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Shuhai: A Tool for Benchmarking High
Bandwidth Memory on FPGAs

Hongjing Huang, Zeke Wang?, Jie Zhang, Zhenhao He, Chao Wu, Jun Xiao, Gustavo Alonso

Abstract—FPGAs are starting to incorporate High Bandwidth Memory (HBM) to both reduce the memory bandwidth bottleneck
encountered in some applications and to provide more capacity to store application state. However, the overall performance
characteristics of HBMs are still not well understood, especially in the context of FPGAs, making it difficult to optimize designs relying
on HBM. In this paper, we bridge the gap between nominal specifications and actual performance by characterizing HBM on a
state-of-the-art FPGA, i.e., a Xilinx Alveo U280 featuring a two-stack HBM subsystem. To this end, we have developed Shuhai, a
benchmarking tool that throws light on all the subtle details of the performance and usage of HBMs on an FPGA. FPGA-based
benchmarking should also provide a more accurate picture of HBM than measuring performance on CPUs/GPUs, since CPUs/GPUs
are noisier systems due to their complex control logic and cache hierarchy. Since the memory itself is complex, leveraging custom
hardware logic to benchmark it directly from an FPGA provides more details as well as more accurate and deterministic measurements.
We observe that 1) HBM is able to provide up to 425 GB/s memory bandwidth, and 2) how HBM is used has a significant impact on the
achievable throughput, which in turn demonstrates the importance of unveiling the performance characteristics of HBM so as to use
HBM in the right manner. To demonstrate the generality of Shuhai, we also show results for other types of memory, e.g., DDR4, and
DDR3, and quantitatively compare the performance characteristics of HBM with those of DDR4 and DDR3.

Index Terms—High Bandwidth Memory, benchmarking, FPGA, DDR, latency, throughput.
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1 INTRODUCTION

THE computational capacity of modern computing sys-
tems continues to increase due to the constant im-

provements of CMOS technology. These improvements are
typically achieved by either instantiating more cores within
the same area and/or by adding extra functionality to the
cores (e.g., AVX, SGX, GPGPU, etc.). In contrast, the DRAM
bandwidth has improved only slowly over many genera-
tions. As a result, the gap between memory and processor
speeds keeps growing and is being exacerbated by multicore
designs due to the concurrent access. To bridge the memory
bandwidth gap, semiconductor memory companies such as
Samsung1 have released new memory variants, e.g., Hy-
brid Memory Cube (HMC) and High Bandwidth Memory
(HBM), as a way to provide significantly higher memory
bandwidth. For example, Nvidia GPU V100 features 32 GB
HBM2 (the second generation HBM) to provide up to 900
GB/s memory bandwidth for its thousands of computing
cores.2

Compared with a GPU of the same generation, FPGAs
often have an order of magnitude lower memory bandwidth
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since FPGAs typically feature up to 2 DRAM memory chan-
nels, each of which has up to 19.2 GB/s memory bandwidth
on our tested FPGA board Alveo U280 [1].3 As a result, an
FPGA-based solution using DRAM could not compete with
a GPU for bandwidth-critical applications. Consequently,
FPGA vendors like Xilinx [1] have started to introduce
HBM4 in their FPGA boards as a way to remain competitive
on those same applications. HBM has the potential to be
a game-changing feature by allowing FPGAs to provide
significantly higher performance for memory- and compute-
bound applications like database engines [2] or deep learn-
ing inference [3]. It can also support applications by keeping
more state within the FPGA without the significant perfor-
mance penalties seen today as soon as DRAM is involved.

Despite the potential of HBM to bridge the bandwidth
gap, there are still obstacles to leveraging HBM on the
FPGA. First, the performance characteristics of HBM are
often unknown to developers, especially to FPGA pro-
grammers. Even though an HBM stack consists of a few
traditional DRAM dies and a logic die, the performance
characteristics of HBM significantly differ from those of, e.g.,
DDR4. Second, Xilinx’s HBM subsystem [4] introduces new
features like a switch inside its HBM memory controller. The
performance characteristics of the switch are also unclear to
the FPGA programmer due to the limited details exposed
by Xilinx. These issues can hamper the ability of FPGA de-
velopers to fully exploit the advantages of HBM on FPGAs.

3. https://www.xilinx.com/products/boards-and-
kits/alveo/u280.html

4. In the following, we use HBM which refers to HBM2 in the context
of Xilinx FPGAs, as Xilinx FPGAs feature two HBM2 stacks.
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To address the issue, in this paper we present Shuhai,5 a
benchmarking tool that allows us to demystify all the under-
lying details of HBMs. Shuhai adopts a software/hardware
co-design approach to provide high-level insights and ease
of use to developers or researchers interested in leveraging
HBM. The high-level insights come from the first end-to-
end analysis of the performance characteristic of typical
memory access patterns. The ease of use arises from the fact
that Shuhai performs the majority of the benchmarking task
without having to reconfigure the FPGA between tasks. To
our knowledge, Shuhai is the first platform to systematically
benchmark HBM on an FPGA. We demonstrate the useful-
ness of Shuhai by identifying three important aspects on the
usage of HBM-enhanced FPGAs.

(1) HBMs Provide Massive Memory Bandwidth. On the
tested FPGA board Alveo U280, HBM provides up to 425
GB/s memory bandwidth, an order of magnitude more than
using two traditional DDR4 channels on the same board.

(2) The Address Mapping Policy is Critical to High Band-
width. Different address mapping policies lead to an order of
magnitude throughput differences when running a typical
memory access pattern (i.e., sequential traversal) on HBM,
indicating the importance of matching the address mapping
policy to a particular application.

(3) The latency of HBM is Much Higher than DDR4. Shuhai
identifies that the latency of HBM is 106.7 ns while the
latency of DDR4 is 73.3 ns (Section 6), when the mem-
ory transaction hits an open page (or row). As a result,
to saturate the HBM bandwidth, we need more on-the-
fly memory transactions, something that it is possible on
modern FPGAs/GPUs.

