℎ_𝑠𝑖𝑧𝑒 bytes in host memory ℎ_𝑏𝑢𝑓 and the 𝑑_𝑠𝑖𝑧𝑒 bytes in
the SmartDS’s device memory 𝑑_𝑏𝑢𝑓 into a RDMA message.
It would return an asynchronous event.
dev_func(src, src_size, dest, dest_size, engine)
Invoke the engine to do the offloaded computation, the engine
would fetch 𝑠𝑟𝑐_𝑠𝑖𝑧𝑒 bytes from 𝑠𝑟𝑐 in SmartDS’s device
memory. When the engine completes, it writes the result into
𝑑𝑒𝑠𝑡 in SmartDS’s device memory and notifies the application
running in the host CPU. The 𝑒𝑛𝑔𝑖𝑛𝑒 parameter specifies
which engine to use. It would return an asynchronous event.
poll(event)
Poll the asynchronous event until it completes.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jie Zhang, et al.

21). Note that this stage only involves the host CPU and host mem-
ory, so as to guarantee high flexibility and high programmability.
Offloaded computation. If the write request is sensitive to la-
tency, the software directly forwards the data block to a remote
storage server and polls its completion (Lines 25-27). Otherwise, the
software can invoke a hardware engine in SmartDS to perform com-
pression on the data block in 𝑑_𝑏𝑢𝑓 _𝑟𝑒𝑐𝑣 and poll its completion
(Lines 30-31). After compression, the software sends the compressed
results to a remote storage server and polls its completion (Lines
33-35).
How to guarantee high flexibility and high throughput? In
SmartDS, the message header that requires flexible or changeful
logic remains in host memory and is processed by the host CPU,
we do not offload any control logic to SmartDS. The message pay-
load that needs fixed heavy computations (e.g., compression) re-
mains in SmartDS’s device memory. We only build hardware en-
gines in SmartDS to perform fixed heavy computations that hardly
change over time on payloads. As such, SmartDS enables the fast
upgrades of disaggregated block storage software while keeping
high throughput.
How to guarantee high programmability? Programming with
SmartDS uses high-level APIs and the SmartDS implementation
only requires 145 lines of code, while the baseline uses standard
RDMA NIC and LZ4 library [49] and its core functionalities require
130 lines of code. Therefore, SmartDS provides high programmabil-
ity to allow developers to only focus on high-level functionalities.
1 /* Allocating host and device memory buffers */
2 void* h_buf_recv = host_alloc(MAX_SIZE);
3 void* h_buf_send = host_alloc(MAX_SIZE);
4 void* d_buf_recv = dev_alloc(MAX_SIZE);
5 void* d_buf_send = dev_alloc(MAX_SIZE);
6
7 /*Open Open RoCE instance 0*/
8 ctx = open_roce_instance(INSATANCE_0);
9 /* Connect queue pairs with remote client and storage server */

10 qp_recv = connect_qp(ctx ,remote_VM);
11 qp_send = connect_qp(ctx ,remote_storage_server);
12
13 while(true){
14 /* Recv a write request from a client , forward its header to

host memory , keep the payload in SmartNIC 's memory */
15 e = dev_mixed_recv (qp_recv , h_buf_recv , HEAD_SIZE ,

d_buf_recv , MAX_SIZE);
16 poll(e);
17 payload_size = e.size;
18
19 /* User's logic flexibly parses the content in h_buf_recv and

prepares the necessary send header */
20 parsed_res = host_parse_header(h_buf_recv , HEAD_SIZE);
21 host_fill_send_h_buf(h_buf_send , parsed_res);
22
23
24 /* Directly send a latency -sensitive block to a storage server

*/
25 if(parsed_res.is_latency_important === true){
26 e = dev_mixed_send(qp_send , h_buf_send , HEAD_SIZE ,

d_buf_recv , payload_size);
27 poll(e);
28 }else{ /*for a block that is not latency -sensitive */
29 /* compress a data block via hardware engine 0*/
30 e = dev_func(src=d_buf_recv , payload_size , dest=

d_buf_send , MAX_SIZE , engine=COMPRESS_ENGINE_0);
31 poll(e);
32 /* Send the compressed block to a remote storage server */
33 compressed_size = e.size;
34 e = dev_mixed_send(qp_send , h_buf_send , HEAD_SIZE ,

