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Abstract—Nowadays, AI researchers become more and more
interested in fine-tuning a pre-trained LLM, whose size has grown
to up to over 100B parameters, for their downstream tasks. One
approach to fine-tune such huge models is to aggregate device
memory from many GPUs. However, this approach introduces
prohibitive costs for most data scientists with a limited budget
for high-end GPU servers. In this paper, we focus on LLM
fine-tuning on a single consumer-grade GPU in a commodity
server with limited main memory capacity, which is accessible
to most AI researchers. In such a scenario, existing offloading-
based methods fail to fine-tune an LLM efficiently due to a
lack of holistic intra-server tensor movement management. To
this end, we present LoHan, a low-cost, high-performance deep
learning training framework that enables efficient 100B-scale
model fine-tuning on a commodity server with a consumer-
grade GPU and limited main memory capacity. The key idea
is to add holistic offloading traffic as an optimization dimension
for 1) active gradient offloading, and 2) holistic traffic-aware
activation swapping mechanism. The experimental results show
that 1) LoHan is the first to fine-tune a 175B model on an
RTX 4090 and 256 GB main memory, 2) LoHan achieves
2.32× throughput than the state-of-the-art baselines when fine-
tuning a small 13B model, and 3) LoHan enables a cheap low-
end consumer GPU to have higher cost-effectiveness than a
DGX-A100 cluster when fine-tuning a 175B model.

I. INTRODUCTION

Large language models (LLMs) have achieved impressive
accuracy in natural language processing jobs [1]–[5] and data
management tasks [6], [7]. There is a strong demand for
data scientists to fine-tune a pre-trained LLM to be used for
downstream AI tasks [8], [9]. However, the model sizes of
LLMs are growing fast. The largest open-source transformer
models for fine-tuning in recent years have grown to over 100
billion (100B) parameters [10].1 Fine-tuning a 100B model
requires storing ~2.6 TB of temporary and persistent tensors
at peak times, while the latest on-market data-center GPU has
only up to 188 GB device memory [11].

One native approach to host huge models is to aggregate
device memory from many data-center GPUs on high-end
clusters like DGX platform [12] to fine-tune a 100B-scale
model [13]–[30]. For example, it takes 32× $14177 NVIDIA
A100 GPUs with 80 GB of device memory to fine-tune a
model with 100B parameters, so accommodating a cluster
of high-end GPUs introduces prohibitive costs for most data
scientists with tight budgets.

∗ Equal contribution.
1Size of an LLM is defined by the number of parameters. We use “100B

model” to represent a model with 100 billion parameters in this paper.

In this paper, we aim to explore whether it is feasible to
efficiently fine-tune a 100B-scale LLM on a single consumer-
grade 4090 GPU ($1600, up to 24 GB device memory) with
limited main memory capacity (256 GB). Such a solution
would be attractive to researchers who seek to minimize LLM
fine-tuning costs. To do so, the existing low-cost works [31]–
[36] offload the tensors during the fine-tuning process from
GPU memory to NVMe memory to maximize the trainable
model size. However, we identify that these SSD-equipped
systems suffer from two severe issues: low throughput and
small maximum trainable model size.
• Offloading Activation Tensors to SSDs. LLM training

consists of two types of tensors, namely activations and
model states. Existing systems like FlashNeuron [37] only
offload activations to SSDs and keep model states in GPU
memory. We find that keeping model states in GPU memory
severely limits the trainable model size. For example, Flash-
Neuron can only fine-tune a 1.55B model on RTX 4090,
while fine-tuning a 175B model (a typical size of 100B-
scale models [2], [38]) requires ~2.45 TB of GPU memory,
which far exceeds the memory capacity of GPUs.

• Offloading Model State Tensors to SSDs. Existing sys-
tems like ZeRO-Infinity [39] and Colossal-AI [40] offload
model states to NVMe SSDs [41]–[43] to enlarge the
trainable model size. We identify that these systems have
three issues in model fine-tuning, as shown in Figure 1a.
First, these systems suffer from low GPU utilization, mainly
because they execute the synchronous out-of-core CPU
Adam2 [44] in the optimizer stage where the GPU is
idle. This stage takes 30%~60% of a training iteration.
Second, these systems only offload the inter-transformer
block activations (6% of total activations) to main memory
and recompute the rest of the activations. Such an offloading
method leads to 5.7 seconds (22% of the backward stage)
of additional GPU recomputation overhead in the backward
stage where PCIe bandwidth is underutilized. Third, these
systems only offload activations to main memory, thus
requiring a large amount of main memory to fine-tune an
LLM. We estimate that ZeRO-Infinity requires ~1.1 TB
main memory to fine-tune the 175B model, while most
commodity servers equip only 128 GB~1 TB main memory.
2Here we refer to the out-of-core optimizer as optimizer executing on

CPU instead of GPU (i.e., “in-core optimizer”). There are also works such
as Angel-PTM [31] that present an asynchronous out-of-core optimizer.
However, the asynchronous optimizer updating policy might affect model
training convergence. Therefore, they are beyond the scope of this paper.
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Figure 1: Comparison of offloading-based systems. Bandwidth and overhead numbers are obtained on our evaluation server
with 12 SSDs when fine-tuning a 13B model with a batch size of 32.

• Naı̈vely Offloading Both Model State and Activation Ten-
sors to SSDs. Existing systems like G10 [45] offload both
model states and activations to SSDs and execute the Adam
optimizer on GPU. We identify that these systems have three
issues, as shown in Figure 1b. First, executing the Adam
optimizer on GPU requires transferring massive model states
between GPU and NVMe SSDs, making the 0.1-second
GPU computation wait for 13-second model state transfer.
Second, these systems offload all the activations (213 GB
when fine-tuning a 13B model with a batch size of 32) to
SSDs, making 5.9-second GPU computation wait for 10-
second activation transfer during the forward stage. Third,
these systems rely on GPUDirect [46] technology that is not
available for consumer-grade GPUs.

o In summary, they do not have holistic intra-server tensor
management that impedes efficient fine-tuning on a 100B
model when offloading activations or model states onto SSDs.

To this end, we present LoHan, a low-cost high-performance
deep learning training framework that enables efficient 100B

model fine-tuning on a commodity server with a consumer-
grade GPU and limited main memory capacity. The key idea is
to add holistic offloading traffic as an optimization dimension.
As such, LoHan enables a commodity GPU without GPUDi-
rect to efficiently fine-tune a huge model, whose size is limited
by SSD capacity, rather than main memory/GPU memory
size, when both model states and activations are offloaded to
NVMe SSDs. To do so, LoHan consists of two innovations.
First, for model states, LoHan presents the first active gra-
dient offloading technology that enables the out-of-core CPU
optimizer execution to directly consume the gradients from
GPU to CPU, so as to hide CPU optimizer execution behind
GPU computation. Second, for activations, LoHan proposes
a holistic traffic-aware activation swapping management to
automatically determine the amount of swapping activations
such that the epoch time is minimized when training on a
single GPU in a commodity server. To summarize, this paper
makes the following contributions:
• We study the existing offloading strategies and identify the



issues of low throughput and small maximum trainable
model size due to the lack of holistic intra-server tensor
management.