The paper makes the two key contributions:

• We develop Shuhai, a benchmarking tool that makes
it easier to reason about the performance characteris-
tics of various memory types, e.g., HBM and DDR4.
On an FPGA, Shuhai allows us to get accurate num-
bers when benchmarking memory, whether HBM or
DDR, thus providing invaluable help to developers
interested in maximizing performance for memory
bandwidth bound designs.

• Shuhai utilizes runtime parameters in the bench-
marking circuit so as to cover a broad range of
benchmarking tasks without requiring to reconfigure
the FPGA.

2 BACKGROUND

An HBM chip employs the latest development of IC pack-
aging technologies, such as Through Silicon Via (TSV),
stacked-DRAM, and 2.5D package [5], [6], [7], [8]. The basic
structure of HBM consists of a base logic die at the bottom
with 4 or 8 core DRAM dies stacked on top. All the dies are
interconnected by TSVs.

Xilinx integrates two HBM stacks and an HBM controller
inside the FPGA. Each HBM stack is divided into eight
independent memory channels, where each memory channel
is further divided into two 64-bit pseudo channels. A pseudo
channel is only allowed to access its associated HBM channel

5. Shuhai is a pioneer of Chinese measurement standards, with which
he measured the territory of China in the Xia dynasty.
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Fig. 1. Architecture of Xilinx HBM subsystem

that has its own address region of memory, as shown in Fig-
ure 1. The Xilinx HBM subsystem has 16 memory channels,
32 pseudo channels/HBM channels.

On top of the 16 memory channels, there are 32 AXI
channels enabling interaction with the user logic. Each AXI
channel adheres to the AXI3 protocol [4] to provide a
standardized interface to the FPGA programmer. Each AXI
channel is associated with a HBM channel (or pseudo chan-
nel), so each AXI channel is only allowed to access its own
memory region. To make each AXI channel able to access
the full HBM space, Xilinx introduced an optional switch be-
tween the 32 AXI channels and the 32 pseudo channels [4],
[9].6 However, the switch is not fully implemented due to its
huge resource consumption. Instead, Xilinx presents eight
mini-switches, where each mini-switch serves four AXI chan-
nels and their associated pseudo channels. The mini-switch
is fully implemented in the sense that each AXI channel
has accesses to any pseudo channel in the same mini-switch
with the same latency and throughput. Besides, there are
two bidirectional connections between two adjacent mini-
switches for global addressing.

3 MOTIVATION: BENCHMARKING MEMORY ON
CPUS/GPUS

Benchmarking memory on FPGAs, rather than relying on
figures from CPUs or GPUs, is motivated by the difficulty
of eliminating the effects of the cache hierarchy and the
TLB when benchmarking memory on CPUs/GPUs. In this
section, we illustrate the issues associated to benchmarking
memory latency on CPUs/GPUs.

3.1 Tested Hardware Platform

We run the CPU benchmarking experiments on a 10-core
Intel CPU i9-10900X. Each core has a dedicated 32KB L1
cache and a dedicated 1MB L2 cache. A 19.25MB L3 cache is
shared between 10 cores. The CPU has four 2133MHz 32GB
DDR4 channels, each of which has 72-bit data width.

We run the GPU benchmarking experiments on an
NVIDIA GPU RTX2080Ti. This GPU has a two-level caching
system and 68 stream multiprocessors (SMs), each of which
contains a combined 96 KB L1 data cache. The 5632 KB
L2 cache is shared among all the SMs [10], [11]. The GPU
features 11 GB GDDR6 which has 14 Gbps memory speed
and a 352-bit aggregated memory bus, with its theoretical
memory bandwidth reaching 616 GB/s.

6. By default, we disable the switch in the HBM memory controller
when we measure latency numbers of HBM, since it is not necessary
to include the switch that enables global addressing among HBM
channels. The switch is on when we measure throughput numbers.
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Both the CPU and the GPU feature multiple memory
channels, to which the CPU/GPU interleaves access, and the
exact interleaving policy is transparent to the user. There-
fore, our benchmarking code has to target all the channels,
which is slightly different from benchmarking only one
channel on the FPGA.

3.2 Measuring Memory Latency
Since CPUs/GPUs have both a cache and a TLB, which
have the negative effect on external memory performance,
the goal of this subsection is to measure latency of each
memory access that hits the L1 TLB but misses in last level
cache. To achieve this, we employ the fine-grained P-chase
method [12], [13] to measure every single memory access
latency on GPUs/CPUs, as illustrated in Listing 1. This
method consists of two steps.

In this first step, we initialize the targeted array array
at the first step by setting the i-th element to (i + S)%size
(Lines 4-6). There are two constraints on size. First, size
is significantly larger than the last-level cache size such
that each memory access will reference external memory.
Second, size is smaller than the L1 TLB size multiplied by
the number of L1 TLB entries, such that any further memory
access to array in the second step causes a TLB hit.

In the second step, we traverse the array, beginning
with the first element (array[0]) of value S. Therefore, the
second access jumps to the S-th element (array[S]) of value
2 ∗ S, and so on. By doing so, this method enables strided
memory access, whose stride S is parameterized. We use the
N -element array index to store each access index j (Line 15),
such that our compiler does not optimize away the P-chase
part (Line 14). We use the N -element array latency to store
the latency number for each memory access (Line 17).

1 Input S, N, size; //S: stride, N: number of memory transactions
2 //size: traversed array size
3 //Step 1: initializing the P-chase array
4 for(i=0;i<size;i++){ //last-level cache size < size < L1 TLB size
5 array[i] = (i + S) % size; //array stays at external memory
6 }
7
8 //Step 2: traversing the P-chase array and storing each latency
9 j = 0; //set the first index to begin

10 int index[N]; //declare memory for array index
11 int latency[N]; //declare memory for latency
12 for( i=0; i < N; i++){
13 start = clock();
14 j = array[j]; //P-chase: cache miss & TLB hit
15 index[i] = j; //store the array index
16 end = clock();
17 latency[i] = end - start; //store the latency
18 }

Listing 1. Fine-grained P-chase method

3.2.1 Benchmarking on GPUs
We employ the fine-grained P-chase method in Listing 1
in an SM with a single thread to measure memory access
latency. In the context of GPU, we use CUDA-specific clock()
function to measure latency cycles. Besides, we allocate
shared memory for index and latency such that any related
memory write instruction will commit faster, minimizing
the negative effect on the P-chase part.

