
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Hare: A Systematic Framework for Efficient and
Generally Automatic Hotspot Offloading on

Programmable Switches
Xueying Zhu, Yingtao Li, Xiang Li, Jialin Li, Zeke Wang

Abstract—Switch-based hotspot offloading is a trendy solution
for latency-sensitive applications to achieve high system through-
put with an acceptable P99 query response latency. However, due
to the varying object sizes, dynamic workloads, and complex
query-processing functions of the latency-sensitive applications,
existing switch-based dynamic hotspot offloading approaches
struggle to handle these applications effectively. This is mainly
because of their inefficient switch resource utilization and non-
generalizable hotspot offloading designs. So we propose Hare,
a systematic framework that consists of three techniques to
address these issues. First, Hare uses a MAT-based cross-stage
structure to store and perform hit-checks for large hotspots on
the switch data plane. Second, Hare uses a switch-server co-
offloading mechanism to support fast and precise offloading.
Third, Hare is designed to enable generally automatic offloading
by decoupling application-related query processing with hotspot
offloading. Compared to the state-of-the-art approaches, Hare
supports 8.86× ∼ 9.97× larger hotspot size, achieves 1.27× ∼
6.61× higher system throughput, and can recover the system
throughput and the P99 query response latency within 8s.

Index Terms—query processing, programmable switch, tail
latency SLO, in-network caching

I. INTRODUCTION

SERVICES that cater to clients, such as web search engines,
financial trading platforms, games, and online social net-

works, necessitate consistently low response times to attract
and retain users [1]–[3]. A primary design objective for
client-facing services is to maximize query throughput while
meeting tail latency SLOs for individual queries [4]–[8]. The
importance of low tail latency comes from the observation that
query tail latency greatly impacts the client’s experience and
the company’s business revenues. Take Amazon online web
services for example: tail latency SLO violations delay web
page loading times, and each additional 100 milliseconds of
query tail latency causes a $1.5 million decrease in revenue [9],
[10]. Moreover, a large online service that usually contains
multiple micro-service components [11]–[13] requires stricter
tail latency for each component like a key-value store (KVS)
system, whose tail latency should be hundreds of microseconds
to a few milliseconds [14]–[16].

A recent line of work [17]–[20] increases throughput and
reduces tail latency by caching frequently accessed objects

X. Zhu, Y. Li, X. Li, Z. Wang are with the Department of Computer Sci-
ence, Zhejiang University, China. Email: {zhuxueying, Li Yingtao, lixiang3,
wangzeke}@zju.edu.cn.

J. Li is with the National University of Singapore, Singapore. Email:
lijl@comp.nus.edu.sg.

on high-speed programmable switches. Although these works
show promising results, we still identify three challenges when
applying in-network caching to real-world workloads:
C1. Varying Object Sizes. Object size distribution across
different workloads exhibits significant variance. For instance,
the lock ID length in a lock manager system is as short as 4
bytes [18], while the key length in a key-value store system
can range from tens to hundreds of bytes [21]–[23]. However,
existing solutions place rigid constraints on the offloaded
object sizes, limiting their generality: the maximum switch
object size in NetCache [17] is limited by the match action
table (MAT) bit width in a single pipeline stage (typically
128 bytes); DySO [20] relaxes this restriction by storing large
objects in registers across stages, but the bit width per stage
is still bounded by the register array size (typically 16 bytes).
C2. Dynamic Workloads. Object popularity changes rapidly
due to unpredictable real-world incidents [24]–[29]. To main-
tain low tail latency, an in-network caching solution should
quickly react to popularity changes. However, offloading an
object in NetCache takes milliseconds on average. This large
overhead arises from inefficient switch-OS-based APIs used to
realize interactions between the switch control plane and the
switch data plane (hereinafter called plane interactions). Be-
sides, when workload changes, NetCache’s recovered switch
hit rate is limited by the precision of the space-saving statis-
tical modules on the switch data plane. DySO uses a register-
based structure called r-MAT to replace the MAT structure in
order to support fast microsecond-level offloading with packet-
based plane interactions. However, DySO’s recovered switch
hit rate is limited by the hash collision when offloading objects
to the r-MAT structure.
C3. Complex Query-processing Functions. To achieve high
throughput, applications usually require the switch data plane
to maintain dirty data1 for offloaded objects and don’t synchro-
nize them with backend servers [18], [19]. It makes realizing
hotspot offloading sticky because the offloading mechanism
should keep data consistent while replacing cold offloaded
objects with hot non-offloaded objects. However, NetCache
is designed as a read-intensive KVS system, while DySO is
designed as a general hotspot offloading mechanism for read-
only systems. Both of them don’t allow dirty data on the switch
data plane, so their offloading process can’t be directly adopted

1We adopt the concept of “dirty data” from caching. In the scenario of
hotspot offloading, it refers to data that is solely stored on the switch without
being written back to the backend servers.

IEEE/ACM TRANSACTIONS ON NETWORKING 2

User-defined functions

Item Action Action data
O1 query.hit_index=O1.index O1.index

O2 query.hit_index=O2.index O2.index

...

Switch-OS

Control plane

Data plane

REG

MAT

ALU

... REG

MAT

ALU

+

+

User-defined match-action table (MAT)

Parser Stage 1 Stage n Deparser

Fig. 1. Protocol Independent Switch Architecture (PISA)

by write-intensive applications (e.g., write-intensive KVS, lock
manager, and OLTP).

To address issues in existing approaches, we present Hare,
a systematic framework for efficient and automatic hotspot
offloading on programmable switches. It consists of the fol-
lowing three key innovations:
K1. MAT-based Cross-stage Hotspot Storage Structure. To
enable high flexibility in hotspot size, we present e-MAT, a
hotspot storage structure utilizing MATs in multiple stages to
store and perform hit-checks for large offloaded objects.
K2. Switch-server Co-offloading Mechanism. To realize
fast and precise offloading, we present a switch-server co-
offloading mechanism. For precision, it gathers statistics from
both the switch and the backend servers to find the hottest
non-offloaded objects and the coldest offloaded objects. For
fastness, it uses real-time min-heap, hybrid plane interactions,
and batch offloading to reduce the offloading delay.
K3. Automatic Offloading Mechanism. To achieve high
programmability, we present an automatic offloading mech-
anism, which decouples application-related query-processing
from the hotspot offloading mechanism, such that developers
focus on application-related functions while leaving Hare to
automatically manage the dynamic hotspot offloading process.

We implement a read-only KVS and a lock manager with
Hare. Compared to state-of-the-art approaches, Hare supports
8.86× ∼ 9.97× larger hotspot size, achieves 1.27× ∼ 6.61×
higher system throughput, and can recover the system through-
put and the P99 query response latency within 8s.

II. BACKGROUND

Programmable switches are an emerging trend in the market
with specialized ASICs from vendors such as Intel [30] and
Cavium [31]. Compared to traditional switches [32], [33],
programmable switches provide the capabilities of flexible
packet processing at a line rate of up to billion pkt/s. The
programmability of the switch data plane is enabled by a
configurable architecture [34] and the de facto data plane
programming language is P4 [35]. P4 is a high-level language
that allows users to write match-action rules to express the

processing of packets on the data plane. P4 uses a C-like
syntax with several restrictions. For example, it does not allow
the use of pointers, loops, and complex mathematical functions
which impedes P4 programs running at a line rate.

To run P4 programs, programmable switches often use the
PISA architecture, as shown in Figure 1, to allow programmers
to specify how a packet should be processed using MATs, reg-
isters, and ALUs on the switch data plane. Packet processing
happens concurrently in a sequence of stages, each of which
handles a packet at a time. The resources in each stage are
limited and a packet usually cannot access again the stage it
has already passed. As a result, the layout of functions on
the data plane must be carefully organized so that dependent
operations are arranged in successive order. The switch device
provides an embedded CPU board that serves as the control
plane for the switch. During runtime, the switch control plane
can modify MATs and registers using Switch-OS-based APIs,
while packets can only modify registers on the data plane.

The PISA architecture contributes to in-network caching
typically in the following manner: it employs MATs to store
offloaded objects and to perform hit-checks, and uses registers
to store the associated application data. When a query is
considered a hit, it is processed directly within the switch data
plane using the associated application data. We take NetCache
as an example to show how the PISA architecture works. In
this case, the offloaded objects are keys and the application
data are values. As shown in Figure 1, NetCache stores hot
keys (e.g., O1, O2, ...)2 in the MAT structure as items, and
programs match-action rules for each item in the MAT. To be
specific, if the queried key in a query packet matches any item
(e.g., O1) of the MAT, the corresponding action for this item
is to assign the action data (e.g., O1.index) to a query-related
variable (e.g., query.hit index) which will be further used to
locate the application data in registers.

III. MOTIVATION

We identify three issues that prevent existing works from
wide adoption by a broad range of applications.

A. Low Flexibility in Hotspot Size

The distribution of object sizes varies significantly across
different workloads. While applications such as the lock
manager typically handle small objects (e.g., 4-byte lock IDs),
there are still specific scenarios where handling large objects
(e.g., hundred-byte keys) is common. We take two application
scenarios that usually require large objects as examples: In
distributed file systems, the full file path can be used as a
key for querying the file metadata [36], [37]. In scenarios
with complex directory hierarchies, this can lead to large key
sizes. Similarly, in Internet of Things (IoT) databases, dataset
identifiers are employed as keys for querying dataset locations.
These identifiers typically include detailed information such
as device owner, device name, device location, measurement
type, time range, and so on, resulting in large key sizes [38].
Offloading query processing functions of these applications

2O is abbreviated for “object”.

IEEE/ACM TRANSACTIONS ON NETWORKING 3

MAT1 MAT2

query for Oq query.index1 == query.index2

Hit
query.hit_index = query.index1

Miss

Yes No

Suppose
Oq = O2

False miss!

Oq.seg1

Match
Oq.seg2

Match

Item Action data

O1.seg1=0x1 O1.index1=0x1

O2.seg1=0x1 O2.index1=0x2

O3.seg1=0x2 O3.index1=0x3

Item Action data

O1.seg2=0x1 O1.index2=0x1

O2.seg2=0x2 O2.index2=0x2

O3.seg2=0x2 O3.index2=0x3

(a) S1. Direct partition leads to a false miss issue.

MAT1 MAT2

query for Oq query.hit_index =
query.index1 × 10 + query.index2 × 1Suppose

Oq.seg1 = O3.seg1
Oq.seg2 = O1.seg2

query.hit_index = 21
False hit!