• To optimize the holistic offloading traffic, we design an
active gradient offloading technology and a holistic traffic-
aware activation swapping management to overlap offload-
ing and computation so as to maximize GPU utilization.

• We implement LoHan on the deep learning framework
PyTorch [47]. Evaluations show that LoHan 1) is the first to
fine-tune a 175B model on an RTX 4090 and 256 GB main
memory, 2) achieves up to 2.32× throughput than the state-
of-the-art baselines when fine-tuning a small 13B model,
and 3) enables a cheap low-end consumer GPU to have
higher cost-effectiveness than a DGX-A100 machine.

II. BACKGROUND

LLM Training Stages. A model consists of L layers of math-
ematical functions fi (x,Pi) , 1≤ i≤L, where i denotes layer
ID, x denotes input and P denotes its trainable parameters.
The training procedure takes multiple training iterations to get
the model converged. Each iteration consists of three stages:
• 1) Forward propagation, where the model takes training data
a0 as input, computes the activation ai = fi(ai−1,Pi) as
indimediate values for each layer i successively and gets the
loss value lL = y − aL, where y denotes expected output.

• 2) Backward propagation, where the model performs two
computations for each layer i in reverse to get gradients
used for model updates: first, each layer takes the loss value
li and computes the loss value delivered to the previous
layer li−1=∇ai−1

fi(ai−1,Pi)
Tli; second, it computes the

gradients of the layer Gi=∇Pi
fi(ai−1,Pi)

Tli.
• 3) Optimizer execution, where the parameters are updated

according to gradients, i.e., P updated = o(G,P ), where
o is the optimizer function. When training LLMs, Adam
optimizer [44] is generally adopted to increase the model
convergency, which introduces auxiliary optimizer states to
smooth the parameter update process.

Notations. Table I lists notations used in the rest of the paper.
Memory Footprint. According to the training procedure
introduced above, an LLM training iteration requires storing
the following tensors: 1) Model states, including parameters
P32, optimizer states OS32, gradients G16, and a low-precision
parameter copy P16 for GPU computation; and 2) activations
A16. Table II concludes the sizes and life cycles of the tensors
within an iteration. The loss values are directly consumed after
being produced, and thus are not discussed here.
Tensor Offloading. When no memory-saving techniques are
applied, all the tensors are produced, stored, and consumed
in GPU memory. Tensor offloading is a technique that moves
part or all of the tensors from GPU memory to main memory
or SSDs after the tensor is produced by GPU, and moves the
tensor back to GPU memory before the tensor is consumed
by GPU, so as to reduce the GPU memory footprint. The pro-
cedure of temporarily offloading a tensor is called swapping.
CPU Optimizer. Offloading optimizer execution to CPU [34]
is a technology to reduce the PCIe traffic of GPU. The CPU

Table I: List of notations.
Symbol Definitions
Titer Elapsed time of a training iteration.
Tf , Tb Elapsed time of the forward stage and the backward stage.

TG
f , TG2M

f ,
TM2G
f , TS

f

Elapsed time of GPU computation, GPU to main memory PCIe transfer,
main memory to GPU PCIe transfer and SSD I/O during the forward stage.

TG
b , TG2M

b ,
TM2G
b , TS

b

Elapsed time of GPU computation, GPU to main memory PCIe transfer,
main memory to GPU PCIe transfer and SSD I/O during the backward stage.

FLOPf
Number of GPU floating point operations during the forward stage.

The FLOP during the backward stage is thus 2FLOPf .
P Number of parameters of a model.

Aall Size of activations in bytes of a model.
AinterBlock Size of inter-transformer block activations in bytes of a model.
THPG Peak GPU throughput in FLOPS measured.
BWG Maximum unidirectional PCIe bandwidth between GPU and main memory.
BWS2M Maximum SSD to main memory PCIe bandwidth measured.
BWM2S Maximum main memory to SSD PCIe bandwidth measured.
AG2M Activations size in bytes swapped from GPU.

MEMavail
M Minimum unallocated main memory in bytes during profiling stage.

α Proportion of activations swapped to SSDs relative to AG2M.
FLOPr Number of GPU floating point operations during recomputation.
OB Activation offloading benefit of a layer, defined in Subsection IV-D.

Table II: Tensors in LLM fine-tuning.
Tensor Produced During Consumed During Size

P32
optimizer

(previous iteration)
optimizer

(current iteration) 4P

OS32
optimizer

(previous iteration)
optimizer

(current iteration) 8P

G16 backward optimizer 2P

P16
optimizer

(previous iteration)
forward and backward

(current iteration) 2P

A16 forward backward Aall

optimizer eliminates the heavy parameter and optimizer state
transfer between the GPU and main memory because when
offloading the model states to NVMe SSDs, P32 and OS32
produced by the CPU optimizer in main memory are directly
moved to SSDs. In contrast, P32 and OS32 produced by a GPU
optimizer in GPU memory need to first move to main memory,
then to SSDs.
Activation Recomputation. Activation recomputation [48] is
a memory-saving technique where only a subset of activations
is kept in memory during forward propagation while others are
discarded. During the backward propagation, when performing
the backward propagation of a layer whose input activations
are discarded, extra forward propagation from the last saved
activation is performed to get the discarded activation. The
extra forward propagation procedure is named recomputation.

III. MOTIVATION

In this section, we identify the issues of existing offloading-
based works, which motivate the design of LoHan.

A. Issues of Approaches: Offloading Activations to SSDs

The existing works such as FlashNeuron [37] offload activa-
tions to SSDs to train a larger model. However, these systems
keep the model states on GPU memory, thus severely limiting
the maximum trainable model size.

To illustrate this issue, we implement a prototype of
FlashNeuron and fine-tune LLMs on our evaluated server
(Detailed implementation and server configurations shown in
Section V-A). The experimental results in Figure 2a show that
FlashNeuron even fails to fine-tune a 6B model, which is a
common scale of today’s pre-trained LLMs [9], [10], [38].
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Figure 2: Issues of SSD-offloading methods that motivate the design of LoHan. We perform the experiments on RTX 4090.

B. Issues of Approaches: Offloading Model States to SSDs

Systems like ZeRO-Infinity [39] and Colossal-AI [40] of-
fload model states to SSDs to train a larger model. Meanwhile,
they propose a CPU Adam [44] that efficiently executes the
optimizer in the CPU. These systems perform badly in such
a commodity server.3 In the following, we identify three
concrete issues of these systems.
1, Heavy Optimizer Execution Overhead. These systems
execute CPU optimizer after the backward propagation of the
entire model finishes, as Figure 1a shows. Thus, the CPU
optimizer execution does not overlap with GPU computation,
and the GPU is completely idle during the optimizer stage.
When training in a high-end DGX cluster with many high-end
CPUs, the CPU optimizer contributes a trivial time proportion.
However, when fine-tuning on a commodity server with few
CPUs, the optimizer execution takes a significant portion of the
training time, leading to low GPU utilization during training.