We leverage the work [13], [14], to determine the cache
and TLB parameters of the GPU respectively, e.g., last level
(L2) cache size is 5632 KB, L1 TLB has 16 entries and L1 TLB
size is 32 MB. Therefore, S is 2048 and size is 16 MB in our
experiment. Figure 2 illustrates the latency of each memory

Fig. 2. Global memory access latency on the GPU (S=2KB, W=16MB)

Fig. 3. Memory access latency on the CPU when S = 256 bytes

read transaction. We observe that the latency of page hit, page
closed, and page miss is indistinguishable on the GPU due to
the complex design of cache and pipeline.

3.2.2 Benchmarking on CPUs
In the context of CPU, we implement the fine-grained P-
chase method in Listing 1 using embedded assembly code
to eliminate unnecessary noise from compilation. The L3
cache size is 19.25 MB on the tested CPU. With the goal of
trying our best to make each memory access miss in the L3
cache and hit in the L1 data TLB, we use 2 MB huge pages,
instead of 4 KB pages, since TLB entries are always scarce
resources. The number of L1 TLB entries for 2 MB huge
pages is 32 in our tested CPU. Therefore, S is set to 512 and
size is set to 32 MB in our experiment. Figure 3 illustrates a
snapshot of latency measured at an idle core. The memory
transaction issued from the fine-grained P-chase method
cannot always simultaneously miss in the cache and hit in
the L1 data TLB. This is because the replacement policies of
the cache and TLB are not pure LRU (Intel does not unveil
the exact replacement policies). As a result, we still see a
small fraction of memory transactions that encounter TLB
misses (latency > 200 ns) and that hit in cache (latency < 50
ns).

3.2.3 Putting Everything Together
As illustrated in Figures 2 and 3, we cannot determine
accurate latency numbers on the CPU/GPU due to the many
interposed layers and the severe interference introduced
by factors such as TLB, multi-level caches, or instruction
scheduling. This motivates us to explicitly benchmark mem-
ory on FPGAs, which allow us to easily reason about simple
benchmarking logic (§4). Accordingly, we propose Shuhai
that allows to easily obtain accurate memory latency mea-
surements (Table 4).

4 GENERAL BENCHMARKING TOOL SHUHAI

4.1 Design Methodology
In designing Shuhai, we have two ambitious goals.
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First, we aim to provide high-level insights on the per-
formance characteristics of HBM (C1).This is critical to make
the benchmarking results meaningful and understandable
to FPGA programmers. In particular, Shuhai should give
the programmer an end-to-end explanation, rather than just
memory timing parameters such as row precharge time
TRP , so that the insights can be used to improve designs
using HBM on FPGAs.

Second, Shuhai should be easy to use (C2). This is diffi-
cult to achieve as benchmarking on FPGAs involves many
subtle designs aspects: a small modification might need to
reconfigure the FPGA, making the process of benchmarking
and comparing alternative design cumbersome and time
consuming. Therefore, Shuhai minimizes the reconfigura-
tion effort between tasks: it should use a single FPGA image
for a large number of benchmarking tasks, instead of using
one image for each benchmarking task.

4.1.1 Our Approach
To achieve the first goal, C1, Shuhai allows to directly
analyze the performance characteristics of typical memory
access patterns used by FPGA programmers, providing
an end-to-end explanation for the overall performance. To
accomplish the second goal, C2, Shuhai uses runtime pa-
rameters of the benchmarking circuit so as to cover a wide
range of benchmarking tasks without requiring to reconfig-
ure the FPGA. Through the access patterns implemented
in the benchmark, we are able to unveil the underlying
characteristics of HBM and DDR4 on FPGAs.

Shuhai adopts a software-hardware co-design approach
based on two components: a software component (Subsec-
tion 4.2) and a hardware component (Subsection 4.3). The
main role of the software component is to provide flexibility
to the FPGA programmer in terms of runtime parameters.
Through the use of runtime parameters, we do not need to
frequently reconfigure the FPGA when benchmarking HBM
and DDR4. The main role of the hardware component is
to guarantee performance. More precisely, Shuhai should
be able to expose the performance potential, in terms of
maximum achievable memory bandwidth and minimum
achievable latency, of HBM memory on the FPGA. To do
so, the benchmarking circuit should not be the bottleneck.

4.2 Software Component
Shuhai’s software component aims to provide a user-
friendly interface such that an FPGA developer can easily
use Shuhai to benchmark HBM memory and obtain relevant
performance characteristics. To this end, we introduce a
memory access pattern widely used in FPGA programming:
Repetitive Sequential Traversal (RST) (Figure 4).

The RST pattern traverses a memory region, a data array
storing data elements in a sequence. The RST repetitively
sweeps over the memory region of size W with the starting
address A, and each time reads B bytes with a stride of
S bytes, where B and S are a power of 2. On our tested

1 1 2 1 3 1 ... W/B
B

W

1 ...

A

S

Fig. 4. Memory access pattern RST used in Shuhai.

TABLE 1
Summary of runtime parameters

Parameter Definition
N Number of memory read/write transactions
B Burst size (in bytes) of a memory read/write transaction
W Working set size (in bytes). W (>16) is a power of 2.
S Stride (in bytes)
A Initial address (in bytes)

FPGA, the burst size B should be not smaller than 32 (or 64)
for HBM (or DDR4) due to the constraint of HBM/DDR4
memory application data width. The stride S should be
not larger than the working set size W . The parameters
are summarized in Table 1. We calculate the address T [i]
of the i-th memory read/write transaction issued by the
RST, as illustrated in Equation 1. The calculation can be
implemented with simple arithmetic, which in turn leads
to fewer FPGA resources and potentially higher frequency.
Even though the supported memory access pattern is quite
simple, it can still unveil the performance characteristics of
the memory, e.g., HBM and DDR4, on FPGAs.