d_buf_send , compressed_size);
35 poll(e);
36 }
37 }

Listing 1: An example of programming with SmartDS

Figure 6: SmartDS Architecture with multiple network ports

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
Our experimental platform consists of four AMAX XP04A201G
servers. Each has two 24-logical-core (12 physical cores with 2-way
SMT) 2.2 GHz Xeon Silver 4214 CPUs, 256 GiB (8x32 GiB) 2400
MHz DDR4 memory, and a 16 MiB LLC. Each server is equipped
with a Mellanox ConnectX-5 NIC. We implement our prototype on
the Xilinx VCU128 FPGA [83], which is plugged into one of the
above servers.
Workloads. We carry out our experiments on Silesia compression
corpus [75], a well-known data set that provides a data set of files
that covers the typical data types used nowadays. We build a typical
scenario of disaggregated block storage. One server keeps issuing
write requests to a middle-tier server. After receiving the write
request, the middle-tier server compresses the data block in the
request and sends it to three storage servers, which would store the
compressed data on the disk. When the middle-tier server receives
successes from storage servers, it replies a success to the server
that issues the request. After that, the write request completes.
CPU-basedmiddle-tier server baseline. Our CPU-based middle-
tier server, “CPU-only", is equipped with a Mellanox ConnectX-5
NIC. The network stack is RDMA and we use LZ4 library [49] for
compression.
Accelerator-enhanced middle-tier server baseline. The base-
line, “Acc", is equipped with a Mellanox ConnectX-5 NIC and Xilinx
Alveo U280 FPGA card [82]. When the host CPU receives an RDMA
message from the client, it invokes compression engines on the
FPGA to read the message payload by DMA. The compression en-
gines then write the results back and notify the host CPU. Then the
host CPU sends it to three remote storage servers. After receiving
replies from remote storage servers, it sends a success to the client.
The engine’s compression throughput can be up to 100 Gbps.
SoC-based SmartNIC baseline. We use Nvidia BlueField-2 Smart-
NIC to implement SoC-based SmartNIC baseline “BF2". It has eight
Arm A72 cores and two 100 Gbps networking ports. We perform
the compression on the compression engine of BlueField-2.
SmartDS implementations. We present four implementations
of SmartDS on a Xilinx VCU128 FPGA: “SmartDS-1", “SmartDS-2",

SmartDS: Middle-Tier-centric SmartNIC Enabling Application-aware Message Split for Disaggregated Block Storage ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 3: FPGA resource consumption

Name LUTs (K) REGS (K) BRAMs

“Acc" 112 (8.6%) 109 (4.2%) 172 (8.5%)
“SmartDS-1" 157 (12.0%) 143 (5.4%) 292 (14.5%)
“SmartDS-2" 313 (24.0%) 285 (10.9%) 584 (29.0%)
“SmartDS-4" 627 (48.1%) 571 (21.9%) 1168 (58.0%)
“SmartDS-6" 941 (72.2%) 857 (32.9%) 1752 (86.9%)

“SmartDS-4", “SmartDS-6".1 The number indicates the number of
utilized networking ports. Each utilized networking port is equiped
with a compression engine and a RoCE instance. Each compression
engine can process 4 KB data blocks at the rate of 100 Gbps. Table 3
shows the FPGA resource consumption of accelerator-enhanced
middle-tier server “Acc" and four implementations of SmartDS.

5.2 Effect of Application-aware Message Split
Mechanism

We examine the effect of our proposed application-aware message
split mechanism, by comparing the throughput and latency of serv-
ing write requests.
Throughput. Figure 7a demonstrates the achieved throughput
of different middle-tier server implementations. “SmartDS-1" and
“Acc" only require two threads to reach the peak throughput, while
“CPU-only" requires nearly all 48 logical cores in the server to reach
the same throughput because CPU compression is slow (∼2.1 Gbps
for one logical core, ∼2.7 Gbps for two logical cores that belong to
the same hardware core), while “Acc" and “SmartDS-1" use FPGA
to compress data blocks and “BF2" uses compression engine to do
compression.
Latency. Figure 7b-d shows the average latency, 99th percentile
latency and 999th percentile latency of different approaches. “Acc"
has the highest average latency when not overloaded due to two
reasons. First, despite the data movement of NIC, “Acc" requires
two extra data block movements (uncompressed data block from
host memory to FPGA and compressed data from FPGA to host
memory). Second, “Acc" performs the compression on the FPGA,
and its processing latency is higher than the CPU due to its signifi-
cantly lower frequency. “SmartDS-1" has nearly the same latency
as “CPU-only", the difference is that “CPU-only" latency would
dramatically increase when more CPU cores are used. “BF2" has
the lowest average latency since it does not need to communicate
with the host. But its 99th and 999th percentile latency is higher
than SmartDS-1 when more than one CPU core is used.

We corroborate our hypothesis by measuring the host memory
usage and PCIe usage of different approaches.
Memory bandwidth. Figure 8a shows the host memory band-
width occupation of different approaches. SmartDS hardly occupies
host memory bandwidth, as only the message header of the entire
message goes to host memory, the data block that accounts for the
majority of the message stays in SmartDS’s memory, demonstrat-
ing the great potential of scaling up SmartDS within a middle-tier

1There are only four 100 Gbps networking ports in our FPGA, but it can have two more
100Gbps networking ports with a 2-port QSFP28 (Quad Small Form-factor Pluggable)
FMC Module [30]. We do have this module, but ours is broken and can not be detected.
So we simulate the performance of “SmartDS-6" using the results of the former three
implementations.