Oq.seg1

Match
Oq.seg2

Match

Item Action data

O1.seg1=O2.seg1=0x1 O1.index1=O2.index1=0x1

O3.seg1=0x2 O3.index1=0x2

Item Action data

O1.seg2=0x1 O3.index1=0x1

O2.seg2=O3.seg2=0x2 O2.index2=O3.index2=0x2

(b) S2. Index conversion leads to a false hit issue.

MAT1 MAT2

query for Oq with Oq.uid

{Oq.uid, Oq.seg1}
Match

Item Action data

{O1.uid=0x1, O1.seg1=0x1} O1.index1=0x1

{O2.uid=0x2, O2.seg1=0x1} O2.index1=0x2

{O3.uid=0x3, O3.seg1=0x2} O3.index1=0x3

Item Action data

{O1.uid=0x1, O1.seg2=0x1} O1.index2=0x1

{O2.uid=0x2, O2.seg2=0x2} O2.index2=0x2

{O3.uid=0x3, O3.seg2=0x2} O3.index2=0x3

{Oq.uid, Oq.seg2}
Match

Distinguish O1.seg1 & O2.seg1
by O1.uid & O2.uid

Distinguish O2.seg2 & O3.seg2
by O2.uid & O3.uid

Oq.uid introduces
extra overhead!

Oq.index1 == Oq.index2

Hit
Oq.hit_index = Oq.index1

Miss

Yes No

（E.g., Extra ID synchronization
between clients and servers）

(c) S3. Additional item field leads to extra overhead.

Fig. 2. Naive solutions to extend the maximum size of the offloaded keys with MATs do not work.

to the switch data plane requires support for large objects.
However, existing solutions place rigid constraints on the
offloaded object sizes, limiting their generality.

1) NetCache: NetCache uses the MAT structure on the
switch data plane to store and perform hit-checks for offloaded
objects. When the queried object hits any offloaded object
in the MAT structure, NetCache processes the query directly
on the switch data plane. However, NetCache’s hit-check
mechanism restricts the maximum size of an offload object
to the maximum bit width of the MAT structure in only one
pipe stage of the switch data plane. To illustrate the challenges
in extending object size, we present the following three naive
solutions that leverage MATs across multiple stages to support
larger offloaded object sizes.
Naive Solution S1: Direct Partition. As shown in Figure 2a,
we can directly partition a large offloaded object (e.g., O1)
into several segments (e.g., O1.seg1 and O1.seg2) and use
MATs in different stages to store different segments of the
object as items (e.g., MAT1 stores O1.seg1, MAT2 stores
O1.seg2). The items that are stored in different MATs but
belong to the same object share the same action data (e.g.,
O1.index1 = O1.index2 = 0x1). When a query arrives,
each MAT checks if the corresponding segment of the queried
object Oq matches any item. If items matched by Oq in MATs
share the same action data, the query is determined to be a
hit and will be handled by the switch data plane. However,
when a MAT has an item that belongs to at least two objects,
this mechanism would cause a false miss issue because of
the matching priority for these items. Figure 2a illustrates an

example of sequentially offloading segments of O1, O2, and
O3 to two MATs. We assume that the incoming object Oq is
O2 and that O2.seq1 is equal to O1.seq1. Because the first
offloaded item has the highest priority for matching, Oq will
match O1.seg1 in MAT1 and O2.seg2 in MAT2. As a result,
the query will be finally determined to be a miss.
Naive Solution S2: Index Conversion. To address the issue
of S1, we employ the index conversion approach to avoid
duplicate items in a MAT, as shown in Figure 2b. The corre-
sponding index of the offloaded segment that Oq matches in
each MAT will be multiplied by a unique bias (e.g., ×10,×1)
and then summed. The summed result is used as the final index
(query.hit index) to locate the application data in registers.
However, this approach would lead to a false hit issue when
the item matched by Oq in each MAT doesn’t belong to the
same offloaded object. Figure 2b illustrates an example where
Oq.seg1 = O3.seg1 and Oq.seg2 = O1.seg2. In this example,
Oq gets a valid final index and causes a false hit issue.
Naive Solution S3: Additional Item Field. Another way
to address the issue of S1 is to introduce an additional
item field for each segment in each MAT. As shown in
Figure 2c, each offloaded object has a globally unique ID
(e.g., O1.uid ̸= O2.uid ̸= O3.uid), and each segment in
each MAT takes the corresponding object’s unique ID as an
additional item field. In this way, if two or more objects have
the same segment in a MAT (e.g., O1.seg1 = O2.seg1 = 0x1
in MAT1), the unique ID can be used to distinguish which
segment belongs to which object, so as to avoid the false
miss issue caused by duplicate items. However, though this

IEEE/ACM TRANSACTIONS ON NETWORKING 4

H
Query

Row

Hash function

Stage 1

Pipe stages

O11 O12
... O1C

...

OR1 OR2 ... ORC

... Stage C+1Stage 2 Stage 3

...

R

1 C

1

2
Column

Fig. 3. The r-MAT structure. (Orc is the offloaded object in the r-th row
and the c-th column.)

solution does solve the false miss issue, it requires the client
to include the unique ID of the queried object in the query
packet, resulting in extra overhead. For example, the client
should either send extra packets to retrieve the unique ID
of the queried object from servers, or waste memory to
store the unique ID locally. Since maintaining a lightweight
client is important for user experience, especially on mobile
devices with limited computing, networking, and memory
resources [39], [40], this solution is not optimal.

2) DySO: DySO proposes a register-based structure called
r-MAT to store and perform hit-checks for offloaded objects,
with the assumption that the size of the offloaded object fits in
the bit-width of the register array in one stage so each stage
can provide one column. Figure 3 illustrates that the registers
in multiple stages build a two-dimensional matrix in an r-MAT
structure. When a query arrives, the stage for hashing decides
which row of the matrix will interact with the query. Then
the queried object will be compared with the corresponding
offloaded object in each stage. If the queried object matches
any offloaded object, the query will be determined to be a hit.

Although DySO doesn’t explicitly explain how to offload
objects whose size exceeds the bit-width of the register array
in a single stage, we can easily implement it by using multiple
stages to represent one column. In particular, one offloaded ob-
ject can be partitioned into several segments and each segment
occupies a stage with the same row index. However, DySO still
struggles to expand the size of the offloaded objects because
the r-MAT structure consumes stages heavily. Typically, the
maximum bit-width of the registers in one stage is 1

8 of the
maximum bit-width of the MAT in one stage. As a result,
compared to the MAT structure, the r-MAT requires 8× stages
to store a large offloaded object. Given that modern switches
usually have only 10 ∼ 20 stages [18], the stage overhead
makes r-MATs impractical for large offloaded objects.

B. Not Supporting Fast and Precise Offloading

To cope with dynamic workloads, the controller needs to
frequently update the switch data plane with hotspots. The
primary challenge is the limited switch table and register
update rate. While commodity switches can update more than
10K table entries per second [41], the update rate is insufficient
to support traditional cache update mechanisms like LRU and
LFU. These mechanisms update the cache for every query,
causing unnecessary in-network cache churns and performance
degradation [17], [42]. To avoid unnecessary cache churns,
both NetCache and DySO offload an object to the switch data
plane only when it becomes hot enough, rather than for each
query access. However, it is challenging to accurately identify
the top-K hotspots and quickly offload them to the switch data

AnalyzerModifier

Switch control plane

OO-StatAPP data

Switch data plane

NOO-Stat

Switch OS

Step 1Step 2Step 3 Step 4 Step 4

Hit-check MAT

|-------------------For offloaded objects-------------------| |---------------------------|For non-offloaded
objects

Time-cost!

Fig. 4. NetCache’s dynamic hotspot offloading process.

0

100

200

300

400

500

600

700

35
40
45
50
55
60
65
70
75
80

1 3 5 7 9 11 13 15 17 19

Re
sp

on
se

 la
te

nc
y

(u
s)

Th
ro

ug
ho

ut
 (M

rp
s)

Time (s)

System throuhgput
P99 response latency

Cold flows

Hot flows

...

Workload changes

Backend servers

Clients

Switch

Fig. 5. The impact of slow offloading on the system throughput and the query
response latency.

plane. In the following content, we explain why NetCache and
DySO can’t achieve fast and precise offloading.

1) NetCache: NetCache has a high offloading delay be-
cause the switch-OS-based plane interactions dominate the
overall time cost of the NetCache’s offloading process. Fig-
ure 4 shows NetCache’s offloading process can be separated
into four steps, each of which involves costly plane inter-
actions. In Step 1, the NOO-Stat3 reports one hot object to
the analyzer. In Step 2, the analyzer identifies a cold object
by scanning the OO-Stat4. In Step 3, the modifier modifies
the object in the hit-check MAT and the application data in
registers. NetCache repeats Step 1 ∼ Step 3 multiple times
before proceeding to Step 4. In Step 4, the analyzer clears
the OO-Stat and the NOO-Stat. In particular, NetCache spends
milliseconds to offload one hotspot, and plane interactions take
up more than 90% of the total time.

Figure 5 shows NetCache’s slow hotspot offloading causes
a wide peak in the P99 query response latency and a wide
valley in the system throughput with 32k offloaded objects
under the Zipf-0.99 distribution. Besides, NetCache’s NOO-
Stat needs to balance between the expected precision and the
required resources and thus limits the stable switch hit rate.

2) DySO: DySO realizes fast offloading at the sacrifice of
precision because of the r-MAT hash collision. Figure 6 shows
DySO’s offloading process. In Step 1, the analyzer fetches
recorded queried objects from the QO-Record5. In Step 2, the
analyzer updates the local statistics with the recorded objects,

3NOO-Stat (Statistical Module for Non-offloaded Objects) is the statistical
module to store and update frequency counts for non-offloaded objects.
NetCache implements a Count-Min sketch [43] to report hot non-offloaded
objects, and a Bloom filter [44] to remove duplicate reports.

4OO-Stat (Statistical Module for Offloaded Objects) is the statistical mod-
ule to store and update frequency counts for offloaded objects. NetCache
implements a precise counter for each offloaded object.

5QO-Record (Module for Recording Queried Objects) is a module that
records query objects without distinguishing between offloaded and non-
offloaded objects.

IEEE/ACM TRANSACTIONS ON NETWORKING 5

AnalyzerModifier

Switch control plane

Switch OS

Step 1Step 3

|---------------For offloaded objects---------------| |--------For all objects--------|

Switch data plane

Step 2Step 4

APP data QO-RecordHit-check r-MAT

Ideal situation Hash collision (Under extreme conditions)

 Col 1
Row 1 Top 1
Row 2 Top 2
Row 3 Top 3
Row 4 Top 4

 Col 1
Row 1 Top 1 Top 2 Top 3 Top 4
Row 2 Top 5
Row 3 Top 6
Row 4 Top 7

Stage-cost & Hash collision!