To illustrate this, we quantitatively analyze the ratio of
GPU busy time over the total elapsed time when fine-tuning
different models using ZeRO-Infinity. Figure 2b shows that the
GPU is busy during only 36% of an iteration, even when the
model is relatively small (such as 13B) and the batch size is
large enough to saturate GPU computing resources (such as
32). Colossal-AI achieves even lower GPU utilization (GPU
is busy only for 12% of an iteration, not shown in the figure).

To show the overhead of the optimizer execution, we
measure the time proportion of the optimizer stage in ZeRO-
Infinity when fine-tuning different models in Figure 2c. The
optimizer execution takes 30%~60% of the training step.
2, Excessive Activation Recomputation Overhead. These
systems adopt a static activation management strategy. Specif-
ically, they offload the inter-transformer block activations
(12.5 GB for a 13B model with a batch size of 32) to
main memory and recompute all the intra-transformer block
activations (200 GB for a 13B model with a batch size of 32).
Recomputing activations introduces additional GPU computa-
tion during backward propagation because GPU computation
generally takes longer than PCIe tensor transfer when fine-
tuning with a large batch size. For example, when fine-tuning
a 13B model with a batch size of 32, the GPU backward
propagation without recomputation takes 1.91× longer than
SSD I/O time and 1.88× longer than the GPU-CPU activation

3They are originally designed for high-end DGX servers rather than for a
commodity server with a single consumer-grade GPU.

and gradient transfer, thus GPU computation is the bottleneck.
Therefore, this recomputation strategy incurs GPU computa-
tion overhead during the backward propagation.

To illustrate this, we use ZeRO-Infinity to fine-tune a 13B
model and break down its training time, as Figure 1a shows.
The GPU-main memory tensor transfer PCIeG2M and main
memory-SSD tensor transfer PCIeSSD only takes 3.18 and
6.25 seconds respectively during the backward stage, while
GPU computation takes 17.6 seconds, indicating that excessive
activation recomputation of ZeRO-Infinity introduces GPU
computation overhead.
3, Limited Trainable Model Size under Limited GPU/Main
Memory Capacity. ZeRO-Infinity offloads activation only
to main memory, as Figure 1a shows, and Colossal-AI does
not offload activations to either main memory or SSDs. These
systems do not offload activations to SSDs because it incurs
additional pressure to SSD I/O and introduces additional
design complexity. However, hosting activations in GPU and
main memory limits the maximum trainable model size when
fine-tuning in a server with limited GPU and main memory.

To illustrate this, we fine-tune LLMs of various sizes with
the two systems in our evaluated server (detailed config-
urations see Subsection V-A). We set the batch size to 1
to minimize the effect of activations. Figure 2a shows the
maximum trainable model size with the two systems. They
fail to fine-tune a 175B model in our evaluated server with
768GB main memory.
C. Issues of Approaches: Naı̈vely Offloading Both Model
States and Activations to SSDs

A recent work namely G10 [45] supports offloading both
model states and activations to unified main/NVMe memory,
which theoretically supports the 100B-scale model fine-tuning
with scarce GPU and main memory. G10 does not consider
activation recomputation in model fine-tuning and offloads
almost all activations to SSDs. Besides, it executes the Adam
optimizer on GPU, as most in-GPU model training systems
do. We identify that G10 has three issues in LLM fine-tuning.
1, Heavy Model States Transfer Overhead. G10 executes
the optimizer on GPU which introduces massive model state
transfer (182 GB per direction for a 13B model) on the
PCIe link during the optimizer execution, causing heavy PCIe
transfer overhead.

To illustrate this, we simulate the performance of G10 when
fine-tuning a 13B model on RTX 4090 with a batch size



of 32 assuming the GPUDirect is available and the GPU
computation and PCIe transfer are fully pipelined. Figure 1b
shows the result. We observe that the GPU optimizer only
takes 0.1 seconds during this stage, while the PCIe transfer
takes 13 seconds (37% of the iteration time).
2, High Activation Transfer Overhead. G10 offloads all
activations to main memory and then to SSDs without recom-
putation, which incurs massive activation transfer (213 GB
for a 13B model with a batch size of 32) on GPU’s PCIe
port, which leads to low GPU utilization during forward
propagation. To illustrate this, we break down the training
time of the forward stage, where offloading activations takes
10 seconds, far beyond the GPU computation time (5.96s).

This performance overhead would be more severe if we
intend to overlap optimizer execution and the backward
propagation whose time is bounded by GPU computation,
like some existing works [49]. Our corresponding simulation
shows that PCIe transfer accounts for almost 100% of both
forward and the overlapped backward-optimizer stage time,
while GPU computation only accounts for 59% of the forward
stage time and 69% of the overlapped backward-optimizer
stage time, indicating that the PCIe transfer for model states
and activations becomes the bottleneck throughout the whole
training process!
3, GPUDirect Requirement. G10 deeply relies on GPUDi-
rect for tensor offloading. However, consumer-grade GPUs do
not support GPUDirect, thus G10 cannot run on consumer-
grade GPUs.

IV. DESIGN OF LOHAN

A. Design Overview

To address the issues of existing works, we present LoHan, a
holistic tensor management system that enables efficient low-
cost 100B model fine-tuning on a commodity server with a
consumer-grade GPU and limited main memory capacity. The
key idea is to add holistic tensor offloading management as
an optimization dimension. As such, LoHan achieves high
GPU utilization when fine-tuning a 100B model, even when
offloading both model states and activations to NVMe SSDs.

To do so, LoHan consists of three main components:
1) hardware-aware profiling that collects essential data for
model states and activation management (Subsection IV-B),
2) active gradient offloading that enables the out-of-core CPU
optimizer execution to directly consume the gradients from
GPU to CPU, so as to hide CPU optimizer execution behind
GPU computation (Subsection IV-C), and 3) holistic traffic-
aware activation swapping management that automatically
determines the amount of swapping activations to further
minimize epoch time (Subsection IV-D). Figure 1c illustrates
an overview of LoHan.

B. Hardware-Aware Profiling

In the hardware-aware profiling stage, LoHan automatically
gathers essential data from both model and hardware settings,
which are required by the subsequent components.

Profiling Goals. The profiling stage aims to provide the min-
imum unallocated main memory MEMavail

M , the total elapsed
time of the forward stage Tf and backward stage Tb, number of
model parameters P , size of model activations Aall, peak GPU
throughput THPG, maximum PCIe bandwidth between GPU
and main memory BWG, maximum SSD to main memory
PCIe bandwidth BWS2M, maximum main memory to SSD
PCIe bandwidth BWM2S, and the number of GPU floating
point operations of each layer, which are required by the
holistic traffic-aware activation swapping management.
Profiling Details. LoHan parses the PyTorch model definition
during initialization to obtain P , Aall, and the number of GPU
floating point operations of each model layer. In the profiling
stage, LoHan only offloads inter-layer activations and recom-
putes the rest of activations, just like ZeRO-Infinity, so as to
minimize the activation offloading overhead while ensuring the
recomputation process does not exceed the GPU memory limit.
Besides, LoHan offloads all activations and model states to
NVMe SSDs at this stage without any further optimizations to
accurately break down computation and communication costs.
we record the computation time of each layer in the model
during forward propagation so as to compute THPG. To get
BWG, BWS2M, and BWM2S, LoHan gets the system topology
from hardware settings during initialization, and monitors the
PCIe traffic during the profiling stage, so as to estimate the
PCIe bandwidth of each link.
Profiling Overhead. We perform the hardware-aware profil-
ing stage only in the first iteration, which takes about 2~3×
times longer than that of a subsequent iteration. Fine-tuning
an LLM requires thousands of iterations to converge, so the
profiling overhead is negligible compared to the whole fine-
tuning process.