(a) Throughput of serving write re-
quests

(b) Average latency

(c) 99th percentile latency (d) 999th percentile latency

Figure 7: Throughput and latency of different approaches

(a) Host memory bandwidth

(b) CPU PCIe link bandwidth

Figure 8: Comparison of host memory and CPU PCIe link
bandwidth usage between approaches

server. “CPU-only" consumes nearly the same memory read band-
width and memory write bandwidth, and the occupied bandwidth
increases when using more cores. When using more cores, “Acc
w/DDIO" occupies more memory write bandwidth, but it hardly
consumes memory read bandwidth, because Intel DDIO [32] is en-
abled in our server. When network data arrives, it would go to LLC
(last level cache), then FPGA can directly read the data from LLC
instead of the host memory. When FPGA completes compressing
the data block, it writes the result into LLC, then NIC can directly
read the result from LLC and send it to the network. We verify this
by turning off DDIO and repeating the experiment. As expected,
the memory read bandwidth (yellow line marked with w/o DDIO)
significantly increases when DDIO is disabled.
PCIe bandwidth. Figure 8b shows the PCIe bandwidth occupation
comparison of different approaches. D2H indicates the direction

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jie Zhang, et al.

from device to host while H2D indicates from host to device. “CPU-
only" only uses one PCIe device (i.e., NIC). When more cores are
used, both D2H and H2D PCIe bandwidth increase. H2D PCIe band-
width nearly reaches the achievable bandwidth of PCIe 3.0X16.
“Acc" employs two PCIe devices (NIC and FPGA). When running at
peak performance, NIC’s H2D bandwidth reaches the achievable
bandwidth of PCIe 3.0X16, and FPGA’s H2D bandwidth reaches
∼70% of the achievable bandwidth. “SmartDS-1" only employs one
PCIe device (i.e., FPGA), and occupies only ∼2% of PCIe bandwidth
because the majority of the message, i.e., message payload, is pro-
cessed on SmartDS.

5.3 Performance Interference
In this subsection, we validate that SmartDS can achieve perfor-
mance isolationwithout partitioningmemory bandwidth and caches
on the CPU.

As mentioned in Section 2, despite serving I/O requests from
VMs, each middle-tier server runs maintenance services. Therefore,
serving I/O requests and running maintenance services result in
performance inference in each middle-tier server. To achieve perfor-
mance isolation, developers partition not only CPU cores but also
memory bandwidth and caches [24]. To demonstrate the interfer-
ence from the memory subsystem, we use 16 dedicated cores to run
the Intel memory latency checker (MLC) to inject memory requests
into the memory subsystem. The remaining cores are dedicated
to serving I/O requests. We change the duration (clock cycles) be-
tween injected memory requests of Intel MLC to simulate different
levels of memory pressure.

Figure 9 shows the achieved performance under different mem-
ory pressure from other cores. “CPU-only" and “Acc" achieve sig-
nificantly lower throughput with higher memory pressure, while
the throughput of “SmartDS-1" hardly changes over different levels
of memory pressure. And the MLC bandwidth of “SmartDS-1" is
always higher than the other two implementations. The average
latency (Figure 9b) and tail latency (Figure 9c, Figure 9d) show
similar results: the average latency and tail latency of “SmartDS-1"
would not be interfered by memory bandwidth pressure from other
cores, while “CPU-only" and “Acc" suffer from severe memory in-
terference, indicating that “SmartDS-1" can achieve performance
isolation without partitioning host memory bandwidth and caches.

5.4 Effect of Multiple Networking Ports
We validate that SmartDS can fully utilize more networking ports.
Figure 5.5 illustrates the throughput and latency trend when em-
ploying different numbers of networking ports. We observe that
SmartDS can linearly increase the achieved throughput with an
increasing number of networking ports, as shown in Figure 10a. For
example, SmartDS-4 reaches 4× achieved throughput of the maxi-
mum throughput of SmartDS-1, “CPU-only" or “Acc". Figure 10a
shows that the average latency, 99th percentile latency, and 999th
percentile latency of SmartDS roughly keep the same with an in-
creasing number of networking ports.

5.5 Multiple SmartNICs per Server
SmartDS can scale up linearly if the server has enough CPU cores
(two cores per networking port) since it does not bring much pres-
sure to the host memory and PCIe. We estimate that SmartDS-6

(a) Throughput

(b) Average latency (c) 99th percentile (d) 999th percentile

Figure 9: Performance under different memory pressure

(a) Throughput (b) Latency (c) Bandwidth

Figure 10: Effect of the number of network ports

consumes the host memory bandwidth (49 Gbps) and PCIe mem-
ory bandwidth (12.4 Gbps) to consume 348Gbps storage traffic.
Therefore, it’s practical to equip a middle-tier server with many
SmartNICs to reduce the total cost of ownership when the number
of CPU cores is enough.

Taking the platform we have used in the prior experiments as an
example, it has two 1x4 PCIe 3.0x16 switches, and each PCIe switch
can be equipped with four PCIe 3.0x16 devices. We can equip this
server with 8 SmartDSs. We can achieve up to 2.8 Tbps throughput
(51.6× higher than “CPU-only"), while the host memory occupation
is only 392 Gbps, far less than the total host memory bandwidth
(theoretically 1228 Gbps from eight memory channels). The root
port of each PCIe switch only consumes 49.6 Gbps (4*12.4 Gbps)
PCIe bandwidth, which is far less than the achievable bandwidth
(102.4 Gbps) of the PCIe 3.0x16 root port.

