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Abstract
Network bandwidth is improving faster than the compute ca-
pacity of the host CPU, turning the CPU into a bottleneck. As
a result, SmartNICs are often used to offload packet process-
ing, even application logic, away from the CPU. However,
today many applications such as Artificial Intelligence (AI)
and High Performance Computing (HPC) rely on clusters of
GPUs for computation. In such clusters, the majority of the
network traffic is created by the GPUs. Unfortunately, com-
mercially available multi-core SmartNICs, such as BlueFiled-
2, fail to process 100Gb network traffic at line-rate with its
embedded CPU, which is capable of doing control-plane man-
agement only. Commercially available FPGA-based Smart-
NICs are mainly optimized for network applications running
on the host CPU. To address such scenarios, in this paper we
present FpgaNIC, a GPU-oriented SmartNIC to accelerate
applications running on distributed GPUs. FpgaNIC is an
FPGA-based, GPU-centric, versatile SmartNIC that enables
direct PCIe P2P communication with local GPUs using GPU
virtual address, and that provides reliable 100Gb network
access to remote GPUs. FpgaNIC allows to offload various
complex compute tasks to a customized data-path accelera-
tor for line-rate in-network computing on the FPGA, thereby
complementing the processing at the GPU. The data-path
accelerator can be programmed using C++-based HLS (High
Level Synthesis), so as to make it easier to use for software
programmers. FpgaNIC has been designed to explore the de-
sign space of SmartNICs, e.g., direct, on-path, and off-path
models, benefiting different type of application. It opens up
a wealth of research opportunities, e.g., accelerating a broad
range of distributed applications by combining GPUs and
FPGAs and exploring a larger design space of SmartNICs by
making them easily accessible from local GPUs.

1 Introduction
While the computing capacity of CPUs is growing slowly
and mostly either through parallelism (SIMD, multi-core) or
specialization (GPGPU, security or virtualization support),
network bandwidth is growing obviously faster. 100Gbps

NICs are common and soon 400Gbps will be available [46].
This growing gap between network bandwidth and compute
capability is being addressed through offloading of network
functions to the Network Interface Card (NIC), so called
SmartNIC [13, 14, 19, 36, 45], which frees up significant CPU
cycles and provides better hardware to keep up with the grow-
ing network traffic and its often strict requirements in terms
of bandwidth and latency.

Modern GPUs provide an order of magnitude higher mem-
ory bandwidth and higher compute capacity than modern
CPUs. As a result, GPUs have become a key element in, e.g.,
Artificial Intelligence (AI) and High Performance Comput-
ing (HPC) applications that are both compute- and memory-
bound [4]. Since a multi-GPU server is often not enough to
cover the computing power needed in many AI, graph, and
HPC applications, current solutions are typically based on a
cluster of GPUs (e.g., [27,58,78]), with the GPUS generating
the majority of the network traffic in such systems.

In this paper, we present the design of a 100Gb GPU-centric
SmartNIC to serve distributed applications running on GPUs.
From a GPU’s perspective, such a SmartNIC should 1) enable
the GPU directly triggering doorbell registers and polling on
status registers on the SmartNIC without CPU intervention
(G1); 2) use the GPU virtual address space to directly access
GPU memory via Peer-to-Peer (P2P) communication without
CPU intervention (G2); 3) implement in hardware the full
network stack to ensure low latency and high throughput
(G3); 4) support application logic offloading to a software-
defined and hardware-accelerated data-path accelerator, i.e.,
on-NIC computing processing 100Gb network traffic at line-
rate (G4)1; and 5) The data-path accelerator should be easily
programmed by system programmers (G5). Commercially
available SmartNICs are not able to satisfy all these goals
as they are not optimized for GPUs. In the following, we
analyze existing multicore and FPGA-augmented SmartNICs
that motivate FpgaNIC.
Multicore SmartNIC. A multicore SmartNIC, such as

1In the paper, we use on-NIC computing module and data-path accelerator
interchangeably.



Table 1: Comparison of FpgaNIC with existing SmartNIC
types for GPUs. X indicates full support,%indicates no sup-
port, and indicates partial support.