T [i] = A+ (i× S)%W (1)

4.3 Hardware Component
The hardware component of Shuhai consists of a PCIe
module, M latency modules, a parameter module and M engine
modules, as illustrated in Figure 5. In the following, we
discuss the implementation details for each module.

4.3.1 Engine Module
We directly attach an instantiated engine module to an AXI
channel such that the engine module directly serves the AXI
interface, e.g., AXI3 and AXI4 [15], [16], provided by the
underlying memory IP core, e.g., HBM and DDR4. The AXI
interface consists of five different channels: read address
(RA), read data (RD), write address (WA), write data (WD)
and write response (WR) [15]. Moreover, the input clock of
the engine module is exactly the clock from the associated
AXI channel. For example, the engine module is clocked
with 450 MHz when benchmarking HBM as it allows at
most 450 MHz for its AXI channels. Using the same clock
brings in two benefits. First, no extra noise, e.g., longer
latency, is introduced by FIFOs needed to cross different
clock regions. Second, the engine module is able to saturate
its associated AXI channel, not leading to underestimates of
the memory bandwidth capacity.

The engine module, written in Verilog, consists of two
independent modules: a write module and a read module. The
write module serves three write-related channels WA, WD,
and WR, while the read module serves two read-related
channels RA and RD.

The write module contains a state machine to serve a
memory-writing task at a time from the CPU. The task has
the initial address A, number of write transactions N , burst
size B, stride S, and working set size W . The write module
is able to measure both latency and throughput. When
measuring throughput, this module always tries to saturate
the memory write channels WR and WD by asserting the
associated valid signals before the writing task completes,
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Fig. 5. Overall hardware architecture of our benchmarking framework.
It can support M hardware engines running simultaneously, with each
engine for one AXI channel. In our experiment, M is 32 for HBM, while
M is 2 for DDR4.

aiming to maximize the achievable throughput. The address
of each memory write transaction is specified in Equation 1.
This module also probes the WR channel to validate that
the on-the-fly memory write transactions are successfully
finished. When measuring latency, we immediately issue the
second memory write transaction after the finishing signal
of the first write transaction is received via the WR channel.

The read module contains a state machine to serve a
memory-reading task at a time from the CPU. The task
has the initial address A, number of read transactions N ,
burst size B, stride S, and working set size W . The read
module is able to measure latency and throughput. When
measuring the latency of memory read transactions, we
immediately issue the second memory read transaction after
the read data of the first read transaction is returned.7 When
measuring throughput, this module always tries to saturate
the memory read channels RA and RD by always asserting
the RA valid signal before the reading task completes.

4.3.2 PCIe Module
We directly deploy the Xilinx DMA/Bridge Subsystem for
PCI Express (PCIe) IP core in our PCIe module, which is
clocked at 250 MHz. Our PCIe kernel driver exposes a
PCIe BAR mapping the runtime parameters on the FPGA
to the user such that the user is able to directly interact with
the FPGA using software code. These runtime parameters
determine the control and status registers stored in the
parameter module.

4.3.3 Parameter Module
The parameter module maintains the runtime parameters
and communicates with the host CPU via the PCIe module,
receiving the runtime parameters, e.g., S, from the CPU and
returning the throughput numbers to the CPU.

Upon receiving runtime parameters, we use them to
configure M engine modules, each of which needs two
256-bit control registers to store its runtime parameters:

7. We are able to unveil many performance characteristics of HBM
by analyzing the latency difference among serial memory read transac-
tions. The fundamental reason of the immediate issue is that a refresh
command that occurs periodically will close all the banks in our HBM,
and then there will be no latency difference if the time interval of two
serial read transactions is larger than the time (e.g., 7.8 µs) between two
refresh commands.

‘
TABLE 2

Address mapping policies for HBM, DDR4 and DDR3. The default
policies of HBM and DDR4 are marked blue.

Policies HBM (addr[27:5]) DDR4 (addr[33:6]) DDR3 (addr[28:0])
RBC 14R-2BG-2B-5C 17R-2BG-2B-7C 16R-3B-10C
RCB 14R-5C-2BG-2B 17R-7C-2B-2BG
BRC 2BG-2B-14R-5C 2BG-2B-17R-7C 3B-16R-10C

RGBCG 14R-1BG-2B-5C-1BG
BRGCG 2B-14R-1BG-5C-1BG

RCBI 17R-6C-2B-1C-2BG

one register for the read module and the other register for
the write module in each engine module. Inside a 256-bit
register, W takes 32 bits, S takes 32 bits, N takes 64 bits, B
takes 32 bits, and A takes 64 bits. The remaining 32 bits are
reserved for future use. After setting all the engines, the user
can trigger the start signal to begin the throughput/latency
testing.

The parameter module is also responsible for returning
the throughput numbers (64-bit status registers) to the CPU.
One status register is dedicated to each engine module.

4.3.4 Latency Module
We instantiate a latency module for each engine module
dedicated to an AXI channel. The latency module stores a
latency list of size 1024, where the latency list is written by
the associated engine module and read by the CPU. Its size
is a synthesis parameter. Each latency number containing an
8-bit register refers to the latency of a memory read/write.

5 EXPERIMENT SETUP

5.1 Hardware Platform
We run most experiments on a Xilinx’s Alevo U280 [1] fea-
turing two HBM stacks of a total size of 8GB and two DDR4
memory channels with a total size of 32 GB. The theoretical
HBM memory bandwidth is 450 GB/s (450 MHz * 32 *
32 B/s), while the theoretical DDR4 memory bandwidth
is 38.4 GB/s (300 MHz * 2 * 64 B/s). We also employ an
ADM-PCIE-7V3 FPGA board featuring two DDR3 channels
with 8GB in total, with a theoretical memory bandwidth of
21.3GB/s (166.7MHz * 2 * 64 B/s).