6 RELATEDWORK
To our knowledge, SmartDS is the first middle-tier-centric Smart-
NIC that serves storage I/O requests with high throughput, while
keeping high flexibility and high programmability.
Header-payload split. Header-payload split has been studied in
many of the prior works [3, 20, 27, 62, 67].

SmartDS: Middle-Tier-centric SmartNIC Enabling Application-aware Message Split for Disaggregated Block Storage ISCA ’23, June 17–21, 2023, Orlando, FL, USA

The first class is relevant to DDIO. CacheDirector [20] steers the
header of each network packet into the LLC tile that is closest to the
core that will process the packet. IDIO [3] selectively disables Direct
Cache Access (DCA) for the payload of received packets according
to application classes while always keeping DCA enabled for packet
headers. In contrast, based on the observation that many SmartNIC
products provide muchmore network bandwidth than the PCIe link,
SmartDS forwards the message header to the host while leaving
message payloads in the SmartNIC’s device memory, and then
invokes SmartNIC hardware engines to process the payloads. It’s
also possible to apply CacheDirector to SmartDS to put message
headers into the closest LLC tile, thus reducing the latency ofmiddle-
tier server applications.

The second class forwards packet headers to host memory, while
payloads remain in NIC memory [62, 67], or network switch mem-
ory [27]. They can only accelerate data mover applications where
network payloads are unchanged such as shallow network func-
tions. Besides, they do not provide reliability and their split is per-
formed at the granularity of the packet. In contrast, SmartDS ap-
plies to the applications that require computation on payloads, and
SmartDS provides reliability and performs our split at the granular-
ity of RDMA message.

The third class forwards the header and data of the received
Ethernet frames to different host buffers [54]. As such, the headers
occupy a smaller memory region to let more headers fit into a single
memory page and even the system cache, reducing the driver stack
overhead of memory accesses.
SmartNIC-enhanced Storage Disaggregation. In recent years,
SmartNIC-based disaggregated storage [13, 55, 58, 59] has emerged
and become increasingly popular because of their low deployment
costs and competitive IO performance compared to traditional
server-based approaches. SmartNIC-based storage node usually
comprises a SmartNIC, a PCIe switch, and a collection of NVMe
SSDs. LineFS [40] proposes the persist-and-publish model and
pipeline parallelism to offload a PM-optimized distribute file sys-
tem (DFS) to SmartNICs. It offloads CPU-intensive DFS tasks, like
replication, compression, data publication, index management, and
consistency management to an SoC-based SmartNIC. It sits in the
compute node and offloads many control functions to SmartNIC.
The data compression in LineFS is performed in the SmartNIC’s
CPU, thus its achieved throughput is very low (∼10 Gbps). SmartDS
is orthogonal to these works, we focus on optimizing the middle tier
(i.e., middle-tier servers) instead of the storage node. SmartDS only
offload the most computation-intensive operations to SmartNIC.
Offloading to Hardware. Many prior works [5, 7, 17, 21, 28, 37,
39, 44–48, 61, 63, 80, 81] offload host tasks to FPGA-based or SoC-
based SmartNICs. For FPGA-based SmartNIC, ClickNP [44] offloads
network functions such as firewall, L4 load balancer, and IPSec
gateway. AccelNet [21] offloads TCP processing and SDN stack.
Tonic [7] enables programmable transport protocols. hXDP [14]
offloads eBPF processing. PANIC [46] addresses the performance
isolation and fairness problems under the multi-tenant environ-
ment. FlowBlaze [63] enables stateful network packet processing
on FPGAs. FpgaNIC [80] allows data/control plane offloading for
efficient GPU-SmartNIC co-processing. For SoC-based SmartNIC,
Floem [61] and iPipe [47] offload applications like key-value store,
real-time data analytics to SmartNIC. E3 [48] and _-NIC [17] offload

microservices to SmartNIC. FairNIC [28] tackles performance isola-
tion and fairness problems. Xenic offloads distributed transactions
to SmartNIC. These works leverage SmartNIC to alleviate CPU pres-
sure but do not tackle the problem in the middle-tier server, offload-
ing the most computation-intensive compression efficiently while
keeping flexibility and programmability. Prior works [38, 43, 64, 65]
accelerate RPCs using specialized hardware accelerators or pro-
grammable NICs. They mainly focus on data transformation in
RPCs (i.e., serialization/deserialization). RAMBDA [85] leverages
cache-coherent accelerators and commodity RDMA NICs to of-
fload datacenter applications, but suffers from the high memory
bandwidth occupation problem.
Other Novel Network Architecture. Flajslik et at. [22] study
different sources of latency overhead in the network stack and find
that minimizing the number of PCIe transactions is vital. They
propose NIQ to reduce communication latency by leveraging tech-
niques such as packet inline, custom polling, and creative use of
caching policies. NetDIMM [4] integrates a full-blown NIC into the
buffer device of a DIMM. It reduces the amount of data movement
when processing network packets by leveraging in-memory buffer
cloning. It can provide the performance of zero-copy networking
without its drawbacks. SmartDS focus on middle-tier server applica-
tions. It reduces the amount of data movement by only transferring
the message header between host memory and SmartNIC, it lever-
ages hardware engines in SmartNIC to process network-intensive
message payloads.