Fig. 6. DySO’s dynamic hotspot offloading process.

0.6

0.7

0.8

0.9

(16,16) (32,32) (48,48) (64,64) (80,80)

St
ab

le
 h

it-
ra

te

(key size, value size) (B)

Ideal situation
Hash collision

C = 5

C = 2
C = 1 C = 1 C = 1

Fig. 7. The stable hit rate of the DySO-based read-only KVS system. (C is
the number of columns of the r-MAT structure.)

and checks if the set of the hottest objects changes with the
updated statistics. In Step 3, the modifier modifies the hit-
check r-MAT and the application data to ensure the hottest
objects and the related application data are offloaded. In Step
4, after a certain period of time (e.g., 1s), the analyzer ages
the frequency counts of all objects. DySO loses precision on
hotspot offloading because it only supports offloading the local
hottest objects for each row of the r-MAT structure instead of
offloading the global hottest objects due to the hash collision.

Figure 6 explains how hash collision impacts the precision
of the hotspot offloading. For a 4×1 r-MAT, the ideal situation
is to offload the top 1 ∼ top 4 hottest objects. However,
assuming the top 1 ∼ top 4 hottest objects share the same
hash index, only the top 1 hottest object can be offloaded.
Since the number of rows of the r-MAT is highly limited to a
small number (e.g., 32k), the hash collision is severe. DySO
eases the impact of the hash collision by increasing the number
of columns. However, because the r-MAT structure is stage-
cost, it is difficult to expand the number of columns when
dealing with large offloaded objects and application data. We
implement a DySO-based read-only KVS system and evaluate
its stable hit rate under Zipf-99 query distribution with various
key and value sizes, as shown in Figure 7. We observe that
when increasing the key size and the value size, the switch
data plane supports an obviously fewer number of columns,
and the hash collision increases the gap between the ideal hit
rate and the real hit rate.

C. Customized Design

To achieve high throughput, applications usually require
the switch data plane to maintain dirty data for offloaded

objects and don’t synchronize them with backend servers in
real time [18], [19]. It makes realizing hotspot offloading
sticky because the offloading mechanism should keep data
consistent while replacing cold offloaded objects with hot non-
offloaded objects. However, existing works fail to ensure data
consistency when dirty data exists during hotspot offloading,
as we discuss in the following content.

1) NetCache: NetCache is customized for a read-intensive
KVS system, which typically has two types of queries: GET
and PUT. The GET query reads the value of the queried
key, and the PUT query modifies the value of the queried
key. NetCache uses the switch data plane as a read-only
cache and employs the write-through policy for PUT queries,
which means the PUT query always invalidates the offloaded
matched key on the switch and will be transferred to the
backend servers. Because the system is read-intensive, the
write-through policy hardly affects the system throughput.
Also because of the write-through policy, the backend servers
in NetCache always have the latest version of all key-value
pairs, so deleting the cold offloaded key and its value on the
switch data plane won’t cause data inconsistency. However,
for other systems (e.g., lock manager [18], OLTP system [19])
whose application data (e.g., the phase of the lock) is write-
intensive, they can’t tolerate write-through policy for each
query that participates in application data modification. As
a result, they require application data mitigation from the
switch data plane to the backend servers before deleting the
cold offloaded object and its related application data. As such,
NetCache’s offloading process no longer functions properly.

2) DySO: DySO is a general mechanism for read-only
systems (e.g., the read-only KVS system and the network
address translation system). As NetCache, DySO also directly
deletes the cold offloaded object and its related application
data on the switch data plane during hotspot offloading, since
read-only systems do not have dirty data on the switch data
plane. However, for write-intensive applications that have dirty
data on the switch data plane, this offloading process can’t be
applied, as it would result in the loss of dirty data.

IV. DESIGN OF HARE

A. Overview of Hare
According to the drawbacks of existing works, when de-

signing Hare, we keep the following goals in mind:
G1. High Flexibility in Hotspot Size. Because the number of
stages on the switch data plane is highly limited, Hare should
allow offloading large objects in a stage-saving way.
G2. Fast and Precise Offloading. Because the available space
for storing offloaded objects on the switch data plane is highly
limited, Hare should precisely identify and offload the hottest
objects. Meanwhile, Hare should also offload hotspots fast to
the switch data plane to avoid wide peaks and valleys in the
P99 query response latency and the system throughput.
G3. Generally Automatic Offloading. To allow offloading hot
objects across diverse applications, Hare should be designed
as a framework that ensures generally automatic offloading
while maintaining data consistency for various use cases.
System overview. To achieve the above goals, we propose
Hare, a systematic framework for efficient and automatic

IEEE/ACM TRANSACTIONS ON NETWORKING 6

Automatic Offloading Mechanism (K3) Switch-server-coprocessing Offloading Mechanism (K2)

DPDK file

P4 file

Python tool

Config parameters:
Number of backend nodes,

IPs & MACs of devices,
Number of objects offloaded,

K, etc.

Executable files

M-modifier

Switch OS

Step 5

Hit-check e-MAT

App data

App data

D-modifier

Switch control plane

Switch data plane

Backend server(s)

|---------------------------------For offloaded objects---------------------------------|

|------------------------------For non-offloaded objects------------------------------|

Step 5

State manager

Step 1

 NOO-Stat

OO-Stat

Step 4

Step 6

Analyzer

State
manager

Step 3

Step 6
Step 4

Step 2

Step 1

Step 7

Step 2

Step 7

MAT-based Cross-stage Hotspot Storage Mechanism (K1)

MAT1

Item Action data

O1.seg1=
O2.seg1=0x1

O1.index1=
O2.index1=0x1

O3.seg1=0x2 O3.index1=0x2

MAT2

Item Action data

{O1.index1, O1.seg2}=
{O2.index1, O2.seg2}={0x1, 0x1}

O1.index2=
O2.index2=0x1

{O3.index1, O3.seg2}={0x2, 0x1} O3.index2=0x2

MAT3

Item Action data

{O1.index2, O1.seg3}={0x1, 0x1} O1.index3=0x1

{O2.index2, O2.seg3}={0x1, 0x2} O2.index3=0x2

{O3.index2, O3.seg3}={0x2, 0x1} O1.index2=0x3

Oq.seg1

Match
{Oq.index1, Oq.seg2}

Match
{Oq.index2, Oq.seg3}

Match
Index for App data

(Hit index)

*Oq is the queried object. O1~O3 are the offloaded objects.
 O1 = 0x111, O2 = 0x112，O3 = 0x211

Query
for Oq

Stage1 Stage2 Stage3

User’s code files

Fig. 8. Design overview of Hare. Hare consists of three key ideas K1, K2, and K3.

hotspot offloading on programmable switches. Figure 8 illus-
trates the overview of Hare, which has three key innovations:
K1. MAT-based Cross-stage Hotspot Storage Structure. To
achieve high flexibility in hotspot size (G1), we propose e-
MAT, a new hotspot storage structure using MATs in multiple
stages to store and perform hit-checks for offloaded objects.
K2. Switch-server Co-offloading Mechanism. To realize fast
and precise offloading (G2), we design a new offloading mech-
anism. For precision, it gathers statistics from both the switch
data plane and the backend servers to identify the hottest
non-offloaded objects and the coldest offloaded objects. For
fastness, it uses real-time min-heap, hybrid plane interactions,
and batching optimization to reduce offloading delays.
K3. Automatically Offloading Mechanism. We present a new
development process to realize generally automatic offloading
(G3). It decouples application-related query-processing with
hotspot offloading so developers are only required to fulfill
application-related code regions as developing a system with-
out tedious dynamic hotspot offloading.

B. MAT-based Cross-stage Hotspot Storage Structure
For latency-intensive applications that can benefit from

hotspot offloading, the object size distribution across different
workloads exhibits significant variance. However, the existing
solutions place rigid constraints on the offloaded object sizes
as mentioned in Subsection III-A. So we propose e-MAT, a

new hotspot storage structure that aims to extend the scalability
of the MAT structure with functional correctness, where the
functional correctness requires (1) no false miss – no duplicate
items in each MAT structure, and (2) no false hit – no
unexpected hit for non-offloaded objects.
Key Insight for E-MAT. The key insight behind constructing
the e-MAT structure is to introduce an appropriate additional
item field for segments in MATs. The field should identify
which offloaded object a segment belongs to while not im-
posing extra overhead on the client, as discussed in the naive
solution S3 in Subsection III-A. Intuitively, the index from the
previous MAT suits this job well for the following reasons:
First, the index of each segment in a MAT can be set to a
unique value within the MAT. This allows the subsequent MAT
to identify which offloaded object a certain segment belongs
to, by using the index from the previous MAT as the addi-
tional item field. Figure 9 illustrates how it works. Suppose
O1 (0x111) and O2 (0x212) are two offloaded objects, and
both of them can be divided into three equal-length segments.
O1.index1 from MAT1 is used as an additional item field
for O1’s corresponding item {O1.index1, O1.seg2} in MAT2.
Similarly, O1.index2 from MAT2 is used as an additional
item field for O1’s corresponding item {O1.index2, O1.seg3}
in MAT3. The same logic applies to O2. When a query arrives,
each MAT checks if the corresponding segment of the queried
object with the previous index matches any item. If a query

IEEE/ACM TRANSACTIONS ON NETWORKING 7

MAT1 MAT2

Item Action data

{O1.index1=0x1, O1.seg2=0x1} O1.index2=0x1

{O2.index1=0x2, O2.seg2=0x2} O2.index2=0x2

MAT3

Item Action data

{O1.index2=0x1, O1.seg3=0x1} O1.index3=0x1

{O2.index2=0x2, O2.seg3=0x1} O2.index3=0x2

Oq.seg1=0x1
Match

{Oq.index1=0x1, Oq.seg2=0x2}
Match

{Oq.index2, Oq.seg3}
Match

query
for Oq

Stage1 Stage2 Stage3

*Oq is the queried object. O1~O2 are the offloaded objects.
 O1 = 0x111, O2 = 0x121.

Item Action data

O1.seg1=0x1 O1.index1=0x1

O2.seg1=0x1 O2.index1=0x2

Suppose
Oq = O2

No Match（False miss!）

MAT1 MAT2

Item Action data

{O1.index1=0x1, O1.seg2=0x1} O1.index2=0x1

{O2.index1=0x2, O2.seg2=0x1} O2.index2=0x2

MAT3

Item Action data

{O1.index2=0x1, O1.seg3=0x1} O1.index3=0x1

{O2.index2=0x2, O2.seg3=0x2} O2.index3=0x2

query
for Oq

Stage1 Stage2 Stage3

Item Action data

O1.seg1=0x1 O1.index1=0x1

O2.seg1=0x2 O2.index1=0x2

*Oq is the queried object. O1~O2 are the offloaded objects.
 O1 = 0x111, O2 = 0x212.