Multicore
SmartNIC

[44]

FPGA-aug.
SmartNIC

[45]
Ours

Control plane offload (G1) % % X

Access GPU with virtual address (G2) X % X
100Gb transport offload (G3) X

100Gb data-path accelerator (G4) % X

High programmability (G5) X % X

BlueField-2 [44], combines a multicore CPU, e.g., ARM, with
an ASIC network controller. It introduces an additional hop to
implement the smart function using a multicore CPU, which
features two DDR4 channels for staging. This allows to map
a broad range of applications on multicore SmartNICs. There-
fore, its high programmability G5 is fully supported. However,
it increases processing latency and multicore CPU’s mem-
ory bandwidth can easily become a performance bottleneck.
BlueField-2 has 27.3GB/s achievable memory bandwidth un-
der a benchmarking tool sysbench [1], indicating that directly
staging 100Gbps data stream at the NIC CPU already over-
whelms BlueField-2, matching the findings in [40]. Therefore,
it cannot act as a 100Gb data-path accelerator G4. To our
knowledge, the multicore SmartNIC is controlled from the
host CPU, so G1 is not yet supported. The network trans-
port is implemented with the packet processing engine with
necessary control on the host (or ARM) CPU, so G3 is par-
tially supported. Finally, the ASIC network chip of multicore
SmartNIC supports NVIDIA GPUDirect [52], which enables
direct PCIe P2P data communication to a GPU, so G2 is fully
supported.
FPGA-augmented SmartNIC. An FPGA-augmented
SmartNIC combines a hardware-programmable FPGA
with an ASIC network controller. For example, Mellanox
Innova-2 [45] is an FPGA-augmented SmartNIC featuring
a network adapter ConnectX-5 and an Xilinx FPGA.
ConnectX-5 consists of a 100Gbps InfiniBand/Ethernet
interface for networking and a PCIe Gen4x8 interface for
communicating with the host CPU. The FPGA communicates
with ConnectX-5 via a PCIe x8 Gen4 link, so processing
packets on the FPGA adds considerable latency to the packets
and processing cannot happen at line rate because Innova-2
has limited PCIe link bandwidth between the FPGA and
ConnectX-5. Therefore, Innova-2 can only acts as a partial
100Gb data-path accelerator G4. G1 is not yet supported,
G2 is not supported, G3 is partially supported, and the high
programmability G5 is not supported.

Given the limitations of existing NICs, in this paper we
present FpgaNIC, a full-stack FPGA-based GPU-centric ver-
satile SmartNIC that opens up the opportunity to explore a
large design space around SmartNICs due to the FPGA’s re-
configuable nature and efficient FPGA-GPU co-processing
while achieving all the five goals mentioned above in a single

system. We have implemented FpgaNIC as a composable
architecture that consists of a GPU communication stack,
a 100Gb hardware network transport, and an On-NIC com-
puting (ONC), i.e., data-path accelerator.2 The GPU com-
munication stack enables offloading of control plane onto
GPUs (G1) and thus for the first time enables local GPUs
directly to manipulate SmartNIC without CPU intervention.
and enabling the FPGA-based SmartNIC for the first time to
use GPU virtual address to directly access GPU memory via
PCIe P2P communication (G2). The 100Gb hardware net-
work transport enables efficient and reliable 100Gb network
communication with remote GPUs (G3). Moreover, FpgaNIC
adopts a layered design to allow developers to easily explore
the design space of SmartNIC models (i.e., direct, off-path,
and on-path) to benefit their application, where different appli-
cations favor a different SmartNIC model. FpgaNIC allows to
prototype applications that can eventually be migrated to hard-
ened SmartNICs. Implementing a data-path accelerator on
an FPGA can easily satisfy line-rate processing requirement
(G4) due to its hardware implementation, while FpgaNIC
allows to use C++-based High Level Synthesis (HLS) so as to
provide high programmability (G5). As such, in the context of
FPGA-GPU co-processing, the GPU provides to applications
expressiveness and computing flexibility, while the FPGA
provides a flexible network infrastructure and the necessary
ONC. FpgaNIC results in significant end-to-end performance
improvements as data can be processed as it flows from/to the
GPU in a streaming manner and without involving the CPU.