7 CONCLUSION
The cloud introduces a middle-tier, in terms of middle-tier servers,
between compute servers and storage servers to serve I/O requests
from compute servers and to provide computations such as compres-
sion and decompression. The existing CPU-based middle-tier server
is bottlenecked by compute-intensive compression/decompression.
To this end, we present SmartDS, a middle-tier-centric SmartNIC
that serves storage I/O requests with low latency and high through-
put, while keeping high flexibility and high programmability. The
key idea of SmartDS is an application-aware message split mecha-
nism that enables the processing of message headers on the host
CPU, providing flexibility, while the message payload is processed
on the SmartDS, achieving high throughput. SmartDS enables lin-
ear scale-up of multiple network ports and multiple SmartNICs,
such that SmartDS reduces the number of middle-tier servers by
roughly 51.6×, and thus significantly reduces cloud infrastructure
cost for disaggregated block storage.
Acknowledgements. We would like to thank Xueying Zhu and
Xuzheng Chen for supporting this work. Also, we thank the anony-
mous reviewers for their detailed feedback. We are grateful to the
AMD-Xilinx University Program for the donation of some of the
AMD-Xilinx FPGAs used in the experiments. The work is supported
by the following grants: the Program of Zhejiang Province Science
and Technology (2022C01044), a research grant from Alibaba Group
through Alibaba Innovative Research (AIR) Program, the Funda-
mental Research Funds for the Central Universities 226-2022-00151,
Key Laboratory for Corneal Diseases Research of Zhejiang Province.
Zeke Wang is the corresponding author.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jie Zhang, et al.

REFERENCES
[1] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a chip: High performance

lossless data compression on fpgas using opencl,” in IWOCL, 2014.
[2] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and G. Amvrosiadis,

“File systems unfit as distributed storage backends: Lessons from 10 years of ceph
evolution,” in SOSP, 2019.

[3] M. Alian, S. Agarwal, J. Shin, N. Patel, Y. Yuan, D. Kim, R. Wang, and N. S. Kim,
“Idio: Network-driven, inbound network data orchestration on server processors,”
in MICRO, 2022.

[4] M. Alian and N. S. Kim, “Netdimm: Low-latency near-memory network interface
architecture,” in MICRO, 2019.

[5] G. Alonso, “Technical perspective: Dfi: The data flow interface for high-speed
networks,” SIGMOD Rec., 2022.

[6] Amazon, “Amazon Elastic Block Store,” https://aws.amazon.com/cn/blogs/
architecture/category/storage/amazon-elastic-block-storage-ebs, 2022.

[7] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and D. Wentzlaff,
“Enabling programmable transport protocols in high-speed nics,” in NSDI, 2020.

[8] M. Bartík, S. Ubik, and P. Kubalik, “Lz4 compression algorithm on fpga,” in ICECS,
2015.

[9] Broadcom, “Stingray™ PS250,” https://docs.broadcom.com/doc/PS250-PB, 2018.
[10] Broadcom, “BCM957508-P2200G,” https://docs.broadcom.com/doc/957508-

P2200G-DS, 2019.
[11] Broadcom, “BCM957504-N1100G,” https://docs.broadcom.com/doc/957504-

N1100G-DS, 2020.
[12] Broadcom, “Broadcom N2200G,” https://www.broadcom.com/products/ethernet-

connectivity/network-adapters/n2200g, 2022.
[13] Broadcom, “Broadcom Stingray PS1100R,” https://docs.broadcom.com/doc/

PS1100R-PB, 2022.
[14] M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli, G. Siracusano, G. Bianchi,

A. Cammarano, A. Palumbo, L. Petrucci, and R. Bifulco, “hxdp: Efficient software
packet processing on fpga nics,” Communications of the ACM, 2022.

[15] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu,
S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards,
V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhard-
waj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan, and
L. Rigas, “Windows azure storage: A highly available cloud storage service with
strong consistency,” in SOSP, 2011.

[16] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress or not to compress compute
vs. io tradeoffs for mapreduce energy efficiency,” in SIGCOMM, 2010.

[17] S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum, “_-nic: Interactive server-
less compute on programmable smartnics,” in ICDCS, 2020.

[18] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski, Z. He, N. Hossle, D. Ko-
rolija, M. Licciardello, K. Martsenko, R. Achermann, G. Alonso, and T. Roscoe,
“Enzian: An Open, General, CPU/FPGA Platform for Systems Software Research,”
in ASPLOS, 2022.

[19] Ehernet Technology Consortium, “800G specification,” https://
ethernettechnologyconsortium.org/wpcontent/uploads/2020/03/800G-
Specification_r1.0.pdf, 2020.

[20] A. Farshin, A. Roozbeh, G. Q. Maguire Jr, and D. Kostić, “Make the most out of
last level cache in intel processors,” in EuroSys, 2019.

[21] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha,
H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K. Chandrappa, S. Chaturmohta,
M. Humphrey, J. Lavier, N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri,
S. Raindel, T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava, A. Verma,
Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg, “Azure
accelerated networking:smartnics in the public cloud,” in NSDI, 2018.

[22] M. Flajslik and M. Rosenblum, “Network interface design for low latency request-
response protocols,” in ATC, 2013.