Distinguish O1.seg2 & O2.seg2
by O1.index1 & O2.index1

Oq.seg1

Match
{Oq.index1, Oq.seg2}

Match
{Oq.index2, Oq.seg3}

Match

Can’t distinguish O1.seg1 & O2.seg1

Fig. 9. Key insight for E-MAT: Use the index from the previous MAT as the additional item field.

MAT1 MAT2

Item Action data

{O1.index1=0x1, O1.seg2=0x1} O1.index2=0x1

{O2.index1=0x2, O2.seg2=0x2} O2.index2=0x2

MAT3

Item Action data

{O1.index2=0x1, O1.seg3=0x1} O1.index3=0x1

{O2.index2=0x2, O2.seg3=0x1} O2.index3=0x2

Oq.seg1=0x1
Match

{Oq.index1=0x1, Oq.seg2=0x2}
Match

{Oq.index2, Oq.seg3}
Match

query
for Oq

Stage1 Stage2 Stage3

*Oq is the queried object. O1~O2 are the offloaded objects.
 O1 = 0x111, O2 = 0x121.

Item Action data

O1.seg1=0x1 O1.index1=0x1

O2.seg1=0x1 O2.index1=0x2

Suppose
Oq = O2

No Match（False miss!）Can’t distinguish O1.seg1 & O2.seg1

Fig. 10. Directly introducing the index from the previous MAT as an additional item field leads to a false miss issue.

has a matching item in each MAT, it is determined to be a hit
query and the index from the last MAT will be used to index
the application data. It’s worth noting that though O1 and O2

have the same second segment (O1.seg2 = O2.seg2 = 0x1),
there is no false miss issue caused by duplicate items in
MAT2 because previous indexes O1.index1 and O2.index1

help distinguish O1.seg2 and O2.seg2 in MAT2. There is
also no false hit because the additional item field links the
segments of the same offloaded object one by one across
different MATs. As a result, a query can find a matching item
in each MAT only if it queries for an offloaded object. Second,
in the PISA structure of the programmable switch, a query
can easily collect indexes while passing through MATs in a
pipeline manner on the switch data plane, without imposing
additional overhead on the client.

Though the key insight behind the e-MAT structure is
straightforward, it’s still challenging to solve the false miss
issue caused by duplicate items in MAT1, because no index
from the previous MAT can be used to distinguish segments
in MAT1. For example, as shown in Figure 10, suppose O1

equals 0x111, O2 equals 0x121, and O1’s matching priority is
higher than O2. We can see that when the queried object Oq

equals O2, Oq.seg1 (0x1) will match O1.seg1 (0x1) in MAT1,
while {Oq.index1, Oq.seg2} ({0x1, 0x2}) won’t match any
item in MAT2, causing a false miss issue. It’s because no
index from the previous MAT can be used to distinguish
O1.seg1 and O2.seg1 in MAT1.

E-MAT Construction Mechanism. Distinguishing duplicate
items in MAT1 causes extra overhead on the client as
mentioned in Subsection III-A. However, is it the only way
to avoid the false miss issue? The answer is no. To avoid
the false miss issue caused by duplicate items, Hare builds
the e-MAT structure by merging duplicate items in each
MAT. For example, as shown in Figure 8, in MAT1 of the
e-MAT structure, we merge O1.seg1 and O2.seg1 because
both of them equal 0x1. It’s worth noting that merging

duplicate items (e.g., O1.seg1 and O2.seg1) in a MAT will
further trigger the merging of their corresponding indexes
(e.g., O1.index1 and O2.index1). Similarly, in MAT2, we
merge {O1.index1, O1.seg2} and {O2.index1, O2.seg2} be-
cause both of them equal {0x1, 0x1}. It’s important to merge
duplicate items in each MAT, not just in MAT1, because
merged items and their corresponding merged indexes may
cause duplicate items in the following MAT. By merging
duplicate items in each MAT, we can solve the false miss issue
because there are no duplicate items in each MAT. There is
also no false hit issue because Oq can pass through all hit-
checks only when Oq is identical to an offloaded object.

E-MAT Updating Mechanism. It’s not easy to fast and safely
update the e-MAT structure. We use the following two naive
solutions to show the difficulty: First, naively replacing the
offloaded object’s segments in the e-MAT structure with the
non-offloaded object’s segments is fast, but not safe. For ex-
ample, in Figure 8, if we replace O1 (0x111) with O4 (0x411)
by directly replacing O1.seg1 (0x1) with O4.seg1 (0x4), we
can find that O2 (0x112) is also replaced by an irrelevant non-
offloaded object (0x412). It’s because O1.seg1 and O2.seg1
merge, and they share the same item in MAT1. Second,
naively reconstructing the e-MAT structure is safe but not
fast. Specifically, reconstructing the e-MAT structure includes
the following steps: (1) Analyze the new set of items that
should exist in the e-MAT. (2) Delete all items in the e-
MAT. (3) Insert the new set of items to the e-MAT. Define
M as the number of MATs in the e-MAT structure and N
as the number of offloaded objects. This process involves
M × N item deletions and M × N item insertions for
the e-MAT, leading to 2 × M × N switch-OS-based plane
interactions. As we introduce in Subsection III-B, switch-OS-
based plane interactions are time-consuming, so reconstructing
the e-MAT structure cannot achieve fast replacement. Our
updating mechanism aims to reduce switch-OS-based plane
interactions while maintaining functional correctness. The key

IEEE/ACM TRANSACTIONS ON NETWORKING 8

TABLE I
SYMBOLS USED IN THE E-MAT UPDATING MECHANISM.

O new The non-offloaded object that needs offloading.
O old The offloaded object that needs replacing.
MATm The m-th MAT in the e-MAT structure.
I newm The item for O new in MATm.
I oldm The item for O old in MATm.

idea of our updating mechanism is to keep all merged items in
the e-MAT structure unchangeable while replacing the target
offloaded object. To provide a clear and concise description
of our updating mechanism, in the following content, we first
define the symbols used, as shown in Table I, and then provide
the details of the mechanism.

Our updating mechanism sequentially examines each MAT
to determine if its items need modification. Specifically, for
MATm, we categorize the situations into the following cases:

Case 1. I newm = I oldm. In this case, we don’t modify
any item in the MATm because deleting I oldm and inserting
I newm cancel each other.

Case 2. I newm ̸= I oldm. In this case, we delete I oldm
only if it isn’t shared by other offloaded objects; similarly, we
insert I newm only if it doesn’t exist in MATm.

We use the following examples to illustrate how the e-MAT
updating mechanism works.

Example 1. Suppose we want to replace O old (0x111) in
Figure 8 with O new (0x114), we can find that for MAT1,
there is I old1 = I new1 = 0x1, which fits Case 1, so we
don’t need to modify MAT1. Similarly, for MAT2, there is
I old2 = I new2 = {0x1, 0x1}, which also fits Case 1, so
we don’t need to modify MAT2. Finally, for MAT3, there are
I old3 = {0x1, 0x1} and I new3 = {0x1, 0x4}, which fits
Case 2. Since I old3 isn’t shared by other offloaded objects
and I new3 doesn’t already exist in MAT3, we can safely
delete I old3 from MAT3 and insert I new3 to MAT3.

Example 2. Suppose we want to replace O old (0x211)
in Figure 8 with O new (0x114), we can find that for
MAT1, there is I old1 (0x2) ̸= I new1 (0x1), which
fits Case 2. Since I old1 isn’t shared by other offloaded
objects but I new1 already exists in MAT1, we only need
to delete I old1 from MAT1. Similarly, for MAT2, there
is I old2 ({0x2, 0x1}) ̸= I new2 ({0x1, 0x1}), which fits
Case 2. Since I old2 isn’t shared by other offloaded ob-
jects but I new2 already exists in MAT2, we only need
to delete I old2 from MAT2. Finally, for MAT3, there are
I old3 = {0x2, 0x1} and I new3 = {0x1, 0x4}, which fits
Case 2. Since I old3 isn’t shared by other offloaded objects
and I new3 doesn’t already exist in MAT3, we can safely
delete I old3 from MAT3 and insert I new3 to MAT3.

Due to the fine-grained operations in different cases, our e-
MAT updating mechanism needs no more than 2×M switch-
OS-based plane interactions to update the e-MAT. Besides, it
keeps all merged items in the e-MAT structure unchangeable
while replacing the target offloaded object. This guarantees the
functional correctness of the e-MAT.

C. Switch-server Co-offloading Mechanism

To achieve fast and precise offloading, we propose a switch-
server co-offloading mechanism. The key idea of our mecha-
nism is to achieve precise offloading by using both the switch
data plane and backend servers to collect accurate statistics –
rather than relying solely on the switch data plane – and to
achieve fast offloading with the real-time min-heap, the hybrid
plane interactions, and the batch offloading optimization. In
this subsection, we first describe the offloading process, and
then present the technical details about how to achieve fast
and precise offloading.
Offloading Process. Figure 8 shows Hare’s hotspot offloading
process which can be divided into the following steps: Step 1,
the OO-Stat counts the frequency for each offloaded object.
In the meantime, the NOO-Stat counts the frequency for each
non-offloaded object. Step 2, the analyzer retrieves frequency
counts from the OO-Stat to identify a set Oswitch of K coldest
offloaded objects. Then, the analyzer retrieves K hottest non-
offloaded objects from each backend server, and from these
retrieved objects, the analyzer identifies a set Oserver con-
sisting of the overall K hottest non-offloaded objects. Step
3, the analyzer identifies a set Ohottest of K globally hottest
objects (whether offloaded or not) among Oswitch and Oserver,
and then decides the offloading policy. To be specific, objects
which belong to Oswitch but don’t belong to Ohottest should
be replaced by objects which belong to both Oserver and
Ohottest. Step 4, the analyzer modifies the object states in
the state managers for objects participating in the replacement.
Step 5, the analyzer notifies the M-modifier6 to modify the hit-
check e-MAT by APIs, while also notifying the D-modifier7

on each backend node to modify the application data. Step 6,
the analyzer refreshes the states of objects participating in the
offloading policy. Step 7, the analyzer clears the OO-Stat and
informs the NOO-Stat on each backend server to clear itself.
How to Enable Fast and Precise Offloading. While it’s
straightforward to achieve precise offloading by accurately
identifying the hottest non-offloaded objects and the coldest
offloaded objects with precise counters, the challenge is how
to speed up the offloading process. Specifically, the following
procedures may introduce significant time overhead:
Proc 1. The NOO-Stat on each backend server needs to
prepare a set of top-K hottest non-offloaded objects in Step
2. However, accurately identifying these objects by scanning
the frequency counts of all non-offloaded objects can be a
time-intensive process.
Proc 2. The analyzer on the switch control plane needs to re-
trieve all frequency counts from the OO-Stat on the switch data
plane in Step 3, leading to a high volume of plane interactions.
However, as discussed in Subsection III-B, switch-OS-based
plane interactions are inherently time-consuming.
Proc 3. Both the OO-Stat and NOO-Stat require substantial
time to get a large volume of statistics in Step 1. This
ensures the statistical data aligns closely with the workload
distribution, but it also results in a significant time cost.