5.2 Address Mapping Policies (AMPs)
An application address can be mapped to memory address
using multiple policies, where different address bits map to
bank, row, or column addresses. Choosing the right AMP
is critical to maximize the overall memory throughput. The
policies enabled for HBM, DDR4 and DDR3 are summarized
in Table 2, where “xR” means that x bits are for row address,
“xBG” means that x bits are for bank group address, “xB”
means that x bits are for bank address, and “xC” means that
x bits are for column address. The default policies of HBM,
DDR4 and DDR3 are “RGBCG”, ”RCB” and “BRC”, respec-
tively. “-” stands for address concatenation. We always use
the default AMP for any memory if not explicitly specified.

5.3 Resource Consumption Breakdown
We break down the resource consumption of the hardware
design of Shuhai when benchmarking HBM.8 Table 3 shows

8. Due to space constraints, we omit the resource consumption for
benchmarking DDR4 and DDR3 memory on the FPGA.
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TABLE 3
Resource consumption breakdown of the hardware design for

benchmarking HBM

Hardware modules LUTs Registers BRAMs Freq.
Engine 25824 34048 0 450MHz
PCIe 70181 66689 4.36Mb 250MHz

Parameter 1607 2429 0 250MHz
Latency 672 1760 1.17Mb 250MHz

Total resources used 104K 122K 5.53Mb
Total utilization 8% 5% 8%

the exact FPGA resource consumption of each instantiated
module. We observe that Shuhai requires a reasonably small
amount of resources to instantiate 32 engine modules, as
well as additional components such as the PCIe module.
The total resource utilization is less than 8%.

5.4 Benchmarking Methodology

We aim to unveil the underlying details of HBM stacks
on Xilinx FPGAs under Shuhai. As a yardstick, we also
analyze the performance characteristics of DDR4 [1] and
DDR3 when necessary (in Section 6). We believe that the
numbers obtained for a HBM channel can be generalized to
other computing devices such as CPUs or GPUs featuring
HBMs. When benchmarking the switch inside the HBM
memory controller, we do not do the comparison with DDR,
since the DDR memory controller does not contain such a
switch (Section 7).

6 BENCHMARKING AN HBM CHANNEL

6.1 Effect of Refresh Interval

When a memory channel is operating, memory cells should
be regularly refreshed such that the information in each
memory cell is not lost. During a refresh cycle, normal mem-
ory read and write transactions are not allowed to access
the memory. We observe that a memory transaction that
experiences a memory refresh cycle exhibits a significantly
longer latency than a normal memory read/write transac-
tion that is allowed to directly access memory chips. Thus,
we are able to roughly determine the refresh interval by
leveraging memory latency differences between normal and
in-a-refresh memory transactions. In particular, we leverage
Shuhai to measure the latency of sequential memory read
operations. Figure 6 illustrates the case with B = 32, S =
64, W = 0x1000000, and N = 1024. We have two observa-
tions. First, for HBM, DDR4, and DDR3, a memory read
transaction that coincides with an active refresh command
has significantly longer latency, indicating the need to issue
enough on-the-fly memory transactions to amortize the neg-
ative effect of refresh commands. Second, for HBM, DDR4
and DDR3, refresh commands are scheduled periodically,
the interval between any two consecutive refresh commands
being roughly the same.

6.2 Memory Access Latency

We leverage Shuhai to accurately measure the latency of
consecutive memory read transactions when the memory
controller is in an “idle” state, i.e., where no other pending
memory transactions exist in the memory controller such
that the memory controller is able to return the requested

TABLE 4
Idle memory access latency on HBM and DDR4

Idle Latency HBM DDR4
Cycles Time Cycles Time

Page hit 48 106.7 ns 22 73.3 ns
Page closed 55 122.2 ns 27 89.9 ns
Page miss 62 137.8 ns 32 106.6 ns

data to the read transaction with minimum latency. We aim
to identify latency cycles of three categories: page hit, page
closed, and page miss.9

The “page hit” state occurs when a memory transaction
accesses a row that is open in its bank, so no Precharge and
Activate commands are required before the column access,
resulting in minimum latency.

The “page closed” state occurs when a memory transac-
tion accesses a row whose corresponding bank is closed, so
the row Activate command is required before the column
access.

The “page miss” state occurs when a memory trans-
action accesses a row that does not match the active row
in the bank, so one Precharge command and one Activate
command are issued before the column access, resulting in
maximum latency.

We employ the read module of Shuhai to accurately
measure the latency numbers for the cases with B = 32, W =
0x1000000, N = 1024, and varying S. Intuitively, the small S
leads to high probability to hit the same page while a large
S potentially leads to a page miss. A refresh command also
closes all the active banks. In this experiment, we use two
values of S: 128 and 128K.

We use the case S=128 to determine the latency of page
hit and page closed transactions. S=128 is smaller than the
page size, so the majority of read transactions will hit an
open page, as illustrated in Figure 7. The remaining points
illustrate the latency of page closed transactions, since the
small S leads to a large amount of read transactions in a
certain memory region and then a refresh will close the bank
before the access to another page in the same bank.10

We use the case S=128K to determine the latency of a
page miss transaction. S=128K leads to a page miss for each
memory transaction for both HBM and DDR4, since two
consecutive memory transaction will access the same bank
but different pages.

We summarize the latency on HBM and DDR4 in Ta-
ble 4.11 We observe that the memory access latency on HBM
is higher than that on DDR4 by about 30 nano seconds
under the same category like page hit. It means that HBM
could have disadvantages when running latency-sensitive
applications on FPGAs.

9. The latency numbers are identified when the switch is disabled.
The latency numbers will be seven cycles higher when the switch
is enabled, as the AXI channel accesses its associated HBM channel
through the switch. The switching of bank groups does not affect
memory access latency, since at most one memory read transaction is
active at any time in this experiment.

10. The latency trend of HBM is different of that of DDR4 due to the
different default AMP. The default AMP of HBM is RGBCG, indicating
that only one bank needs to be active at a time, while the default policy
of DDR4 is RCB, indicating that four banks are active at a time.