C. Active Gradient Offloading

Inspired by Active Messages [50] that allows a sender to
specify a user-level handler along with each message and
requires a receiver to immediately call the handler on the
message arrival with the message body as an argument, we
present the active gradient offloading technology that allows
the CPU to perform the out-of-core CPU optimizer execution
(i.e., user-level handler) upon main memory receiving the
offloaded gradients (message body) from GPU, rather than to
further offload to SSDs. As such, LoHan has the opportunity
to overlap the CPU optimizer execution with GPU back-
ward propagation. In the following, we present the concrete
challenge, followed by naı̈ve active gradient offloading and
optimized active gradient offloading.
Challenge. Model states of the 100B model are stored in
low-bandwidth and high-latency SSDs, thus exploiting such an
opportunity comes with a main challenge. In particular, how to
enable the out-of-core CPU optimizer to efficiently consume
the offloaded gradients from GPU during backward propaga-
tion, because they compete for limited PCIe bandwidth.
Naı̈ve Active Gradient Offloading. Due to the stacked nature
of transformer blocks, we assume the gradient tensors arrive at
the CPU optimizer sequentially with a decreasing index during
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Figure 3: Comparison of active gradient offloading designs.

the backward stage. When the gradient tensor i arrives at the
main memory, its optimizer execution (user-defined handler)
consists of three steps, as shown in Figure 3a. First, during the
SSD→Main step, the SSD writes the corresponding model
states of the model tensor i to main memory. Second, during
the CPU Compute step, the CPU updates the model states
of the tensor i and produces a 16-bit parameter copy. Third,
during the Main→SSD step, the SSD reads the updated model
states and 16-bit parameters back.

We can easily observe that the naı̈ve active gradient offload-
ing mechanism serializes three steps, such that the gradients
are slowly consumed because expensive SSD accesses are
involved in two steps.
Optimized Active Gradient Offloading. Our key obser-
vation is that GPU’s backward propagation, in-core CPU
optimizer (CPU Compute), and SSD I/O (SSD→Main and
Main→SSD) utilize almost different computation and com-
munication resources in a server, as shown in Figure 1c.
Therefore, these three steps have the potential to overlap to
maximize the utilization of GPU, PCIe, and CPU.

To this end, we are the first to present optimized active gra-
dient offloading that overlaps the SSD I/O, in-core optimizer
execution, and GPU’s backward propagation to maximize GPU
utilization. With optimized scheduling, Main→SSD of the
tensor i is performed after SSD→Main of the tensor (i− 1),
as shown in Figure 3b. By doing so, Main→SSD of the
tensor i can be overlapped with CPU Compute of the tensor
(i−1), thus LoHan can overlap the CPU computation and SSD
I/O during the out-of-core optimizer execution, increasing the
PCIe bandwidth utilization between main memory and SSDs.
As such, LoHan keeps synchronous model updating while
minimizing the GPU’s idle time.4

D. Holistic Traffic-Aware Activation Swapping Management

Swapping activations from GPU first to main memory then
to SSDs incurs heavy PCIe traffic, while recomputing activa-
tions instead of swapping relieves PCIe traffic pressure at the
cost of unnecessary GPU computation time. Existing activation
swapping and recomputation works such as Capuchin [32]

4Active gradient offloading might be confused with the “one-step delayed
update” optimization of ZeRO-Offload [34]. The one-step delayed update
postpones the optimizer execution of iteration i until the forward propagation
of iteration (i+1), thus introducing the parameter staleness and affecting the
model training convergence. In contrast, LoHan does not introduce parameter
staleness because forward/backward propagation reads the updated models.

only consider GPU computation time of backward propagation
and GPU-main memory PCIe traffic to determine the amount
of swapping activations, assuming gradients, parameters, and
model states are kept on the GPU memory.
Challenges. LoHan offloads both model states and activations
to the SSDs and adopts the active gradient offloading, thus
posing two unique challenges to the activation swapping
design: 1) During the backward propagation, the GPU needs
to swap back not only the activations but also the on-demand
activations, incurring complex PCIe traffic. 2) LoHan adopts
active gradient offloading that enables the CPU optimizer to
overlap with backward propagation, so that the maximum ex-
ecution time of backward propagation and the CPU optimizer
serves to determine the swapping amount of the activations.

To address these challenges, LoHan proposes the holistic
traffic-aware activation swapping management that automati-
cally determines the amount of swapping activations and thus
minimizes each iteration time. In the following, we describe
LoHan’s design in detail.

The goal of the activation swapping strategy is to find an
AG2M that minimizes the iteration time Titer. The high-level
observation is that Titer is a convex function of AG2M, so that
the optimal AG2M can be found by iterating activations to
swap, computing the corresponding AG2M and iteration time,
and finding the inflection point where Titer is minimized. We
first discuss how we compute Titer when given an AG2M, then
give proof that Titer is convex, and finally show the concrete
procedure of choosing activations to swap.
Iteration Time Computation. Titer in LoHan is the sum of
the forward stage time Tf and the backward stage time Tb, as
shown in Equation 1.

Titer = Tf + Tb (1)

We first evaluate Tf . When the GPU computation and PCIe
tensor transfers are fully overlapped, the forward stage time is
the maximum among TG

f , TG2M
f , TM2G

f , and T S
f , which can

be expressed by Equation 2. Note that the GPU-CPU PCIe
link is duplex, while the SSD is simplex, thus we need to
compute GPU-CPU transfer time and CPU-GPU PCIe transfer
time separately but consider the SSD I/O time as a whole.

Tf = max
(
TG
f , TG2M

f , TM2G
f , T S

f

)
(2)

= max
(

FLOPf

THPG
, AG2M

BWG
, 2P
BWG

, 2P
BWS2M

+ αAG2M

BWM2S

)
The last component of Tf includes the amount of activations

that are swapped to SSDs αAG2M. We next describe how
αAG2M is decided. When an activation is swapped in LoHan,
it is accommodated by either main memory or SSDs. LoHan
decides the amount of activations that are accommodated by
main memory, AG2M − αAG2M, based on the peak main
memory usage gathered in the profiling stage. The main
memory is first used for storing parameters that are prefetched
from SSDs, and model states that are used for optimizer
execution, while the rest of the main memory is used for
accommodating activations. Therefore, the amount of activa-
tions accommodated by SSDs can be expressed as shown in



Equation 3. Therefore, the forward stage time Tf can be further
expressed by Equation 4.

αAG2M = AG2M −MEMavail
M (3)

Tf = max
(

FLOPf

THPG
, AG2M

BWG
, 2P
BWG

, 2P
BWS2M

+
AG2M−MEMavail

CPU

BWM2S

)
(4)

Then we evaluate Tb. Similar to the forward stage, the
backward stage time can be expressed by Equation 5. Note
that we do not consider the CPU Adam execution time because
its time is shorter than reading/writing the optimizer states
from/to SSDs.