6M-modifier is short for the hit-check e-MAT modifier.
7D-modifier is short for the application data modifier.

IEEE/ACM TRANSACTIONS ON NETWORKING 9

We address the impact of these procedures on overall
offloading latency using the following techniques:
Tech 1. Real-time Min-heap. We make the NOO-Stat in each
backend server maintain a real-time min-heap of the objects
with the top-K highest frequency counts while collecting
frequency counts in Step 1. Specifically, when a query comes
to the backend server, if the queried object isn’t in the min-
heap but the frequency count of the queried object is higher
than the frequency count of the object at the heap top, the
min-heap will delete the object at the heap top and insert
the queried object into the heap. In this way, after Step 1
is completed, the NOO-Stat can directly identify the top-K
hottest non-offloaded objects with the min-heap.
Tech 2.Hybrid Plane Interaction. We realize e-MAT mod-
ifications using switch-OS-based APIs while realizing other
plane interactions using network packets. To support network-
based plane interaction, the OO-Stat uses the register to realize
the precise counter, and the state manager also uses the register
to store the object state. Because the rate of network packets
can significantly exceed the rate of switch-OS-based plane
interactions by several orders of magnitude, operations such
as retrieving frequency counts from the OO-Stat, which are
achievable through network-based plane interactions, are no
longer time-consuming.
Tech 3. Custom Batch Offloading. As detailed in the para-
graph titled “Offloading process”, Hare’s offloading process
supports batch offloading, which allows offloading K hottest
objects in a single execution of the offloading process (Step
1 ∼ Step 7), instead of offloading one object at a time.
By offloading K hottest objects together with the statistics
collected once in Step 1, batch offloading reduces the average
time required to offload each object.

Equation 1 illustrates the average time (Tavg) required to
offload a single object when using the three techniques above.

Tavg =

∑7
step=1 Tstep

K
≈ T1 + T5

K
≈ Tstat + TMAT

K
(1)

As shown in Equation 1, among all steps in the offloading
process, Step 1 and Step 5 are the most time-consuming. In
Step 1, the time (Tstat) for both the OO-Stat and the NOO-stat
to collect statistics needs milliseconds to get a large number
of statistics so that the distribution of the statistics is similar
enough to the distribution of the workload. In Step 5, the time
(TMAT) spent on MAT modification is also significant because
the M-modifier realizes MAT modification with slow switch-
OS-based APIs, and the number of times for calling the APIs
is in proportion to K. As a result, increasing K can mainly
decrease the impact of Tstat on Tavg but hardly ease the
impact of TMAT . What’s more, a large K increases the average
time the NOO-Stat spends on collecting statistics (counting
frequency & updating the min-heap) for each query received,
because the time complex for NOO-Stat to update its min-
heap is O(logK). Since the query-processing function and
the NOO-Stat’s statistic-collecting function are sequentially
executed for each query received, a large K causes a large
interval between two invocations of the query processing
function, which decreases the backend server throughput. So,
when choosing the value of K, there is a balance between the

average time for offloading one object and the average time
the NOO-Stat takes to collect statistics.

D. Automatic Offloading Mechanism

To facilitate application development, Hare introduces a
programming framework that abstracts the complexities of dy-
namic hotspot offloading. In this subsection, we first introduce
the challenge in framework design. Next, we present the key
idea behind the design. Finally, we describe the user interfaces
and the executable file auto-generation mechanism.
Challenge. It’s challenging to abstract a framework for hotspot
offloading that can flexibly accommodate various applications,
as the hotspot offloading logic is highly intertwined with
user-defined application-related query processing logic. For in-
stance, to avoid data inconsistency, the application data should
be appropriately transferred between the backend servers and
the switch data plane in Step 5 of Hare’s hotspot offloading
process. However, the structure (e.g., map or queue) of the
application data is closely tied to the specific application. As
a result, transferring the application data uniformly across dif-
ferent applications may cause incorrect application behavior.
Key Idea. The key idea of the programming framework is
to hide the implementation of application-unrelated functions
from users, while providing users with only application-related
programming interfaces. In this way, the framework can
reduce development difficulty while maintaining application
flexibility. Figure 8 illustrates how to integrate a user-defined
application into Hare’s dynamic hotspot offloading process
with the programming framework. With Hare, the user needs
to complete the following tasks: First, write code related to
application-specific query processing and data movement in
the P4 file for the switch data plane. Second, write code
related to application-specific query processing and data move-
ment in the DPDK file for the backend server. Third, run a
Python tool, which takes the user’s codes and configuration
parameters (e.g., the number of objects offloaded) as input, to
generate complete code files and executable files. Finally, run
executable files on appropriate devices to launch the system.
User Interfaces for Backend Server. We first introduce the
components on the backend server and then describe the
user interfaces with an example. As shown in Figure 11,
the components on the backend server include the query
processor, the NOO-Stat, the D-modifier, the state manager,
and the system function scheduler. The NOO-Stat further
consists of counters, heap(s), and an integrator, which are
distributed across different threads – the thread running the
query processor (called App thread) is equipped with counters
and a K-sized min-heap for queried objects; the thread running
the system function scheduler (called Sys thread) is equipped
with an integrator, which is used to find the K hottest objects
from all heaps of the backend server when there is more
than one App thread. The system function scheduler manages
when and which component of the Sys thread should run
according to the hotspot offloading process mentioned in
Subsection IV-C. Among the components above, only the
query processor and the D-modifier remain user-defined. The
former is for flexible application-related query processing,

IEEE/ACM TRANSACTIONS ON NETWORKING 10

Backend server (DPDK)

Query processor
(with App data)

NOO-Stat (counter & heap)

App threads

Sys thread

Switch data plane (P4)

Query parser DM-parser OO-Stat parser
& State parser

OO-Stat & State manager

Query-hit processor
(with App data)

ssor
 data

DM-proce
(with App)

E-MAT

Deparser

Parse

Deparse

Pipe

...

D-modifier

NOO-Stat
(Integrator)

State manager

System function scheduler

void User::datamv_server2switch(
/* The hit index of an offloaded object on the switch
data plane that need to be replaced */
 target_hit_index,
/* The non-offloaded object on this server that need to
replace the offloaded object */
 target_obj_onBS
){
 /* Generate control packets for data movement */
 key = target_obj_onBS;
 control_info.hit_index_4_datamv = target_hit_index;
 control_info.value = get_value(key);
 /* Deparse and send control packet */
 control_packet = deparse(control_info);
 User::send(control_packet);
}
void User::datamv_switch2server(
/* An offloaded object on the switch data plane that
need to be replaced */
 target_obj_onSDP,
/* The hit index of the offloaded object */
 target_hit_index
){;}

void User::process_query(){
 /* Receive and parse query */
 query = User::receive();
 query_info = parse(query);
 /* Process query */
 response_info.key = query_info.key;
 response_info.value = get_value(
 query_info.key);
 /* Deparse and send response */
 response = deparse(response_info);
 User::send(response);
 /* Update statistics */
 User::update_statistics(query_info.obj);
}

 state parse_query{
 pkt.extract(hdr.obj);
 transition accept;
 }

P.S.
1. “hdr” represents a structure used to store fields extracted from a packet; “meta” represents a structure used to store additional information generated during packet processing.
2. To maintain clarity and conciseness, the figure excludes the forwarding logic for the response packets from the backend server, the control packets for communicating between
the switch control plane and the backend server, and the network packets unrelated to Hare.

 state parse_datamv{
 pkt.extract(hdr.hit_index_4_datamv);
 pkt.extract(hdr.value);
 transition accept;
 }

 define_appdata{
 /* Application data registers and actions */
 /* N is the number of offloaded objects */
 Register(N) value_array;
 RegisterAction(value_array) get_value = {...}
 RegisterAction(value_array) put_value = {...}
 }

 apply_queryhit{
 /* Process queries */
 hdr.value = get_value.execute(
 meta.hit_index_4_query);
 }

 apply_datamv{
 /* Move APP data */
 put_value.execute(hdr.hit_index_4_datamv);
 }

Query from client

Query to server

Control packet from backend
server for data movement

Control packet from
switch control plane
for state management
and statistics retrieval

Control packet to switch
control plane

Control packet to backend
server for data movement

Query from client Response to client
Control packet for
data movement

Control packet for
communicating with
switch control plane

P.S. Both datamv_server2switch and datamv_switch2server are invoked multiple times during Step 5 of Hare's offloading process. Each invocation uses
different arguments. This is done to transfer all relevant application data between this backend server and the switch data plane.

Response to
client

Miss Hit

Fig. 11. User Interfaces. Components with dashed boxes are defined by user, while the others are defined by the framework.

while the latter is to facilitate appropriate application data
movement. We keep other components hidden from users
since they are application-unrelated and can be automatically
handled by the framework.

We take the read-only KVS system as an example, as shown
in Figure 11. The bold code in dashed boxes is provided by the
framework and the non-bold code in dashed boxes is provided
by the user. We can see that the user is required to implement
three application-related member functions (process query,
datamv server2switch, and datamv switch2server) of the
User class. When implementing the functions above, the user
can also utilize other built-in member functions (e.g., send,
receive, update statistic) of the User class. Specifically,
to implement a read-only KVS system, in process query
function, first, the user receives and parses the query to get
the queried key. After that, the user finds the corresponding
value of the queried key, constructs the response packet, and
sends the packet to the client. Finally, the user updates the
NOO-Stats with the queried key. In datamv server2switch
function, the user constructs and sends the control packet for
application data movement to the switch data plane. Each
control packet contains the hit index of an offloaded key
that should be replaced (control info.hit index 4 datamv)
and the value of a non-offloaded key that should be of-
floaded to the switch data plane (control info.value). In

datamv switch2server function, because the switch in a
read-only KVS system doesn’t have dirty data, there is no need
for programming. If other systems, like lock manager systems,
require application data movement from the switch data plane
to the backend servers, the user can send and receive control
packets in this function to retrieve application data from the
switch data plane.
User Interfaces for Switch Data Plane. We first introduce
the components on the switch data plane and then describe
the user interfaces with an example. As shown in Figure 11,
the components on the switch data plane include parsers,
the e-MAT structure, the OO-Stat, the state manager, packet
processors, and the deparser. Among them, parsers can be
further divided into four types: the query parser, the DM-
parser8, the OO-Stat parser, and the state parser; similarly,
packet processors can be divided into two types: the query-
hit processor and the DM-processor9. To reduce development
difficulty, we keep the OO-Stat parser, the state parser, the E-
MAT, the OO-Stat, the state manager, and the deparser hidden

8DM-parser is short for the parser used to parse the control packet for
application data movement. Similarly, the OO-Stat parser is short for the
parser used to parse the control packet for fetching and cleaning statistics;
the state parser is short for the parser used to parse the control packet for
state management.