11. We omit the latency on DDR3 since we cannot obtain the exact
latency number for each category, as shown in Figure 6c.
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(a) HBM (b) DDR4 (c) DDR3

Fig. 6. Higher access latency of memory refresh commands that occur periodically on HBM, DDR4, and DDR3.
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Fig. 7. Snapshots of a page miss, page closed and page hit, in terms of
latency cycles, on HBM and DDR4.

6.3 Effect of Address Mapping Policy (AMP)

AMP plays a critical role in achieving high memory
throughput. Intuitively, the input memory access pattern is
able to yield the highest possible throughput with a right
AMP. In this subsection, we examine the effect of AMP,
in terms of achievable throughput, on the memory access
pattern RST in Figure 4. In particular, under different AMPs,
we measure the memory throughput with varying stride
S and burst size B, while keeping the working set size
W (= 0x10000000) large enough. Figure 8 illustrates the
throughput trend for different AMPs for both HBM, DDR4
and DDR3. We have five observations.

First, different AMPs lead to significant performance
difference. For example, Figure 8a illustrates that the default
policy (RGBCG) of HBM is almost 10X faster than the policy
(BRC) when S is 1024 and B is 32, demonstrating the
importance of choosing the right AMP for a memory-bound
application running on the FPGA. Second, the throughput
trends of HBM, DDR4 and DDR3 are quite different even
though they employ the same AMP, demonstrating the
importance of a benchmark platform such as Shuhai to
evaluate different FPGA boards or different memory gener-
ations. Third, the default AMP always leads to the best per-
formance for any combination of S and B on HBM, DDR4,
and DDR3, demonstrating that the current default AMP is
reasonable. Fourth, small burst sizes lead to low memory
throughput, as shown in Figures 8a, 8b, meaning that FPGA
programmers should increase spatial locality to achieve

higher memory throughput out of HBM or DDR. Fifth,
large S (>8K) always leads to an extremely low memory
bandwidth utilization, indicating the extreme importance of
keeping spatial locality. In other words, random memory
access that does not keep spatial locality will experience
low memory throughput. We conclude that choosing the
right AMP is critical to optimizing memory performance for
a particular memory access pattern on FPGAs.

6.4 Effect of Bank Group

We examine the effect of bank group, which is a new
feature of DDR4, compared to DDR3. Accessing multiple
bank groups simultaneously relieves the negative effect of
DRAM timing restrictions that have not improved over
DRAM generations. A higher memory throughput can be
potentially obtained by accessing multiple bank groups.
Figure 8 also illustrates the effect of bank group. We have
two observations.

First, with the default AMP, DDR4 and HBM allows
using a large stride size (up to 4K) while still keeping high
throughput, as shown in Figures 8h, 8g. However, DDR3
only allows to use small stride (up to 256) in Figure 8i.
The underlying reason is that even though each row buffer
in DDR4 and HBM is not fully utilized due to large S,
bank-group-level parallelism allows to saturate the avail-
able memory bandwidth. Second, a pure sequential read
does not always lead to the highest throughput under a
certain mapping policy. Figures 8d, 8g illustrate that when
S increases from 128 to 2048, a bigger S can achieve higher
memory throughput under “RBC”, since a bigger S allows
more active bank groups to be accessed concurrently, while
a smaller S potentially leads to only one active bank group
that serves user’s memory requests. We conclude that it is
critical to leverage bank-group-level parallelism to achieve
high memory throughput under HBM and DDR4.

6.5 Effect of Memory Access Locality

We examine the effect of memory access locality on memory
throughput. We vary the burst size B and the stride S,
and we set the working set size W to two values: 256M
and 8K. The case W=256M refers to the baseline that does
not benefit from any memory access locality, while the case
W=8K refers to the case that benefits from locality. Figure 9
illustrates the throughput for varying parameter settings on
both HBM, DDR4 and DDR3. We have two observations.

First, memory access locality indeed increases the mem-
ory throughput for each case with large S. For example, the
memory bandwidth of the case (B=32, W=8K, and S=4K)
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(a) B=32 (HBM) (b) B=64 (DDR4) (c) B=64 (DDR3)

(d) B=64 (HBM) (e) B=128 (DDR4) (f) B=128 (DDR3)

(g) B=128 (HBM) (h) B=256 (DDR4) (i) B=256 (DDR3)

(j) B=256 (HBM) (k) B=512 (DDR4) (l) B=512 (DDR3)

Fig. 8. Memory throughput comparison between an HBM channel, a DDR4 channel and a DDR3 channel, with different burst sizes and stride under
all the address mapping policies. In this experiment, we use AXI channel 0 to access its associated HBM channel 0 for the best performance of
a single HBM channel. We use the DDR4 channel 0 to obtain the DDR4 throughput numbers. We use the DDR3 channel 0 to obtain the DDR3
throughput numbers.

is 6.7 GB/s on HBM, while 2.4 GB/s of the case (B=32,
W=256M, and S=4K), indicating that access locality is able
to eliminate the negative effect of large S. Second, access
locality cannot increase the memory throughput when S is
small. In contrast, access locality can significantly increase
the total throughput on modern CPUs/GPUs due to the on-
chip caches which have dramatically higher bandwidth than
off-chip memory [17].

6.6 Total Memory Throughput

We measure the total achievable memory throughput of
HBM, DDR4, and DDR3 (Table 5). The HBM system is
able to provide up to 425 GB/s (13.27 GB/s * 32) memory
throughput when we use all the 32 AXI channels to simulta-

neously access their associated HBM channels.12 The DDR4
memory is able to provide up to 36 GB/s (18 GB/s * 2)
memory throughput when we simultaneously access both
DDR4 channels on our tested FPGA card. The DDR3 mem-
ory is able to provide up to 19 GB/s (9.5 GB/s * 2) memory
throughput. We observe that the HBM system provides 10X
higher memory throughput than DDR4, 22X more memory
throughput than DDR3, indicating that the HBM-enhanced
FPGA allows to accelerate memory-intensive applications,
which are typically accelerated on GPUs.

12. Each AXI channel accesses its local HBM channel, there is no
inference among the 32 AXI channels. Since each AXI channel approx-
imately has the same throughput, we estimate the total throughput by
simply scaling up the throughput of the channel 0 by 32.
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(a) HBM (b) DDR4 (c) DDR3

Fig. 9. Effect of memory access locality on HBM, DDR4, and DDR3.