Tb = max
(
TG
b , TG2M

b , TM2G
b , T S

b

)
(5)

= max
(
2FLOPf+FLOPr

THPG
, 2P
BWG

, 2P+AG2M

BWG
, 14P+αAG2M

BWS2M
+ 14P

BWM2S

)
Since FLOPr can be computed by accumulating the com-

putation quantity of layers that need to be recomputed, we can
compute the iteration time once AG2M is provided.
Proving Convexity of Iteration Time. We first list the
mathematical theorems used in our proofs.

Theorem 1: The sum of convex functions is convex.
Theorem 2: The maximum of convex functions is convex.
Theorem 3: A linear function is a convex function.
Theorem 4: f(y) = af(x) + b is convex to x if f(x) is

convex to x and a > 0.
To prove that the iteration time Titer is convex to AG2M,

we prove that Tf and Tb is convex separately, thus proving
Titer is convex according to Theorem 1.

We first prove that Tf is convex to AG2M. According to
Equation 4, the first and the third components are independent
of AG2M, while the second and the last components are a
linear function of AG2M. Thus, all four components are convex
according to Theorem 3. Therefore we conclude that Tf is a
convex function of AG2M according to Theorem 2.

Then we prove that Tb is convex to AG2M. The second
component of Equation 5 is independent of AG2M, while the
third and the last components are a linear function of AG2M,
thus the last three components are convex functions of AG2M

according to Theorem 3.
To prove that the first component TG

b is also convex, we first
assume that activations of a layer can be partially offloaded
while its recomputation overhead is proportional to discarded
activations.5 Next, we introduce LoHan’s activation swapping
order that is necessary for the proving process. For each layer’s
activations, LoHan assigns different swapping priorities. A
layer’s activation is more suitable for swapping rather than
recomputing if it requires 1) more time to recompute or
2) less time to swap. Since the recomputing time of a layer is
proportional to its operation quantity, and the offloading time
is proportional to the activation size, we define the offloading
benefit of a layer (OBlayer) as its floating point operations in
recomputation (FLOPlayer) over its activation tensor volume
(Alayer), as shown in Equation 6.

5This assumption is only for interpolation, and we don’t actually offload
part of a layer’s activation in reality.

OBlayer =
FLOPlayer

Alayer
(6)

A layer’s activations that have higher offloading benefits
have higher priority in swapping rather than recomputing.

Let Ai denote the activation size of the layer i, FLOPi

denote its number of operations required in recomputation,
and OBi denote its offloading benefit. For each i that satisfies
i∑

k=1

Ak ≤ AG2M ≤
i+1∑
k=1

Ak (That is, AG2M includes the first i

layers and part of layer (i+ 1)), the recomputation overhead
of a model can be expressed by Equation 7.

FLOPr =FLOPf −
i∑

m=1

FLOPm−FLOPi+1×
AG2M−

i∑
n=1

An

Ai+1
(7)

=FLOPf −
i∑

m=1

OBmAm −OBi+1Ai+1 ×
AG2M−

i∑
n=1

An

Ai+1

Thus the derivative of FLOPr is expressed by Equation 8.

dFLOPr

dAG2M
= −OBi+1 (8)

Since OBi is an decreasing function of i, dFLOPr

dAG2M
is an

increasing function of AG2M, thus FLOPr is convex. There-
fore, TG

b is also convex according to Theorem 4. According
to Theorem 2, we conclude that the backward stage time Tb

is a convex function of AG2M.
Accordingly, the sum of Tf and Tb, which is the iteration

time Titer, is convex according to Theorem 1.
Concrete Procedure of Activation Swapping Strategy. Now
we describe the concrete procedure of the activation swapping
strategy. From the convexity of Titer, we deduce three possible
cases for the iteration time with regard to the offloaded
activation size.

Case 1: The iteration time increases as AG2M increases,
indicating that the PCIe transfer is the training bottleneck even
without recomputation. In this case, it is better to reduce the
offloaded activation size as long as the recomputation does
not exceed the GPU memory capacity. In LoHan, we choose
AinterBlock as the minimum safe swapped activation amount
by default.

Case 2: The iteration time decreases as AG2M increases, in-
dicating that GPU computation is the training bottleneck even
when offloading all activations. In this case, all activations
should be offloaded (i.e., AG2M = Aall).

Case 3: As AG2M increases, the iteration time decreases
when AG2M is smaller than a Aoptimal, and increases when
AG2M is larger than the Aoptimal, thus the Aoptimal is the
optimal offloaded activation size.

From the analysis, we can find the Aoptimal by computing
the iteration time when iterating different AG2M and detecting
the inflection point of Titer with regard to AG2M (Case 3). If no
inflection point is detected, LoHan decides AG2M by matching
the pattern of Titer to Cases 1 and 2. Algorithm 1 describes
the details of this procedure.



Algorithm 1: Finding Optimal Activation Swapping Strategy.
Data: layer list: List of all layers in the LLM.
Data: swap list: List of swapped activations.

1 swap list ← [];
2 Tmin ←∞;
3 AG2M ← 0;
4 FLOPr ← FLOPf ; // Full recomputation
5 i← 0;
6 layer list.sortByOffloadingBenefit();
7 for layer in layer list do
8 AG2M ← AG2M+layer.actSize;
9 FLOPr ← FLOPr−layer.flop;

10 Titer ← computeIterTime(AG2M, FLOPr);
11 if Titer ≥ Tmin then
12 if AG2M ≥ AinterBlock then
13 break ;

// Ensure AG2M ≥ AinterBlock to avoid OOM
14 end
15 else
16 Tmin ← Titer;
17 end
18 swap list.append(layer.activation)
19 end

model = Model(config)

loss = nn.MSELoss()

optimizer = torch.optim.Adam()

for epoch in range(num_epochs):
model.train()
for batch_idx, (data, target)\

in enumerate(train_loader):
output = model(data)
loss = loss(output, target)
loss.backward()
optimizer.step()

(a) PyTorch.

with LoHan_init():
# Apply profiling stage
model = Model(config)

# Inject hooks for data prefetching and
# pipelined data transfer.
LoHan_hook(model)

loss = nn.MSELoss()

# Apply optimizer in active gradient offloading.
optimizer = LoHan_Optimizer(torch.optim.Adam())

for epoch in range(num_epochs):
model.train()
for batch_idx, (data, target)\

in enumerate(train_loader):
output = model(data)
loss = loss(output, target)
loss.backward()
# optimizer.step()

(b) LoHan. Highlighted functions are APIs
provided by LoHan.

Figure 4: User interface comparison of PyTorch and LoHan.

E. Framework Integration

We implement LoHan on the top of the popular deep-
learning framework PyTorch [47]. LoHan provides a set of
wrappers to hide the implementation details, so that users
can enable efficient model fine-tuning via LoHan with only
a few lines of code changes. Figure 4 shows the user interface
comparison between PyTorch and LoHan. LoHan performs
the profiling stage via the LoHan_init wrapper. Compared
to PyTorch, LoHan removes the optimizer execution from the
serialized execution flow. Besides, LoHan’s hooking the opera-
tors in the model enables the automatic activation management
without explicit code change by users.