9DM-processor is short for the processor used to process the control packet
for application data movement.

IEEE/ACM TRANSACTIONS ON NETWORKING 11

from users. These components are application-unrelated and
can be automatically handled by the framework. The query
parser and the query-hit processor remain user-defined to
enable flexible application-related query processing; the DM-
parser and the DM-processor are user-defined as well to
facilitate appropriate application data movement.

We take the read-only KVS system as an example, as shown
in Figure 11. The bold code in dashed boxes is provided
by the framework and the non-bold code in dashed boxes is
provided by the user. We can see that the user is required to im-
plement five application-related code regions: parse query,
define appdata, apply queryhit, parse datamv, and ap-
ply datamv. The former three are used for query processing,
while the latter two are used for application data movement.
To enable query processing, the user first extracts an object
from the appropriate position of the query packet in the
parse query region. Next, the user defines the register array
(e.g., value array) and the related register actions (e.g.,
get value and put value) to support the operations on values
for the KVS system in the define appdata region. Finally, the
user processes the hit query with the register array, the related
register actions, and the hit index in the apply queryhit
region. Similarly, to enable application data movement, the
user first extracts the hit index and the value from the control
packet, which originates from the backend server for data
movement, within the parse datamv region. Then, in the
apply datamv region, the user puts the value into the correct
position of the register array based on the extracted hit index.

The framework automatically drops queries for objects
participating in replacement to maintain functional correctness.
The states of objects participating in replacement are special,
and queries for objects with special states will be dropped by
the framework instead of being exposed to the user. The state
modification is managed by the analyzer in Step 4 and Step 6
of the switch-server co-offloading mechanism.
Executable File Auto-generation Mechanism. A Python tool
is designed to auto-generate the complete compilable code
files based on the user’s code files and the user’s configu-
ration parameters (e.g., the number of offloaded objects). The
code file for the switch control plane is unrelated to query
processing so it’s purely generated by the Python tool without
any user’s code file. After generating compilable code files,
the Python tool calls corresponding compilers for different
code files to generate the executable files. Additionally, for the
backend server, hotspot-offloading-related components can be
provided via a library, enabling the user to integrate Hare’s
hotspot offloading logic into existing DPDK frameworks.

V. EVALUATION

A. Experimental Setup
Testbed. Our testbed consists of one 3.2Tbps Barefoot Tofino
switch and eight server machines. Each server machine is
equipped with two 12-core CPUs (Intel(R) Xeon(R) Silver
4214 CPU @ 2.20GHz), 256 GB total memory (eight Samsung
32GB DDR4-2666 memory), and a 100G NIC (Mellanox
Technologies MT27800 Family [ConnectX-5]). Six servers are
used as clients to generate queries and two servers are used as
backend nodes to respond to queries for non-offloaded objects.

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10

M
ax

 o
bj

ec
t s

iz
e

(k
B

)

Stages

Hare
DySO
NetCache

(a) Maximum hotspot size
vs. stages occupied.

0
32
64
96

128
160
192
224

16 48 80 112 144

N
um

be
r o

f o
bj

ec
ts

 (k
)

 Key (value) size (B)

Hare
DySO
NetCache

(b) Number of hotspots
vs. key (value) size.

Fig. 12. Flexibility in hotspot size.

Applications.We cover both read-intensive and write-intensive
applications for Hare [45]. As we introduce in Section I, Net-
Cache is designed for the read-intensive KVS system, DySO
is designed for read-only systems, and Hare is designed as
a systematic framework for general systems. The intersection
of the systems all three designs support is the read-only KVS
system, so we compare Hare with NetCache and DySO within
this context. By default, for Hare, we set Twait = 50ms,
K = 800 to gain the best system performance. For NetCache,
we set the threshold for hotspot report to 384, sample 128
frequency counts from the switch data plane to find the coldest
offloaded objects, and clean statistics every 1s. For Hare, we
use 1Mpps control packets to fetch records from the switch
data plane to the switch control plane and half frequency
counts every 1s. We also implement a lock manager system
with Hare to show Hare suits write-intensive applications as
well. Our implementation is similar to NetLock [18]. NetLock
implements variable-length query-waiting queues for offloaded
locks but only supports static hotspot offloading in the initial
phase. We implement queues with a fixed size of 8 to simplify
the movement of application data.
Workloads. For both applications, we use skewed workloads
that follow Zipf distribution with skewness parameter α =
0.99, which are typical for data center scenarios [17], [42],
[46] and are evidenced by real-world deployments [27], [47].

B. Effect of Individual Optimization

Flexibility in Hotspot Size. Figure 12a compares the maxi-
mum object size that Hare, DySO, and NetCache can support
with a certain number of stages on the switch data plane.
We observe that Hare enables large maximum object size
compared with DySO and NetCache. Specifically, when 10
stages are used to store offloaded objects, Hare supports 8.86×
larger object size than DySO and 9.97× larger than NetCache,
because Hare’s e-MAT structure allows each stage to store
and perform hit-checks for maximally 128B object segments,
while DySO allows for maximally 16B object segments for
each stage. There is no intuitive approach for NetCache to
extend the maximum object size as described in Section III.

We also validate that Hare doesn’t sacrifice the number of
offloaded objects. We test the maximum number of objects
(keys) that can be offloaded under different object (key) sizes
and application data (value) sizes, as shown in Figure 12b.
We observe that Hare always supports the largest number
of offloaded objects. Specifically, Hare supports 1× ∼ 2×

IEEE/ACM TRANSACTIONS ON NETWORKING 12

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15 17 19 21

Sw
itc

h
hi

t r
at

e

Time (s)

Hare
DySO
NetCache

(a) Switch hit rate vs. time.

0.65

0.67

0.69

0.71

0.73

0.75

0.77

1 2 3 4 5 6 7

Sw
itc

h
hi

t r
at

e

Time (s)

Hare (K=1600)
Hare (K=800)
Hare (K=400)

(b) The impact of K in switch hit rate.

0

5

10

15

20

25

0

0.5

1

1.5

2

400 800 1200 1600

Th
ro

ug
hp

ut
 (M

qp
s)

Ti
m

e
(u

s)

K

TNOO-Stat
Server throughput
TNOO-Stat

(c) The impact of K in server throughput.

Fig. 13. Switch hit rate recovery capability.

more objects than DySO and 1× ∼ 1.5× more objects than
NetCache when the object size and the application data size
range from 16B to 80B. It’s because compared with NetCache,
Hare moves the NOO-Stat from the switch data plane to the
backend servers, while the NOO-Stat in NetCache occupies
registers in two stages of the switch data plane. Compared
with DySO which uses the register-based r-MAT structure to
store objects, Hare benefits from using the MAT-based e-MAT
structure to store objects, as the MAT space is nearly 1.8×
larger than the register space in one stage.

Switch Hit Rate Recovery Capability. We validate that Hare
offloads hotspots fast and precisely, in terms of recovery curves
of the switch hit rate. We test Hare, DySO, and NetCache with
80B keys and 80B values, because three systems offload the
same number of hotspots (32k) to the switch data plane under
this configuration. All systems start with zero offloaded objects
and warm for 100s to achieve a stable switch hit rate. Then we
switch 32k coldest objects to the top of the popularity ranks
to test the recovery capability of the three systems. Figure 13a
illustrates how the switch hit rate changes over time. We make
the following observations. First, Hare achieves the highest
recovered switch hit rate. Specifically, its recovered switch hit
rate outperforms NetCache by 9% and outperforms DySO by
17%. It’s because NetCache utilizes space-saving algorithms
(Count-Min sketch and Bloom filter) on the switch data plane
to report hotspots. However, this approach loses precision in
finding the most popular 32k objects. DySO’s recovered switch
hit rate is limited by the number of columns of its r-MAT
structure. When only one column is feasible for large hotspots,
severe hash collisions restrict DySO’s recovered switch hit
rate. In contrast, Hare counts the frequency for all objects
precisely and offloads objects without severe hash collision, so
Hare can reach the highest recovered switch hit rate. Second,
Hare requires less time to achieve the same switch hit rate
than NetCache. Specifically, to reach NetCache’s recovered
switch hit, Hare needs 10% of the total times required by
NetCache, because NetCache wastes time on switch-OS-based
plane interactions while Hare realizes most plane interactions
with efficient network packets and uses the custom batching
offloading method to reduce the average time cost. Notably,
DySO sacrifices its final recovered switch hit rate to achieve
the fastest offloading with its register-based r-MAT structure.

We also test the impact of batch size (K) on Hare’s switch
hit rate as shown in Figure 13b. We observe that a large K
tends to reduce the switch hit rate recovery time, and the reduc-
tion becomes marginal as K continues to increase. It’s because

TABLE II
LOC COMPARISON (K).

KVS Lock manager
NetCache DySO Hare NetLock Hare

Backend server 1.3 1.2 0.2 1.9 0.7
Switch control plane 1.7 2.2 0 0.7 0

Switch data plane 1.2 1.1 0.2 2.7 2.0
Total 4.2 4.5 0.4 5.3 2.7

when K increases, the time bottleneck for hotspot offloading
changes from collecting statistics (Step 1) to modifying MATs
(Step 5), while the latter hardly benefits from a large K as we
analyze in Section IV-C. What’s more, we evaluate the impact
of batch size on the backend server throughput as shown in
Figure 13c. We make the following observations. First, when
K increases, the average time (TNOO−Stat) increases, which
is required by the NOO-Stat to collect statistics (counting
frequency & updating the min heap) from each received query
that triggers min heap updating. It’s because the time com-
plexity for the NOO-Stat to update its min heap is O(logK).
Second, the backend server throughput decreases when K
increases, because each received query triggers a sequential
execution of query-processing and statistic-collecting. A large
K causes a large interval between two query processing, which
lowers the backend server throughput.
High Programmability. Table II illustrates the lines of user-
written code (LoC) of Hare with the existing arts of the read-
only KVS system and the lock manager system. We observe
that Hare consistently requires the fewest LoCs. It’s because
for both the backend server and the switch data plane, Hare
abstracts hotspot offloading functions and basic networking
tasks (e.g., sending, receiving, and header processing). More-
over, with Hare, the switch control plane requires no LoC, as
its application-unrelated functions are entirely auto-generated.