TABLE 5
Total memory throughput comparison between HBM, DDR4 and DDR3.

HBM DDR4 DDR3
Throughput of a channel 13.27 GB/s 18 GB/s 9.5 GB/s

Number of channels 32 2 2
Total memory throughput 425 GB/s 36 GB/s 19 GB/s

6.7 Shuhai-Guided Optimization Process

We demonstrate the usefulness of Shuhai by illustrating
the optimization process applied to matrix multiplication
(MM). Suppose we have two operand matrices X and Y ,
whose size is M ×M . The result matrix Z is XY , whose
size is also M ×M . All three matrices are stored row-wise.
Each matrix occupies an HBM channel, such that there is
no interference between each other. Each element is 32-
bit. Next we illustrate how to leverage Shuhai to guide the
optimization process.

We begin with the original implementation of MM. Each
time, we calculate an element of matrix Z to be a dot product
of a row of the matrix X and a column of the matrix Y .
Since each matrix is stored row-wise, the memory access
pattern (MAP) of matrices X and Z is sequential, leading
to high throughput in their corresponding HBM channels.
However, the achievable throughput of matrix Y is low, as
its MAP is strided with B = 4, S = 4 ∗M , W = 4 ∗M ∗M .
According to the previous benchmarking result in Figure 8,
we can easily observe that its MAP is not memory-friendly.
In our experiment, we always instantiate sufficient amount
of compute units, which make the MM implementation
memory bandwidth bound. As such, the overall perfor-
mance is determined by the achievable memory bandwidth
of the matrix Y .

Figure 10 compares the predicted and actual throughput
trends of matrix Y with varying K and M , where the
actual throughput is calculated to be the total memory
access size (4 ∗M ∗M ∗M/K) divided by the elapsed time
T , and the predicted throughput is measured via Shuhai
on an HBM channel with the default AMP, as shown in
Figures 8a, 8d, 8g, 8j. When B is smaller than 32, each time
we still need to read out a memory transaction whose size
32 bytes. The predicted throughput trend roughly matches
the actual throughput trend, indicating that we are able to
leverage Shuhai to maximize the memory throughput of
the matrix B that is bottleneck of the implementation of
MM before implementing the entire MM code on the FPGA.
Moreover, the actual throughput is slightly lower than the
predicted throughput, because the MM calculation cannot
fully overlap with external memory access.

(a) Actual (b) Predicted
Fig. 10. Comparison of actual and predicted throughput trends of the
matrix Y when performing matrix multiplication

7 BENCHMARKING THE SWITCH

Each HBM stack segments memory address space into 16
independent pseudo channels, each of which is associated
with an AXI port mapped to a particular range of ad-
dress [4], [9]. Therefore, the 32 × 32 switch is required
to make sure each AXI port is able to reach the whole
address. However, the fully implemented 32 × 32 switch
requires a massive amount of logic resources. Thus, the
switch is only partially implemented, thereby consuming
significantly fewer resources at the cost of lower perfor-
mance for particular accessing patterns. Our goal here is
to unveil the performance characteristics of the switch.

7.1 Between an AXI Channel and a HBM Channel
In the following, we examine the performance characteris-
tics between any AXI channel and any HBM channel, in
terms of latency and throughput.

7.1.1 Memory Latency
Read Latency. We measure the memory read latency from
any AXI channel (from 0 to 31) to the HBM channel 0.13 Ac-
cess to other HBM channels has similar performance char-
acteristics. We also employ the latency module to determine
the accurate latency. Table 6 illustrates the latency difference
among 32 AXI channels to the HBM channel 0. We have two
observations. First, the latency difference is up to 22 cycles.
For example, for a page hit transaction, an access from
the AXI channel 31 needs 77 cycles, while the access from
the AXI channel 0 only needs 55 cycles. Second, any AXI
channel in the same mini-switch has identical access latency,
demonstrating that the mini-switch is fully-implemented.
For example, the AXI channels 4-7 have the same access
latency. We conclude that an AXI channel should access its
associated HBM channel or the HBM channels close to it to
minimize latency.

13. The switch is enabled to allow global addressing, when compar-
ing the latency difference among AXI channels, as illustrated in Table 7.
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TABLE 6
Memory access latency from any of 32 AXI channels to the HBM

channel 0. The switch is on. Intuitively, longer distance yields longer
latency. The latency difference reaches up to 22 cycles.

Chann. Page hit Page closed Page miss
Cycles Time Cycles Time Cycles Time

0-3 55 122.2 ns 62 137.8 ns 69 153.3 ns
4-7 56 124.4 ns 63 140.0 ns 70 155.6 ns
8-11 58 128.9 ns 65 144.4 ns 72 160.0 ns
12-15 60 133.3 ns 67 148.9 ns 74 164.4 ns
16-19 71 157.8 ns 78 173.3 ns 85 188.9 ns
20-23 73 162.2 ns 80 177.7 ns 87 193.3 ns
24-27 75 166.7 ns 82 182.2 ns 89 197.8 ns
28-31 77 171.1 ns 84 186.7 ns 91 202.2 ns

TABLE 7
Memory write latency from any of 32 AXI channels to the HBM channel

0. The switch is on.

Channels Cycles Time
0-3 15 33.3ns
4-7 17 37.8ns
8-11 19 42.2ns
12-15 21 46.7ns
16-19 32 71.1ns
20-23 34 75.6ns
24-27 36 80ns
28-31 38 84.4ns

Write Latency. We measure the HBM write latency from
any AXI channel to the HBM channel 0, as shown in Fig-
ure 7. Particularly, we measure the number of clock cycles
from issuing an AXI write operation using WA and WD
channels to receiving a notification from the WR channel.
We observe that the write latency is always stable from the
same AXI channel, regardless of page hits, pages closed,
and page misses. We can conclude that the write response
is forwarded to the user logic after the write transaction
reaches the HBM controller but before goes into HBM chips.