[23] J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck, “A scalable high-bandwidth archi-
tecture for lossless compression on fpgas,” in FCCM, 2015.

[24] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay, “Caladan: Mitigating interference
at microsecond timescales,” in OSDI, 2020.

[25] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu, S. Liu, L. Yan, F. Feng,
Y. Zhuang, F. Liu, P. Liu, X. Liu, Z. Wu, J. Wu, Z. Cao, C. Tian, J. Wu, J. Zhu,
H. Wang, D. Cai, and J. Wu, “When cloud storage meets rdma,” in NSDI, 2021.

[26] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and K. Park, “Apunet: Revitalizing
gpu as packet processing accelerator,” in NSDI, 2017.

[27] S. Goswami, N. Kodirov, C. Mustard, I. Beschastnikh, and M. Seltzer, “Parking
packet payload with p4,” in CoNEXT, 2020.

[28] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren, “Smartnic performance isolation
with fairnic: Programmable networking for the cloud,” in SIGCOMM, 2020.

[29] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn, “Rdma over
commodity ethernet at scale,” in SIGCOMM, 2016.

[30] HiTech Global, “2-Port QSFP28 (2x100G) / QSFP+ (2x40G or 2x56G) FMC Mod-
ule (Vita57.1),” http://www.hitechglobal.com/FMCModules/FMC_2QSFP28.htm,
2022.

[31] X. Hu, F. Wang, W. Li, J. Li, and H. Guan, “Qzfs: Qat accelerated compression in
file system for application agnostic and cost efficient data storage,” in ATC, 2019.

[32] Intel, “Intel data direct i/o technology: A primer,” https://www.intel.com/
content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-
technology-brief.pdf, 2012.

[33] Intel, “Intel QuickAssist Technology,” https://www.intel.com/content/www/us/
en/architecture-and-technology/intel-quick-assist-technology-overview.html,
2019.

[34] Intel, “Intel® SSD D7-P5520 Series,” https://ark.intel.com/content/www/us/en/
ark/products/213416/intel-ssd-d7p5520-series-1-92tb-2-5in-pcie-4-0-x4-3d4-
tlc.html, 2020.

[35] Intel, “Intel® Infrastructure Processing Unit,” https://www.intel.com/content/
www/us/en/products/details/network-io/ipu.html, 2022.

[36] Intel, “Intel®Memory Latency Checker,” https://www.intel.com/content/www/
us/en/developer/articles/tool/intelr-memory-latency-checker.html, 2022.

[37] Z. István, D. Sidler, G. Alonso, and M. Vukolic, “Consensus in a Box: Inexpensive
Coordination in Hardware,” in NSDI, 2016.

[38] J. Jang, S. J. Jung, S. Jeong, J. Heo, H. Shin, T. J. Ham, and J. W. Lee, “A specialized
architecture for object serialization with applications to big data analytics,” in
ISCA, 2020.

[39] M. Khazraee, A. Forencich, G. C. Papen, A. C. Snoeren, andA. Schulman, “Rosebud:
Making FPGA-Accelerated Middlebox Development More Pleasant,” in ASPLOS,
2023.

[40] J. Kim, I. Jang,W. Reda, J. Im,M. Canini, D. Kostić, Y. Kwon, S. Peter, and E.Witchel,
“Linefs: Efficient smartnic offload of a distributed file system with pipeline paral-
lelism,” in SOSP, 2021.

[41] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar, “Flash storage
disaggregation,” in EuroSys, 2016.

[42] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou, “Dagger: Efficient
and fast rpcs in cloud microservices with near-memory reconfigurable nics,” in
ASPLOS, 2021.

[43] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou, “Dagger: efficient
and fast rpcs in cloud microservices with near-memory reconfigurable nics,” in
ASPLOS, 2021.

[44] B. Li, K. Tan, L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and E. Chen,
“Clicknp: Highly flexible and high performance network processing with recon-
figurable hardware,” in SIGCOMM, 2016.

[45] J. Li, Y. Lu, Q. Wang, J. Lin, Z. Yang, and J. Shu, “AlNiCo: SmartNIC-accelerated
contention-aware request scheduling for transaction processing,” in ATC, 2022.

[46] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella, “Panic: A high-
performance programmable nic for multi-tenant networks,” in OSDI, 2020.

[47] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta, “Offloading
distributed applications onto smartnics using ipipe,” in SIGCOMM, 2019.

[48] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana, “E3:energy-efficient
microservices on smartnic-accelerated servers,” in ATC, 2019.

[49] LZ4, “LZ4 Benchmarks,” https://github.com/lz4/lz4, 2022.
[50] J. D. McCalpin, “Memory bandwidth and system balance in hpc systems,” UT

Faculty/Researcher Works, 2016.
[51] Mellanox, “ConnectX®-5 En Card Product Brief,” https://www.mellanox.

com/sites/default/files/relateddocs/prod_adapter_cards/PB_ConnectX-
5_EN_Card.pdf, 2017.

[52] Mellanox, “ConnectX®-6 En Card Product Brief,” https://www.mellanox.
com/sites/default/files/relateddocs/prod_adapter_cards/PB_ConnectX-
6_EN_Card.pdf, 2017.