C. End-to-end Performance

For the KVS application, we test the system throughput
and the P99 query response latency of Hare, DySO, and
NetCache with 80B keys and 80B values. For the lock
manager application, we test the system throughput and the
P99 query response latency of Hare and NetLock. All systems
are allowed to offload up to 32k objects to the switch data
plane. Before workload changes, all systems start with zero
offloaded objects and warm for 100s to achieve stable system
throughput and P99 query response latency. For each system,
we fine-tune the client query rate to a specific value, ensuring
that before workload changes, the stable P99 query response

IEEE/ACM TRANSACTIONS ON NETWORKING 13

40

50

60

70

80

90

100

1 3 5 7 9 111315171921

Sy
st

em
 t

hr
ou

gh
pu

t (
M

qp
s)

Time (s)

Hare
DySO
NetCache

(a) System throughput vs. time.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 3 5 7 9 11 13 15 17 19 21

 P
99

 re
sp

on
se

 la
te

nc
y

(m
s)

Time (s)

Hare
DySO
NetCache

(b) P99 response latency vs. time.

Fig. 14. The performance of the KVS systems.

latency remains within a predetermined upper bound and the
system throughput is maximized. Then we make the workload
change by moving 32k coldest objects to the top of the
popularity ranks to test the recovery capability of the systems.
KVS. Figure 14 shows the recovery curves of the system
throughput and the P99 query response latency when the stable
P99 query response latency ≤ 200us. Similar conclusions hold
for other latency constraints (e.g., 400us and 800us). We make
the following observations. First, Hare achieves the highest re-
covered system throughput. Specifically, Hare achieves 1.27×
higher recovered system throughput than that of NetCache and
1.48× higher than that of DySO. It’s because Hare achieves
the highest recovered switch hit rate as shown in Figure 13a.
A high switch hit rate can relieve the query-dropping issue
that happens on backend servers and reduce the P99 query
response latency, which enables Hare to achieve high system
throughput under given latency constraints. Second, compared
to NetCache, Hare requires less time to recover the system
throughput and the P99 query response latency to a stable
value. Specifically, Hare needs around 40% of the total time
of NetCache to recover the system throughput and the P99
query response latency. It’s because the recovery time mainly
depends on the switch hit rate recovery time, and Hare needs
around 40% of the total time required by NetCache to recover
the switch hit rate to a stable value.
Lock Manager. Figure 15 shows the recovery curves of the
system throughput and the P99 query response latency when
the stable P99 query response latency ≤ 200us. We observe
that Hare achieves 6.61× higher throughput than NetLock and
can fast recover the system throughput and the P99 response
latency within 8s. It’s because Hare supports fast and precisely
dynamic hotspot offloading, whereas NetLock only supports
static hotspot offloading during the initial phase. As a result,
when facing dynamic workloads, the system performance of
NetLock decreases to the level where there is no offloading.

In a word, Hare achieves the highest system throughput with
a given P99 query response latency when the switch hit rate
stabilizes. It can also fast recover the system throughput and
the P99 query response latency when the workload changes.
Because of these two traits, Hare can help latency-intensive
applications retain users and increase profits.

VI. RELATED WORK

To our knowledge, this is the first paper to propose a
systematic framework that provides efficient and generally
automatic hotspot offloading on programmable switches. We
describe other related works in the following aspects:

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21

Sy
st

em
 t

hr
ou

gh
pu

t (
M

qp
s)

Time (s)

Hare
NetLock

(a) System throughput vs. time.

0

0.1

0.2

0.3

0.4

1 3 5 7 9 11 13 15 17 19 21

 P
99

 re
sp

on
se

 la
te

nc
y

(m
s)

Time (s)

Hare
NetLock

Workload
changes

(b) P99 response latency vs. time.

Fig. 15. The performance of the lock manager systems.

Applications Benefiting from Hotspot Offloading. In addi-
tion to the KVS and the lock manager, there are other applica-
tions that have the potential to benefit from hotspot offloading,
such as network address translation (NAT) boxes [48], online
transaction processing (OLTP) [19], L4 load balancers [49],
and content delivery networks (CDNs) [50]–[52]. All of these
applications share the common characteristic of experiencing
frequent workload changes in their environments.
Switch-based Hotspot Offloading Mechanisms. Besides
NetCache [17] and DySO [20], there are still other works
about switch-based hotspot offloading, while each of them has
its own limitation. Specifically, NetLock [18] and P4DB [19]
only support static hotspot offloading in the initial phase;
PFCA [53]’s dynamic hotspot offloading process is only
simulation-viable [54], [55]; NetHCF [56] dynamically of-
floads hotspots in a manner highly similar to NetCache,
which wastes time on slow switch-OS-based plane interac-
tions. What’s more, all the above works are tailored to specific
applications. On the contrary, Hare offloads hotspots not only
dynamically but also fast and precisely. Besides, it further sup-
ports high flexibility in hotspot sizes and provides a systematic
framework for generally automatic hotspot offloading.
Fast Plane Interaction. Existing works [20], [57]–[61] realize
that the heavy intervention of the switch-OS for plane inter-
actions causes additional overhead and should be avoided or
optimized, however, only a small number of works make an
effort on it. Specifically, DySO [20] achieves fast plane inter-
actions by network packets; IMap [58] and Symposium [59]
double MAT/register-based modules on the switch data plane
to overlap heterogeneous operations like reading and writing
while these operations are still based on switch-OS-based
APIs; Mantis [61] modifies the existing switch-OS drivers and
control plane interfaces. These optimization methods either
cause heavy resource occupation on the switch data plane or
introduce driver-level intrusion which may result in system in-
stability. In contrast, Hare relies on both the switch-OS-based
APIs and network packets to achieve fast plane interactions,
easing resource occupation and avoiding OS intrusion.
Automatic Tools for Application Offloading. There are
other automatic tools for application offloading on smart
network devices. [62]–[66] provides tools to automatically
generate high-performance codes for network function ac-
celerators (e.g., FPGAs, P4 programmable switches) from
existing unaccelerated code through code analysis and per-
formance profiling. [67] and [68] provide function correctness
validation for applications on the switch data plane. These

IEEE/ACM TRANSACTIONS ON NETWORKING 14

aforementioned automatic tools primarily focus on application
migration, performance monitoring, and performance analysis
for individual devices. In contrast, Hare is a programming
framework designed to hide complex interactions between the
switch and the backend servers when users develop systems
that require dynamic hotspot offloading.

VII. CONCLUSION

Hare is the first systematic framework for efficient and gen-
erally automatic hotspot offloading on programmable switches.
It has high flexibility in hotspot size, offloads hotspots fast and
precisely, and provides an offloading-invisible development
process. We compare Hare with NetCache and DySO in a
read-only KVS system, and with NetLock in a lock manager
system. The experimental results demonstrate that our design
supports the largest hotspot size, requires the fewest LoCs,
and rapidly achieves the highest switch hit rate and the highest
system throughput with narrow peaks in P99 query response
latency when workloads change. [69], [70] are used in Appendix
(Supplementary Material).

ACKNOWLEDGMENTS

The work is supported by the following grants: the National
Key R&D Program of China (Grant No. 2022ZD0119301),
and the National Natural Science Foundation of China under
the grant number (62472384, U24A20326). Zeke Wang is the
corresponding author.

REFERENCES

[1] M. E. Haque, Y. h. Eom, Y. He, S. Elnikety, R. Bianchini, and
K. S. McKinley, “Few-to-many: Incremental parallelism for reducing
tail latency in interactive services,” SIGARCH Comput. Archit. News,
2015.

[2] J. Hamilton. (2009) The cost of latency. http://perspectives.mvdirona.
com/2009/10/31/-TheCostOfLatency.aspx.

[3] E. Schurman and J. Brutlag, “The user and business impact of server
delays, additional bytes, and http chunking in web search,” in Velocity,
2009.

[4] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, 2013.
[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in SOSP, 2007.

[6] Y. He, S. Elnikety, J. Larus, and C. Yan, “Zeta: Scheduling interactive
services with partial execution,” in SoCC, 2012.

[7] J. Yi, F. Maghoul, and J. Pedersen, “Deciphering mobile search patterns:
A study of yahoo! mobile search queries,” in WWW, 2008.

[8] Z. Wang, H. Li, L. Sun, T. Rosenkrantz, H. Che, and H. Jiang,
“Tailguard: Tail latency slo guaranteed task scheduling for data-intensive
user-facing applications,” in ICDCS, 2023.

[9] Storage: How Tail Latency Impacts Customer-Facing Applications.
https://www.computerweekly.com/opinion/Storage-How-tail-latency-i

mpacts-customer-facing-applications.
[10] AWS. (2019) Annual report. https://s2.q4cdn.com/299287126/files/doc

financials/2020/ar/2019-Annual-Report.pdf.
[11] R. Han, J. Wang, S. Huang, C. Shao, S. Zhan, J. Zhan, and J. L. Vazquez-

Poletti, “Pcs: Predictive component-level scheduling for reducing tail
latency in cloud online services,” in ICPP, 2015.

[12] G. Zhang, K. Ren, J.-S. Ahn, and S. Ben-Romdhane, “Grit: Consistent
distributed transactions across polyglot microservices with multiple
databases,” in ICDE, 2019.

[13] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and C. De-
limitrou, “Seer: Leveraging big data to navigate the complexity of
performance debugging in cloud microservices,” in ASPLOS, 2019.

[14] S. Chen, S. GalOn, C. Delimitrou, S. Manne, and J. F. Martı́nez,
“Workload characterization of interactive cloud services on big and small
server platforms,” in IISWC, 2017.

[15] S. Chen, Y. Jiang, C. Delimitrou, and J. F. Martı́nez, “Pimcloud: Qos-
aware resource management of latency-critical applications in clouds
with processing-in-memory,” in HPCA, 2022.

[16] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis, “Shinjuku: Preemptive scheduling for second-scale tail
latency,” in NSDI, 2019.

[17] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
SOSP, 2017.

[18] Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and X. Jin, “Netlock:
Fast, centralized lock management using programmable switches,” in
SIGCOMM, 2020.

[19] M. Jasny, L. Thostrup, T. Ziegler, and C. Binnig, “P4db - the case for
in-network oltp,” in SIGMOD, 2022.