V. EVALUATION

A. Experimental Setup

Evaluated Machine. We perform all the experiments on a
server whose configurations are summarized in Table III.
Workloads. We choose a series of decoder-only models for
our experiments. The hyperparameter choice of the models
follows GPT-3 [4] and open-source pre-trained models like
OPT [2] and are listed in Table IV. We simply randomly

Table III: Configurations of the evaluation server.
CPU Dual Intel Xeon Gold 5320 CPU @ 2.20GHz

Main Memory 768 GB 3200MHz DDR4
PCIe PCIe Gen 4
GPU NVIDIA GeForce RTX 3090/4080/4090
SSD 12× 3.84TB Intel P5510 SSDs

CUDA Toolkit 11.8
PyTorch 2.0.0+cu118

Table IV: LLM for evaluation.
Model Size #Layers #Heads Hidden Dimension

6B 28 32 4096
13B 40 40 5120
30B 48 56 7168
70B 80 64 8192
135B 88 88 11264
175B 96 96 12288
276B 112 112 14336
412B 128 128 16384

initialize model parameters and datasets for evaluations that
do not require model convergence. We train the models in
mixed precision that is widely adopted in LLM fine-tuning. In
our experiments, the sequence length is set to 1024 and the
vocabulary size is 50257.
Baseline Configurations. We choose the following open-
source baselines for evaluation.

The first baseline is ZeRO-Infinity [39] and ZeRO-
Offload [34] from DeepSpeed. The former offloads model
states to SSDs while the latter offloads model states to
main memory. Both systems swap the inter-transformer block
activations to main memory and recompute the intra-block
activations. We evaluate with DeepSpeed version 0.9.3 and
disable the one-step delayed optimizer of ZeRO-Offload since
it introduces parameter staleness.

The second baseline is Colossal-AI [40], a popular billion-
scale model training solution. Colossal-AI keeps the inter-
block activations in GPU memory and recomputes the intra-
block activations. We evaluate with Colossal-AI version 0.3.5
and enable the Gemini memory manager [51], [52].

The third baseline is FlashNeuron [37], which only of-
floads activations to SSDs. We implement a prototype of
FlashNeuron using POSIX file API instead of GPUDirect to
offload activations to main memory, and then to SSDs, so that
FlashNeuron can run on our consumer-grade GPUs.
B. Maximum Trainable Model Size

We first compare the maximum trainable model size of
LoHan and the baselines by fine-tuning the models on three
consumer-grade GPUs, namely RTX 4090, 3090 (24GB device
memory), and 4080 (16 GB device memory), with different
main memory capacities. We set the batch size to 1 to mini-
mize effect of the batch size. To limit main memory capacity,
we pin a certain amount of memory so that the evaluated
systems cannot utilize the pinned memory. We further disable
Linux swap partition.

Figure 6 illustrates the comparison results. LoHan is able to
fine-tune significantly larger models than the baselines under
any GPU and main memory capacities, because LoHan fully
leverages the memory capacities of main memory and GPU to
its best by holistically offloading model states and activations.
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(b) Fine-tuning 13B model on RTX 3090
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Figure 5: End-to-end GPU throughput comparison between LoHan and baselines with different batch sizes.
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Figure 6: Maximum trainable model size of LoHan and
baselines under different main memory capacities.

LoHan enables the fine-tuning of a 276B model under 768 GB
main memory on RTX 4090, which is 2.04× larger than that
of ZeRO-Infinity. LoHan succeeds in training a 175B model
even with only 256 GB main memory and RTX 4080, which
is reachable by most researchers.

C. End-to-End Throughput Comparison

Throughput w.r.t. Batch Size. To demonstrate the efficiency
of LoHan, we first compare the end-to-end training throughput
of LoHan and the three baselines. We employ LoHan and the
baselines to fine-tune the 13B model on both RTX 4090 and
3090 with different batch sizes.

Figure 5a shows the throughput when fine-tuning the 13B
model on RTX 4090. We observe that LoHan achieves 2.32×,
3.46×, and 8.02× higher throughput over ZeRO-Offload,
ZeRO-Infinity, and Colossal-AI, respectively. The figure does
not include FlashNeuron which fails to fine-tune the model on
RTX 4090, because it only offloads activation checkpoints to
SSDs while keeping massive model states in GPU memory,
thus requiring much larger GPU memory space than the 24GB
memory capacity of RTX 4090.

Figure 5b shows the throughput when fine-tuning the 13B
model on RTX 3090. LoHan achieves 1.57×, 2.48×, and
4.72× improvements over ZeRO-Offload, ZeRO-Infinity, and
Colossal-AI, respectively, showing a similar trend as on 4090.
Throughput w.r.t. Model Size. We compare the maximum
TFLOPS of LoHan, ZeRO-Infinity, and ZeRO-Offload fine-
tuning different models on 4090, as shown in Figure 5c,
where the green line indicates the peak FLOPS measured by
benchmarking a transformer block inside the GPU without any
PCIe traffic.

We observe that LoHan achieves 90%~95% of peak FLOPS
when the model size is smaller than 70B, while the baselines
achieve only 40% at most. LoHan maintains a relatively small
53% of peak FLOPS when fine-tuning a 175B model, because
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Figure 7: Effect of active gradient offloading.

a single layer of a large model has a large size of parameters
and activations, thus the allowable batch size is small to fit
in limited GPU memory. However, this is still significantly
higher than ZeRO-Infinity at its maximum FLOPS.
Conclusion. LoHan can fine-tune the 175B model on RTX
4090 while the baselines cannot. Besides, LoHan achieves
significantly higher throughput than the baselines, indicating
that LoHan enables efficient fine-tuning on large-scale models.
D. Effect of Active Gradient Offloading

To demonstrate the benefits of active gradient offloading
(Subsection IV-C), we test LoHan with three implementations:
1) LoHan Optimized, the implementation with the optimized
active gradient offloading, 2) LoHan Naı̈ve that implements
a naı̈ve active gradient offloading, and 3) LoHan+ZeRO that
does not overlap backward and optimizer execution as ZeRO-
Infinity does. All implementations follow the same training
procedure except the gradient offloading strategy.

We test the implementations by fine-tuning the 13B and
175B models on RTX 4090 GPU, as shown in Figure 7. We
make two observations.

First, the optimized active gradient offloading generally
achieves higher performance gain than the naı̈ve active gradi-
ent offloading. For example, LoHan Optimized achieves 1.22×
throughput than LoHan Naı̈ve and 1.33× throughput than
LoHan+ZeRO when fine-tuning 13B model with a batch size
of 64. This is because the optimized active gradient offloading
completely overlaps CPU computation and SSD I/O, thus
minimizing the GPU’s idle time.