[53] R. Miao, L. Zhu, S. Ma, K. Qian, S. Zhuang, B. Li, S. Cheng, J. Gao, Y. Zhuang,
P. Zhang, R. Liu, C. Shi, B. Fu, J. Zhu, J. Wu, D. Cai, and H. H. Liu, “From luna to
solar: The evolutions of the compute-to-storage networks in alibaba cloud,” in
SIGCOMM, 2022.

[54] Microsoft, “Introduction to Header-Data Split,” https://learn.microsoft.com/en-
us/windows-hardware/drivers/network/header-data-split, 2021.

[55] J. Min, M. Liu, T. Chugh, C. Zhao, A. Wei, I. H. Doh, and A. Krishnamurthy,
“Gimbal: enabling multi-tenant storage disaggregation on smartnic jbofs,” in
SIGCOMM, 2021.

[56] A. Mirhosseini, H. Golestani, and T. F. Wenisch, “Hyperplane: A scalable low-
latency notification accelerator for software data planes,” in MICRO, 2020.

[57] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo, and A. W.
Moore, “Understanding pcie performance for end host networking,” in SIGCOMM,
2018.

[58] Nvidia, “NVIDIA BLUEFIELD-2 DPU,” https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf,
2021.

[59] Nvidia, “NVIDIA BLUEFIELD-3 DPU,” https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf,
2022.

[60] A. Ozsoy, M. Swany, and A. Chauhan, “Pipelined parallel lzss for streaming data
compression on gpgpus,” in ICPADS, 2012.

[61] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and T. Anderson,
“Floem: A programming system for nic-accelerated network applications,” in

https://aws.amazon.com/cn/blogs/architecture/category/storage/amazon-elastic-block-storage-ebs
https://aws.amazon.com/cn/blogs/architecture/category/storage/amazon-elastic-block-storage-ebs
https://docs.broadcom.com/doc/PS250-PB
https://docs.broadcom.com/doc/957508-P2200G-DS
https://docs.broadcom.com/doc/957508-P2200G-DS
https://docs.broadcom.com/doc/957504-N1100G-DS
https://docs.broadcom.com/doc/957504-N1100G-DS
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/n2200g
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/n2200g
https://docs.broadcom.com/doc/PS1100R-PB
https://docs.broadcom.com/doc/PS1100R-PB
https://ethernettechnologyconsortium.org/wpcontent/ uploads/2020/03/800G-Specification_r1.0.pdf
https://ethernettechnologyconsortium.org/wpcontent/ uploads/2020/03/800G-Specification_r1.0.pdf
https://ethernettechnologyconsortium.org/wpcontent/ uploads/2020/03/800G-Specification_r1.0.pdf
http://www.hitechglobal.com/FMCModules/FMC_2QSFP28.htm
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://ark.intel.com/content/www/us/en/ark/products/213416/intel-ssd-d7p5520-series-1-92tb-2-5in-pcie-4-0-x4-3d4-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/213416/intel-ssd-d7p5520-series-1-92tb-2-5in-pcie-4-0-x4-3d4-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/213416/intel-ssd-d7p5520-series-1-92tb-2-5in-pcie-4-0-x4-3d4-tlc.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://github.com/lz4/lz4
https://www.mellanox.com/sites/default/files/relateddocs/ prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf
https://www.mellanox.com/sites/default/files/relateddocs/ prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf
https://www.mellanox.com/sites/default/files/relateddocs/ prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf
https://www.mellanox.com/sites/default/files/relateddocs/ prod_adapter_cards/PB_ConnectX-6_EN_Card.pdf
https://www.mellanox.com/sites/default/files/relateddocs/ prod_adapter_cards/PB_ConnectX-6_EN_Card.pdf
https://www.mellanox.com/sites/default/files/relateddocs/ prod_adapter_cards/PB_ConnectX-6_EN_Card.pdf
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/header-data-split
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/header-data-split
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf

SmartDS: Middle-Tier-centric SmartNIC Enabling Application-aware Message Split for Disaggregated Block Storage ISCA ’23, June 17–21, 2023, Orlando, FL, USA

OSDI, 2018.
[62] B. Pismenny, L. Liss, A. Morrison, and D. Tsafrir, “The benefits of general-purpose

on-nic memory,” in ASPLOS, 2022.
[63] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Bruschi, D. Sanvito,

G. Siracusano, A. Capone, M. Honda, F. Huici, and G. Bianchi, “Flowblaze: Stateful
packet processing in hardware,” in NSDI, 2019.

[64] A. Pourhabibi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian, M. P. Drumond, B. Fal-
safi, and C. Koch, “Optimus prime: Accelerating data transformation in servers,”
in ASPLOS, 2020.

[65] A. Pourhabibi, M. Sutherland, A. Daglis, and B. Falsafi, “Cerebros: Evading the
rpc tax in datacenters,” in MICRO, 2021.

[66] W. Qiao, J. Du, Z. Fang, M. Lo, M.-C. F. Chang, and J. Cong, “High-throughput
lossless compression on tightly coupled cpu-fpga platforms,” in FCCM, 2018.