[20] C. H. Song, X. Z. Khooi, D. M. Divakaran, and M. C. Chan, “Revisiting
application offloads on programmable switches,” in IFIP Networking,
2022.

[21] Z. István, G. Alonso, M. Blott, and K. Vissers, “A flexible hash table
design for 10gbps key-value stores on fpgas,” in FPL, 2013.

[22] J. Liu, A. Dragojević, S. Fleming, A. Katsarakis, D. Korolija,
I. Zablotchi, H.-C. Ng, A. Kalia, and M. Castro, “Honeycomb: Ordered
key-value store acceleration on an fpga-based smartnic,” IEEE Transac-
tions on Computers, 2024.

[23] A. Conway, A. Gupta, V. Chidambaran, M. Farach-Colton, R. Spillane,
A. Tai, and R. Johnson, “Splinterdb: Closing the bandwidth gap for
nvme key-value stores,” in ATC, 2020.

[24] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial
of service attacks: Characterization and implications for cdns and web
sites,” in WWW, 2002.

[25] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A. Freedman, K. Bir-
man, and R. van Renesse, “Characterizing load imbalance in real-world
networked caches,” in HotNets, 2014.

[26] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in MMCS, 2012.

[27] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in SoCC, 2010.

[28] J. Zhang, S. Cheng, Z. Xue, J. Deng, C. Fu, W. Zhou, S. Wang, C. Chen,
and F. Li, “Esdb: Processing extremely skewed workloads in real-time,”
in SIGMOD, 2022.

[29] J. Chen, L. Chen, S. Wang, G. Zhu, Y. Sun, H. Liu, and F. Li, “HotRing:
A Hotspot-Aware In-Memory Key-Value store,” in FAST, 2020.

[30] “Intel (r) programmable ethernet switch products,” https:
//www.intel.com/content/www/us/en/products/network-io/programm
able-ethernet-switch.html, 2021.

[31] “Cavium-xpliant (r) family of programmable ethernet switches,” https:
//www.openswitch.net/cavium/, 2021.

[32] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” in SIGCOMM,
2007.

[33] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, 2015.

[34] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for sdn,” in SIGCOMM,
2013.

[35] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., 2014.

[36] Y. Zhan, Y. Jiao, D. E. Porter, A. Conway, E. Knorr, M. Farach-Colton,
M. A. Bender, J. Yuan, W. Jannen, and R. Johnson, “Efficient directory
mutations in a full-path-indexed file system,” ACM Trans. Storage, 2018.

[37] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in MSST, 2010.

[38] Apache. (2023) Iotdb user guide. https://iotdb.apache.org/zh/UserGuid
e/latest/Basic-Concept/Data-Model-and-Terminology.html.

[39] K. Mohamed and D. Wijesekera, “A lightweight framework for web
services implementations on mobile devices,” in MobiSys, 2012.

[40] Y. Chow, W. Zhu, C.-L. Wang, and F. Lau, “State-on-demand execution
for adaptive component-based mobile agent systems,” in ICPADS, 2004.

[41] NoviFlow. (2017) Noviflow noviswitch. http://noviflow.com/products/n
oviswitch/.

[42] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman,
“Be fast, cheap and in control with switchkv,” in NSDI, 2016.

[43] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms, 2005.

http://perspectives.mvdirona.com/2009/10/31/- TheCostOfLatency.aspx
http://perspectives.mvdirona.com/2009/10/31/- TheCostOfLatency.aspx
https://www.computerweekly.com/opinion/Storage-How-tail-latency-impacts-customer-facing-applications
https://www.computerweekly.com/opinion/Storage-How-tail-latency-impacts-customer-facing-applications
https://s2.q4cdn.com/299287126/files/doc_financials/2020/ar/2019-Annual-Report.pdf
https://s2.q4cdn.com/299287126/files/doc_financials/2020/ar/2019-Annual-Report.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.openswitch.net/cavium/
https://www.openswitch.net/cavium/
https://iotdb.apache.org/zh/UserGuide/latest/Basic-Concept/Data-Model-and-Terminology.html
https://iotdb.apache.org/zh/UserGuide/latest/Basic-Concept/Data-Model-and-Terminology.html
http://noviflow.com/products/noviswitch/
http://noviflow.com/products/noviswitch/

IEEE/ACM TRANSACTIONS ON NETWORKING 15

[44] A. Z. Broder and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” Internet Mathematics, 2004.

[45] Hare. [Online]. Available: https://github.com/LaceFern/Hare.git
[46] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ramchan-

dran, “EC-Cache: Load-Balanced, Low-Latency cluster caching with
online erasure coding,” in OSDI, 2016.

[47] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in SIGMETRICS,
2012.

[48] D. Kim, Y. Zhu, Z. Liu, C. Kim, J. Lee, V. Sekar, and S. Seshan, “Tea:
Enabling state-intensive network functions on programmable switches,”
in SIGCOMM, 2020.

[49] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen, L. Wan,
L. Liu, Z. Ding, X. Geng, T. Feng, F. Ning, K. Chen, and C. Guo,
“Tiara: A scalable and efficient hardware acceleration architecture for
stateful layer-4 load balancing,” in NSDI, 2022.

[50] C. Wernecke, H. Parzyjegla, G. Mühl, E. Schweissguth, and D. Tim-
mermann, “Flexible notification forwarding for content-based pub-
lish/subscribe using p4,” in NFV-SDN, 2019.

[51] C. Wernecke, H. Parzyjegla, G. Mühl, P. Danielis, and D. Timmermann,
“Realizing content-based publish/subscribe with p4,” in NFV-SDN, 2018.

[52] T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, and R. Soulé, “Packet
subscriptions for programmable asics,” in HotNets, 2018.

[53] G. Grigoryan, Y. Liu, and M. Kwon, “Pfca: A programmable fib caching
architecture,” IEEE/ACM Transactions on Networking, 2020.

[54] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in SOSR,
2017.

[55] R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Efficient
measurement on programmable switches using probabilistic recircula-
tion,” in ICNP, 2018.

[56] M. Zhang, G. Li, X. Kong, C. Liu, M. Xu, G. Gu, and J. Wu,
“Nethcf: Filtering spoofed ip traffic with programmable switches,” IEEE
Transactions on Dependable and Secure Computing, 2023.

[57] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey
on p4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE Access, 2021.

[58] G. Li, M. Zhang, C. Guo, H. Bao, M. Xu, and H. Hu, “Switches are
scanners too! a fast and scalable in-network scanner with programmable
switches,” in HotNets, 2021.

[59] H. Namkung, D. Kim, Z. Liu, V. SekaR, and P. Steenkiste, “Telemetry
retrieval inaccuracy in programmable switches: Analysis and recommen-
dations,” in SOSR, 2021.

[60] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste, “SketchLib:
Enabling efficient sketch-based monitoring on programmable switches,”
in NSDI, 2022.

[61] L. Yu, J. Sonchack, and V. Liu, “Mantis: Reactive programmable
switches,” in SIGCOMM, 2020.

[62] M. Bonola, G. Belocchi, A. Tulumello, M. S. Brunella, G. Siracusano,
G. Bianchi, and R. Bifulco, “Faster software packet processing on FPGA
NICs with eBPF program warping,” in ATC, 2022.

[63] Y. Qiu, J. Xing, K.-F. Hsu, Q. Kang, M. Liu, S. Narayana, and A. Chen,
“Automated smartnic offloading insights for network functions,” in
SOSP, 2021.

[64] X. Chen, H. Liu, D. Zhang, Z. Meng, Q. Huang, H. Zhou, C. Wu,
X. Liu, and Q. Yang, “Automatic performance-optimal offloading of
network functions on programmable switches,” IEEE Transactions on
Cloud Computing, 2022.

[65] D. Moro, G. Verticale, and A. Capone, “Network function decomposition
and offloading on heterogeneous networks with programmable data
planes,” IEEE Open Journal of the Communications Society, 2021.

[66] F. Pereira, G. Matos, H. Sadok, D. Kim, R. Martins, J. Sherry, F. M. V.
Ramos, and L. Pedrosa, “Automatic generation of network function
accelerators using component-based synthesis,” in SOSR, 2022.

[67] Q. Kang, J. Xing, Y. Qiu, and A. Chen, “Probabilistic profiling of stateful
data planes for adversarial testing,” in ASPLOS, 2021.

[68] M. D. Wong, A. K. Varma, and A. Sivaraman, “Testing compilers
for programmable switches through switch hardware simulation,” in
CoNEXT, 2020.

[69] J. Yang, Y. Yue, and K. V. Rashmi, “A large scale analysis of hundreds
of in-memory cache clusters at twitter,” in OSDI, 2020.

[70] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming with
p4: Fundamentals, advances, and applied research,” J. Netw. Comput.
Appl., 2023.

Xueying Zhu is currently a Ph.D. student at Zhe-
jiang University, China. Prior to that, she received
her bachelor’s degree from Zhejiang University. Her
research interests include in-network computation,
SmartNIC, etc.

Yingtao Li is currently an Eng.D. student at Zhe-
jiang University, China. His research interests in-
clude in-network computation, programmable switch
applications, etc.

Xiang Li Xiang Li is currently a MSE student at
Zhejiang University, China. His research interests
mainly include in-network computation, RPC opti-
mization, etc.

Jialin Li received his Ph.D. degree from the Uni-
versity of Washington in 2019. Li is currently an
Assistant Professor in the School of Computing at
the National University of Singapore. His research
interests are in co-designing distributed systems with
data center networks, data plane operating systems,
and system software for programmable network
hardware.

Zeke Wang received his Ph.D. degree from Zhe-
jiang University, China in 2011. He is a Research
Professor at Collaborative Innovation Center of Arti-
ficial Intelligence, Department of Computer Science,
Zhejiang University, China. His current research
interests mainly focus on building machine learning
systems using heterogeneous devices, e.g., Smart-
NIC and SmartSwitch.

https://github.com/LaceFern/Hare.git

	Introduction
	Background
	Motivation
	Low Flexibility in Hotspot Size
	NetCache
	DySO

	Not Supporting Fast and Precise Offloading
	NetCache
	DySO

	Customized Design
	NetCache
	DySO

	Design of Hare
	Overview of Hare
	MAT-based Cross-stage Hotspot Storage Structure
	Switch-server Co-offloading Mechanism
	Automatic Offloading Mechanism

	Evaluation
	Experimental Setup
	Effect of Individual Optimization
	End-to-end Performance

	Related work
	Conclusion
	References
	Biographies
	Xueying Zhu
	Yingtao Li
	Xiang Li
	Jialin Li
	Zeke Wang