7.1.2 Memory Throughput
We employ the throughput module to measure memory
throughput when any AXI channel (from 0 to 31) accesses
the HBM channel 0, with the setting B = 64, W = 0x1000000,
N = 200000, and varying S. Figure 11 illustrates the memory
throughput from an AXI channel in each mini-switch. We
observe that AXI channels are able to achieve roughly the
same memory throughput, regardless of their locations.

7.2 Interference among AXI Channels
We examine the effect of interference among AXI channels
by using a varying number (e.g., 2, 4, and 6) of remote AXI
channels to simultaneously access the same HBM channel 1.
We also vary the size of B. Table 8 shows the throughput
with different values of B and a different number of remote
AXI channels. The empty slot indicates that this remote AXI
channel is not involved in the throughput testing. We have
three observations. First, the total throughput slightly de-
creases when the number of remote AXI channels increases,
indicating that the switch is able to serve memory transac-
tions from multiple AXI channels in a reasonably efficient
way. Second, a larger B leads to higher total throughput,
under the same amount of active AXI channels, because a
larger B reduces the number of switching times between
AXI channels [4]. For example, two active channels 4 and
5 only have 6.3 GB/s total throughput when B=32, while

Fig. 11. Throughput from eight AXI channels to the HBM channel 1,
where each AXI channel is from a mini-switch.

12.18 GB/s for B=128. Third, a lateral connection and four
masters within a mini-switch are scheduled in a round-robin
manner. Take the case with four active AXI channels 4, 5, 8,
and 9 as an example: the remote channels 8 and 9 occupy
the lateral connection of the mini-switch that consists of
AXI channels 4-7. When B is 64, the throughput of an AXI
channels 8 or 9 is 1.73 GB/s, so their total throughput is
3.46 GB/s, roughly the same as that (3.42 GB/s) of an AXI
channel 4 or 5.

TABLE 8
Effect of inference among remote AXI channels. We measure the
throughput (GB/s) with a varying number (2, 4, or 6) of remote AXI

channels to access the HBM channel 1. The empty slot indicates the
corresponding AXI channel is not involved.

Channel 4 5 8 9 12 13 In total (GB/s)
B=32 3.15 3.15 6.30
B=32 2.10 2.10 1.05 1.05 6.30
B=32 2.10 2.10 0.70 0.70 0.35 0.35 6.30
B=64 5.64 5.64 11.28
B=64 3.42 3.42 1.73 1.73 10.30
B=64 2.81 2.81 0.95 0.95 0.48 0.48 8.48
B=128 6.09 6.09 12.18
B=128 3.52 3.52 1.78 1.78 10.60
B=128 3.31 3.31 1.11 1.11 0.56 0.56 9.96

8 RELATED WORK

A preliminary version of this topic has been published in
FCCM [18]. Compared with the preliminary version, this
paper makes significant contributions in 1) benchmark-
ing DDR3 on FPGAs and 2) benchmarking memory on
CPUs/GPUs.

Benchmarking HBM on FPGAs. Recent work [19], [20]
has analyzed the latency and throughput of HBMs on FP-
GAs when programmed using High Level Synthesis (HLS),
which provides a higher level of abstraction and thus is
widely adopted by software programmers. Similarly, [21]
has measured HBM’s throughput under various memory
access pattern under Vitis to guide the optimization process
of related applications. In contrast, Shuhai is implemented
in Verilog, allowing more fine-grained and more precise
measurements.

Benchmarking traditional memory on FPGAs. In ad-
dition to exploring HBM, there has been work [22], [23],
[24] exploring traditional memory, e.g., DDR3, on the FPGA
when using high-level languages such as OpenCL. In con-
trast, we benchmark HBM on an FPGA although Shuhai can
also be used to benchmark conventional DDR.

Data processing with HBM/HMC. There is a growing
number of research exploiting HBM/HMC for data pro-
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cessing, as data processing is often memory bound. For in-
stance, [25] accelerates a hash table by leveraging the HBM
available in Intel Knights Landing [26], which is used to
provide enough memory to a many-core architecture. Simi-
larly, [27] does stream analytics on high bandwidth hybrid
memory; [28] designs a heterogeneous memory hierarchy
to exploit HBM bandwidth advantages; [29] accelerates a
weather prediction modeling with a near high-bandwidth
memory stencil; [30] designs a high-performance adaptive
merge tree sorting; [31], [32] employ HBM to accelerate a
number of data processing applications. All these efforts
would benefit from how to benchmark the performance of
HBM on an FPGA to optimize their designs. The need to
better understand HBM has been shown in recent work [33]
analyzing the impact of HBMs on tasks such as join and
stochastic gradient descent as part of a study exploring
how to make best use of FPGAs for data processing. [34]
uses HBM to enable efficient embedding table lookups in
memory-bound recommendation inference.

Accelerating applications with FPGAs. Previous
work [35], [36], [37], [38], [39] accelerates a broad range
of applications, e.g., database and deep learning inference,
using FPGAs. We expect that many of these applications
will improve their performance by using HBM as, often,
these applications are memory bandwidth bound. The sys-
tematic benchmarking of HBM on Xilinx FPGAs provides
the insights necessary to port such applications to boards
with HBM optimizing the overall performance.

9 CONCLUSION

FPGAs are being equipped with High Bandwidth Mem-
ory (HBM) to tackle the memory bandwidth bottleneck
in memory-bound applications. However, the performance
characteristics of HBMs have been neither quantitatively
nor systematically analyzed on FPGAs. We bridge this gap
by benchmarking two HBM stacks on a state-of-the-art
FPGA. Accordingly, we propose Shuhai to demystify the
underlying details of HBM such that the user is able to
obtain a more accurate picture of the behavior of HBM than
what can be obtained on CPUs/GPUs due the interference
from the caches and TLBs. Shuhai can be easily generalized
to other FPGA boards or other generations of memory
modules, e.g., DDR3 and DDR4. Shuhai is open-source and
will allow new FPGA boards and new memory types to be
explored and quantitatively analyzed. The code is available:
https://github.com/RC4ML/Shuhai.
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