[67] A. Sarma, H. Seyedroudbari, H. Gupta, U. Ramachandran, and A. Daglis, “Nfslicer:
Data movement optimization for shallow network functions,” arXiv preprint
arXiv:2203.02585, 2022.

[68] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy, “Xenic: Smartnic-
accelerated distributed transactions,” in ASPLOS, 2021.

[69] L. Shalev, H. Ayoub, N. Bshara, and E. Sabbag, “A cloud-optimized transport
protocol for elastic and scalable hpc,” IEEE Micro, 2020.

[70] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “Strom: smart remote
memory,” in EuroSys, 2020.

[71] Silicom, “Silicom FPGA SmartNIC N501x,” https://www.silicom.dk/wp-content/
uploads/2022/03/Silicom-FPGA-SmartNIC-N501x-Series_v1.0.pdf, 2022.

[72] E. Sitaridi, R. Mueller, T. Kaldewey, G. Lohman, and K. A. Ross, “Massively-parallel
lossless data decompression,” in ICPP, 2016.

[73] I. Smolyar, A. Markuze, B. Pismenny, H. Eran, G. Zellweger, A. Bolen, L. Liss,
A. Morrison, and D. Tsafrir, “Ioctopus: Outsmarting nonuniform dma,” in ASPLOS,
2020.

[74] M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. Pnevmatikatos, and A. Daglis,
“The nebula rpc-optimized architecture,” in ISCA, 2020.

[75] The Silesia corpus, “,” https://sun.aei.polsl.pl//~sdeor/index.php, 2022.
[76] S. Thomas, G. M. Voelker, and G. Porter, “Cachecloud: Towards speed-of-light

datacenter communication,” in HotCloud, 2018.
[77] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Ratnasamy, and

S. Shenker, “Resq: Enabling slos in network function virtualization,” in NSDI,
2018.

[78] M. Vemmou, A. Cho, andA. Daglis, “Patching up network data leakswith sweeper,”
in MICRO, 2022.

[79] Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai: Benchmarking high band-
width memory on fpgas,” in FCCM, 2020.

[80] Wang, Zeke and Huang, Hongjing and Zhang, Jie and Wu, Fei and Alonso,
Gustavo, “FpgaNIC: An FPGA-based Versatile 100Gb SmartNIC for GPUs,” in
ATC, 2022.

[81] J. Wirth, J. A. Hofmann, L. Thostrup, C. Binnig, and A. Koch, “Scalable and
Flexible High-Performance In-Network Processing of Hash Joins in Distributed
Databases,” in FPT, 2021.

[82] Xilinx, “Xilinx ALVEO™ U280,” https://www.xilinx.com/publications/product-
briefs/alveo-u280-product-brief.pdf, 2021.

[83] Xilinx, “Virtex UltraScale+ HBM VCU128 FPGA Evaluation Kit,” https://www.
xilinx.com/products/boards-and-kits/vcu128.html, 2022.

[84] Xilinx, “Xilinx Versal FPGA,” https://www.xilinx.com/products/silicon-devices/
acap/versal-hbm.html, 2022.

[85] Y. Yuan, J. Huang, Y. Sun, T. Wang, J. Nelson, D. R. Ports, Y. Wang, R. Wang,
C. Tai, and N. S. Kim, “Rambda: Rdma-driven acceleration framework for memory-
intensive `s-scale datacenter applications,” in HPCA, 2023.

[86] B. Zhou, H. Jin, and R. Zheng, “A high speed lossless compression algorithm
based on cpu and gpu hybrid platform,” in TrustCom, 2014.

https://www.silicom.dk/wp-content/uploads/2022/03/Silicom-FPGA-SmartNIC-N501x-Series_v1.0.pdf
https://www.silicom.dk/wp-content/uploads/2022/03/Silicom-FPGA-SmartNIC-N501x-Series_v1.0.pdf
https://sun.aei.polsl.pl//~sdeor/index.php
https://www.xilinx.com/publications/product-briefs/alveo-u280-product-brief.pdf
https://www.xilinx.com/publications/product-briefs/alveo-u280-product-brief.pdf
https://www.xilinx.com/products/boards-and-kits/vcu128.html
https://www.xilinx.com/products/boards-and-kits/vcu128.html
https://www.xilinx.com/products/silicon-devices/acap/versal-hbm.html
https://www.xilinx.com/products/silicon-devices/acap/versal-hbm.html

	Abstract
	1 Introduction
	2 Background
	2.1 Disaggregated Block Storage
	2.2 Roles of Middle-tier

	3 Motivation
	3.1 Traditional CPU-based Middle-tier Server
	3.2 Accelerator-enhanced Middle-tier Server
	3.3 Naive FPGA-based SmartNIC solution
	3.4 SoC-based SmartNIC solution

	4 Design and Implementation of SmartDS
	4.1 Application-aware Message Split Mechanism
	4.2 Extending to Multiple Networking Ports
	4.3 A Running Example with SmartDS

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Effect of Application-aware Message Split Mechanism
	5.3 Performance Interference
	5.4 Effect of Multiple Networking Ports
	5.5 Multiple SmartNICs per Server

	6 Related Work
	7 Conclusion
	References