Second, the throughput gain of the active gradient offloading
over serializing backward stage and the CPU optimizer drops
when the batch size is too small (e.g., 8), because GPU
backward propagation costs significantly less time than CPU
optimizer, thus resulting in fewer overlapping opportunities.
E. Effect of Holistic Traffic-Aware Activation Management

To demonstrate the benefit of the holistic traffic-aware
activation swapping management (Subsection IV-D), we first
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Figure 8: Effect of swapping activations to SSDs.

show the benefit of swapping activations to SSDs rather than
to main memory in maximum trainable model size, then show
the throughput gain of the activation management strategy.
Benefit of Swapping Activations to SSDs. To show the
benefit of swapping activations to both main memory and
SSDs rather than only to main memory, we evaluate LoHan
(LoHan Optimized) and an implementation LoHan+CpuAct,
which follows the same training procedure as LoHan except
that LoHan+CpuAct swaps activations only to main memory
rather than to SSDs. We measure the maximum trainable
model sizes of two implementations fine-tuning on RTX 4090
with different main memory and batch sizes.

Figure 8 illustrates the comparison results. We observe that
1) swapping activations to SSDs significantly enlarges the
trainable model size in the single-GPU commodity server with
scarce main/GPU memory. For example, LoHan Optimized
can fine-tune 2×~5× larger model than LoHan+CpuAct with
128 GB main memory. 2) The difference in trainable model
size is not significant when the batch size is too large, e.g., the
maximum model size of two implementations is the same with
256 GB main memory and batch size of 60, because when the
batch size is too large, the maximum trainable model size is
bounded by accommodating activations of a single layer in
limited GPU memory capacity, rather than main memory.
Benefit of the Activation Management Strategy. To validate
the effectiveness of the activation management strategy, we
evaluate LoHan on the 70B model with five implementations:
1) LoHan+Optimized that uses holistic traffic-aware activa-
tion management to swap activations, 2) LoHan+ZeRO that
statically swaps the inter-layer activations of each transformer
block to main memory and recompute the rest, 3) LoHan+Cap
that smartly keeps, recomputes or swaps the activations to
CPU by profiling the overhead of activation swapping and
recomputation as proposed by Capuchin [32], 4) LoHan+G10
that smartly keeps or swaps activations to SSDs based on
inactive time measurement as proposed by G10 [45], and
5) LoHan+CM that smartly recomputes or offloads activations
to main memory with a cost-model and MILP solver proposed
by Checkmate [53]. All the implementations offload model
states to SSDs and execute optimizer in CPU, which is
necessary for 70B model fine-tuning.

Figure 9a shows the throughput comparison and Table V
shows the respective batch sizes. We observe that 1) the
performance of all baselines except G10 drops when with less
main memory capacity because these systems swap activations

Table V: Batch size adopted by different activation manage-
ment strategies fine-tuning the 70B model.

Main Memory Size 128 GB 256 GB 512 GB
LoHan+DS 16 24 32
LoHan+Cap 16 24 32
LoHan+G10 32 32 32
LoHan+CM Failed 24 32

LoHan+Optimized 32 32 32
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Figure 9: Effect of activation management strategy.

only to main memory, thus limiting the achievable batch size
with scarce memory capacity. In contrast, LoHan achieves
steady throughput by offloading activations to SSDs; and
2) With the same batch size (e.g., the batch size is 32 with 512
GB main memory), LoHan achieves higher throughput than all
the baselines, because LoHan’s offloading strategy is holistic,
considering the traffic from both activations and model states.

Further, we show that LoHan predicts the optimal amount
of swapped activations. To illustrate this, we test the iteration
time of LoHan when fine-tuning the 13B model with different
amounts of swapped activation. Figure 9b illustrates the results
with batch sizes of 24, 36, 48, and 60, where stars indicate
the predicted optimal amount of swapped activations. We
observe that 1) for all batch sizes, LoHan’s iteration time
model produces nearly optimal predictions according to the
experimental results. 2) The iteration time increases as the
swapped activation amount increases at a batch size of 24,
which fits case 1 deduced in Subsection IV-D. Meanwhile,
the trend of iteration time with regard to swapped activation
amount fits well with deduced case 3 at batch sizes of 36,
48, and 60, showing the correctness of LoHan’s iteration time
model and the preciseness of the profiling stage.

F. Effect of the Number of SSDs

We study LoHan’s throughput w.r.t. number of SSDs. We
evaluate the maximum training throughput of LoHan and
ZeRO-Infinity when fine-tuning the 135B model (the largest
model ZeRO-Infinity can fine-tune) on RTX 4090 with differ-
ent numbers of SSDs. We adopt the largest batch size the two
systems can fine-tune. Figure 10a illustrates the effect of the
number of SSDs on the achievable throughput.

We make three observations. First, LoHan achieves near
linear scalability when the SSD number increases from 1 to 3,
indicating that SSD I/O is the training bottleneck in this case
and LoHan aggregates the bandwidth of multiple SSDs well.
Second, LoHan’s throughput gain is small as the SSD number
increases from 6 to 12. This is because the system bottleneck
with adequate I/O bandwidth has shifted to GPU computation
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Figure 10: Effect of the Number of SSDs.
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(b) 70B model with 2 GPUs.
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(c) 13B model with 4 GPUs.
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(d) 70B model with 4 GPUs.

Figure 11: Throughput comparison between LoHan and ZeRO-
Infinity on 4-GPU machine.

and GPU-main memory PCIe transfer. Third, ZeRO-Infinity’s
throughput grows slowly as the number of SSDs increases.
This is because ZeRO-Infinity almost serializes GPU com-
putation, CPU computation, and SSD access, thus the I/O
bandwidth of SSDs is not well utilized.

To further study the throughput characteristics w.r.t. SSD
number, we measure the training throughput of LoHan when
fine-tuning the 13B model on RTX 4090 with different SSD
numbers and batch sizes. Figure 10b illustrates the result.

We make two observations. First, LoHan’s throughput is
maximized under sufficient cheap SSDs. With more than 6
SSDs for batch sizes of 32 and 48 or 12 SSDs for batch size
of 64, LoHan achieves the near maximum throughput. Second,
LoHan needs fewer SSDs to reach maximum throughput when
using a larger batch size. For example, It requires 12 SSDs to
achieve 135 TFLOPS with a batch size of 32, while requiring
6 and 3 SSDs for batch sizes 48 and 64 respectively.

G. Performance on Multi-GPU Server

Many data scientists might own a commodity server with
multiple consumer-grade GPUs. We show that LoHan’s opti-
mizations also work for the multi-GPU servers. We evaluate
the training throughput of LoHan and ZeRO-Infinity on a
multi-GPU server, whose configurations are the same as the
single 4090 server, except that the multi-GPU server equips 4
NVIDIA RTX 4090 GPUs (The maximum supported number

Table VI: Diffusion models for evaluation.
Model Size #Layers #Heads Hidden Dimension

0.67B 28 16 1152
0.90B 30 16 1280
1.4B 32 16 1536
10B 28 32 4096
20B 40 40 5120
40B 48 56 7168
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Figure 13: Comparison
of Cost-effectiveness: LoHan
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within the server’s power supply). We use the two systems to
fine-tune the 13B model and the 70B model (The largest model
ZeRO-Infinity can fine-tune6) at different global batch sizes.
Figure 11 shows the global throughput of the two systems
fine-tuning on 2 and 4 RTX 4090 GPUs.