We have prototyped FpgaNIC on a PCIe-based Xilinx
FPGA board Alveo U50 [74], whose UltraScale+ FPGA fea-
tures a 100Gbps networking port, a X16 PCIe Gen3, and
8GB HBM. Its form factor is half-length, half-height and
its Maximum Total Power (MTP) is 75W, allowing it to be
easily deployed in any CPU server. 3In addition to comprehen-
sive benchmarking, we validate the versatility and potential
of FpgaNIC by implementing use cases for all three mod-
els: GPU-centric networking (in a direct model), a collective
primitive AllReduce (in an off-path model), and cardinality
estimation on incoming streaming data (in an on-path model).
The experimental results show that FpgaNIC is able to ef-
ficiently support all three SmartNIC models at the full line
rate of 100 Gbps Ethernet. Particularly, FpgaNIC-enhanced
AllReduce almost reaches the maximum theoretical through-
put when performing on a distributed pool of eight RTX 8000
GPUs, while requiring fewer than 20% of the FPGA resources
on the U50 board. It indicates that, even when considering
the full network stack offloading, it has sufficient FPGA re-
sources to allow more aggressive offloading, e.g., the Adam

2In the paper, we use on-NIC computing module and data-path accelerator
interchangeably.

3We have also migrated FpgaNIC onto the Alveo U280 FPGA board [73]
with minor modifications affecting the FPGA pin mapping. Though we have
not ported FpgaNIC to Intel FPGA boards yet, we believe that it requires
only a small amount of effort to do so. We leave the porting to future work.



optimizer [31].4 As such, FpgaNIC enables efficient FPGA-
GPU co-training on Deep Learning models. We leave this
exploration to future work.

2 Design and Implementation of FpgaNIC

2.1 Design Challenges
We highlight four concrete research challenges we faced in
designing FpgaNIC.
C1: How to Enable the FPGA to Access the GPU Virtual
Address? Enabled by NVIDIA GPUDirect [52], the DMA
engine in the PCIe IP core allows the FPGA to efficiently
transfer data from and to GPU memory via issuing a DMA
read/write command that consists of a starting physical ad-
dress and length (no larger than a GPU page size). However,
doing so in the context of SmartNIC raises two challenges.
First, a GPU program manipulates GPU virtual address rather
than physical address, so the FPGA should work on GPU
virtual address to be consistent with the view of GPUs. Sec-
ond, a single contiguous virtual address space needs not to
be physically contiguous on GPU memory, and the typical
memory page size is 64KB on modern GPUs as they do not
yet support huge pages, making TLB management really chal-
lenging, especially when the required number of TLB entires
is large.
C2: How to Enable Efficient Reliable Network Transport
between Distributed GPUs? Modern GPUs have become a
key compute engine to power AI and HPC applications due
to its massive parallel compute capacity and huge memory
bandwidth. AI and HPC applications typically need reliable
network communication between distributed GPUs to realize
GPU-accelerated cluster computing. However, GPUs are not
originally designed for reliable network transport [28, 43]
since reliable networking reduces the degree of parallelism
and requires a complex flow control, e.g., retransmission.

The straightforward approach to realize network transport
is to implement it on the CPU. Such a CPU-based approach
consumes several CPU cores to implement a 100Gbps net-
work transport layer. Furthermore, the network operations are
initiated from the GPU, incurring longer network latencies.
Instead, we offload the implementation of the reliable network
transport to the FPGA to make the data plane fully bypass
the host CPU. Fortunately, there is a growing amount of open-
source FPGA-based 100Gb network transports [3] such as the
TCP/IP stack of [57, 60] and the RoCEv2 stack used in [62].
However, how to enable the GPU to efficiently manipulate
the reliable hardware transport on the FPGA becomes a new
challenge.
C3: How to Enable High-level Programming Interface
for FpgaNIC? The traditional programming interface on
FPGAs use tedious, low-level, cycle-sensitive hardware de-

4The total offloading tasks (communicator and optimizer) in FpgaNIC do
not need any GPU computing cycles that can be used for compute-intensive
and memory-intensive forward and backward propagation.

PCIe Wrapper

PCIe Switch

GPUs

Host CPUMem

Data plane:  
FPGA—>GPU

Control plane:  
GPU—>FPGA

PCIe Endpoint
PCIe   X16 Gen3

100Gb CMAC

FpgaNIC

On-NIC ComputingHBM/DDR4

Network Transport

GPU communication stack

DMA ConfigurationGTLB

100Gb Ethernet

ONC
HW Transport

<PA,len>

<VA,len>

Master 
Interface

Slave 
Interface

(User code, GPU driver, FPGA driver)

Figure 1: System architecture of FpgaNIC, which enables
control/data plane offloading and reliable network transport
offloading, and enables on-NIC computing module to process
data from network at line rate. Moreover, FpgaNIC enables a
large SmartNIC design space exploration.

scription language (HDL), which hinders FPGAs from wide
adoption by software programmers. Therefore, the program-
ming interface of FpgaNIC cannot be HDL so as to attract
more system programmers.
C4: How to Enable Various SmartNIC Models? Based
on the location of the smart function, SmartNICs can be cat-
egorized into three models: direct, on-path and off-path. A
direct SmartNIC allows local GPUs to directly manipulate the
network transport to realize, e.g., GPU-centric networking.