The experimental result shows that LoHan achieves higher
throughput than ZeRO-Infinity. LoHan achieves 2.21× and
1.69× throughput than ZeRO-Infinity when fine-tuning the
13B and 70B models on 4 GPUs respectively. The underlying
reason is two-fold. First, LoHan offloads the activations to
SSDs, thus allowing the fine-tuning with a larger batch size.
Second, LoHan considers holistic offloading traffic as an opti-
mization dimension, and thus achieves higher throughput than
ZeRO-Infinity even with the same batch size. In conclusion,
LoHan still benefit the fine-tuning on a multi-GPU server.
H. Performance on Other Large-Scale Models

Large-scale models not only exist in language models
(LMs) but also in models for tasks such as vision and image
generation [54]–[57]. We take fine-tuning diffusion models as
an example to show that LoHan’s optimizations are beneficial
for more general large-scale deep-learning models.

To evaluate performance on large diffusion models, we
adopt the model architecture of the DiT-XL/2 [54] model and
scale the layer number, attention head number, and hidden
dimension of the backbone, as listed in Table VI. The input
image size is 512×512. We compare the throughput of LoHan
and Fast-DiT [58], the state-of-the-art open-source training
framework for DiT models. Figure 12 illustrates the result.
We make two observations.

First, LoHan enables fine-tuning much larger models than
Fast-DiT because LoHan offloads activations and model states
to main memory and SSDs. In contrast, Fast-DiT keeps the
tensors in GPU memory.

Second, LoHan achieves higher throughput than Fast-DiT
when fine-tuning the same model. The reason is two-fold:

6Even though ZeRO-Infinity can fine-tune the 135B model with a single
RTX 4090, it can only fine-tune the 70B model on the multi-GPU server
because of the additional GPU and main memory overhead introduced by
multi-GPU synchronization and multiprocessing.



Table VII: Estimated price of components.
Machines and Components Price ($)

DGX-A100 server with 8 A100-80G NVLink GPUs 200,000 [59]
Commodity 4U server, without GPUs and SSDs 14,098 [60]

NVIDIA RTX 4090 1,600 [61]
Intel P5510 SSD 308 [60]

1) Fast-DiT suffers from low throughput due to small trainable
batch size as the model size grows (e.g., 1.4B), while LoHan
allows the fine-tuning with high batch size; and 2) LoHan’s
activation management strategy reduces the fine-tuning time
compared to Fast-DiT’s static activation swapping strategy,
thus enabling LoHan to achieve higher throughput even when
both two systems fine-tune at the same large batch size.

I. Cost-Effectiveness Comparison

To show the cost-effectiveness of utilizing holistic offload-
ing in improving training throughput, we compare the through-
put over the server price of LoHan on the 4× RTX 4090
GPU server and a baseline: Megatron-LM [62] on an NVLink-
enhanced DGX-A100 [12] server using tensor parallelism.
Megatron-LM does not rely on data offloading. We fine-tune
the 30B model (the largest model Megatron-LM can fine-tune
on the DGX machine) on the two systems. The prices of server
components are estimated as shown in Table VII. We evaluate
LoHan on RTX 4090 GPUs with different SSD numbers when
fine-tuning the 30B model.

Figure 13 illustrates the comparison results. We observe
that LoHan on RTX 4090 achieves at most 2.17× cost-
effectiveness over Megatron-LM on a DGX-A100 machine.
This shows that for large-scale training, LoHan enables a
commodity GPU to achieve higher cost-effectiveness than
high-end data-center clusters that do not rely on offloading
to train a huge model. Here cost-effectiveness decreases when
LoHan’s number of SSDs is increased from 6 to 12 because
adding SSDs beyond the optimal number of SSDs has only a
small performance gain but raises costs.

VI. RELATED WORKS

Offloading Optimization in Data Management Tasks. Prior
works [41], [63]–[68] study the characteristics of modern
storage devices such as SSDs and provide guidelines for
optimizing the data offloading in data management tasks.

Following these works, existing practices have opti-
mized the storage I/O of several data management fields
such as buffer management [69]–[73], indexing [74], [75],
query scheduling [73], [76], and transaction logging [76],
[77] of rational databases, or other fields such as dis-
tributed databases [78], [79], object databases [80], key-value
stores [81]–[85], vector data processing [86], graph data pro-
cessing [87]–[94], and information retrieval [95].

Compared to these systems, LoHan targets the LLM fine-
tuning tasks that have different application characteristics.
Tensor Management Methods for LLM Fine-tuning. Many
existing works [48], [53], [96]–[101] consider the optimal
recomputation strategies while keeping the rest of activations
and the entire model states on GPU, thus these works fail
to fine-tune even a 1B model. In contrast, LoHan is the first

to schedule activation offloading and activation recomputation
under holistic activations and model states offloading.

Many existing works [35], [36], [102]–[111] offloads the
activations to main memory to train models that cannot fit in
GPU memory. FlashNeuron [37] further offloads activations
to NVMe SSDs. However, these systems do not offload
model states, thus they even fail to fine-tune a 6B model,
and only considering the optimal activation swapping and
recomputation is not optimal when offloading both activations
and model states. Further, some works [32], [112]–[114]
offloads both activations and model states to main memory,
and G10 [45] further offloads these tensors to SSDs. How-
ever, these systems execute optimizer in GPU, thus incurring
heavy model state transfer overhead on PCIe interconnect as
discussed in Subsection III-C. In contrast, LoHan considers
both activation management and model states offloading to
SSDs as optimization dimensions, thus enabling 100B-scale
LLM fine-tuning on a single GPU while keeping efficiency.

Some prior works [34], [49], [52], [115], [116] introduce
CPU Adam and offload model states to main memory so
as to enlarge the trainable model sizes of LLMs and ZeRO-
Infinity [39] offloads the model states to SSDs. However, these
systems do not holistically manage activations swapping, acti-
vation swapping, and model state offloading. In particular, they
either do not adopt activation recomputation thus incurring
heavy activation transfer overhead on PCIe interconnect, or
only adopts a naive activation recomputation strategy. Angel-
PTM [31] adopts asynchronous weight updates which leads
to parameter staleness. In contrast, LoHan presents the first
active gradient offloading that overlaps CPU’s SSD accesses,
optimizer execution, and GPU’s backward propagation to
maximize GPU utilization. In contrast, LoHan is the first
to propose holistic traffic-aware activation swapping manage-
ment that achieves optimal activation management under large
model sizes, as shown in Subsection V-E.

VII. CONCLUSION

In this paper, we propose LoHan, a low-cost high-
performance training framework that enables efficient 100B
huge model fine-tuning on a low-end server with a low-end
GPU and limited main memory capacity. The key idea is to add
holistic offloading traffic as an optimization dimension. The
experimental results show that 1) LoHan is the first to fine-tune
a 175B model on an RTX 4090 and 256 GB main memory,
and 2) LoHan enables a cheap low-end consumer GPU to
have higher cost-effectiveness than a DGX-A100 cluster when
fine-tuning a 175B model. LoHan’s artifact is available at
https://github.com/RC4ML/LoHan.
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