An on-path SmartNIC directly works on each network
packet according to the corresponding smart function so that
packets do not need to be staged, avoiding unnecessary ad-
ditional latency in calling the smart function. However, its
application scope is limited since it cannot handle complex
functions as they are directly on the critical path of the net-
work packets.

An off-path SmartNIC introduces an additional hop to
implement the smart function using, e.g., a multicore CPU,
which features two DDR4 channels for staging. This allows
to map a broad range of applications on off-path SmartNICs.
However, multicore CPU’s memory bandwidth can easily
become a performance bottleneck when processing 100Gb
network traffic using the multicore CPU [40].

Different smart functions favor different SmartNIC models.
For example, an on-path approach is preferred when offload-
ing database’s filter operator [61] while AllReduce [4] is
better mapped to off-path SmartNICs. Instead of using spe-
cialized SmartNICs, we argue for a flexible architecture that
enables all this models.



2.2 Main Architecture of FpgaNIC
To address the above four challenges, FpgaNIC adopts a lay-
ered design to enable easy design space exploration for Smart-
NIC architectures dedicated for various distributed applica-
tions that run on distributed GPUs, while minimizing the de-
velopment effort and increasing the overall system efficiency.
FpgaNIC consists of three main components: GPU commu-
nication stack, reliable network transport in hardware, and
on-NIC computing (ONC), as shown in Figure 1. The goal of
the GPU communication stack is 1) to allow the FPGA to use
GPU virtual address (C1) to directly access GPU memory via
direct PCIe P2P data communication at low-latency and line-
rate, and 2) to allow GPUs to initiate data transfers by using
doorbell registers on the FPGA to avoid having to involve
the host CPU in the invocation. The goal of reliable network
transport in hardware is to provide a reliable, low-latency, and
high-throughput network access to the local GPUs (C2). The
goal of on-NIC computing is 1) to enable high-level program-
ming interface, and 2) to enable three NIC models: direct,
on-path, and off-path, such that FpgaNIC is able to benefit a
broad range of GPU-powered distributed applications (C4).

2.3 GPU Communication Stack
Built on a PCIe IP core, e.g., Xilinx’s UltraScale+ Gen3 x16,
the GPU communication stack of FpgaNIC aims at enabling
offloading the control plane onto GPUs (via a slave interface)
and offloading the data plane onto the FPGA (via a master
interface), such that the host CPU is bypassed.

2.3.1 Offloading Control Plane onto GPUs

In order to allow GPUs to directly access the FPGA’s control
and status registers, FpgaNIC needs to offload the control
plane onto the GPUs.
How to Enable Control Plane Offloading? Enabling con-
trol plane offloading requires a hardware-software codesign
approach. On the hardware side, we enable a PCIe BAR ex-
posing a configurable FPGA address space at the PCIe IP
core on the FPGA. On the software side, our implementation
consists of a GPU driver, an FPGA driver, and user code that
interacts with both drivers. The process consists of three steps.
First, the FPGA driver uses the function misc_register to reg-
ister the PCIe BAR with the Linux kernel as an IO device
/dev/fpga_control. Second, the user code uses the function
mmap to map the device into the host address. Third, the user
code adopts a CUDA (Compute Unified Device Architecture)
memory management function to register the host address
for use within a CUDA kernel [52]. With this, the GPU can
directly trigger doorbell registers and poll status registers on
the FPGA without CPU intervention.
What Control Plane Offloading can Do? After enabling
control plane offloading, the doorbell/status registers that are
instantiated by all the components (GPU communications
stack, ONC, and network transport) have to be mapped into

GPU virtual address space so that the GPU program is able
to access these registers without CPU intervention. More-
over, it enables us to populate GPU TLB (GTLB) entries on
the FPGA such that the FPGA can translate GPU virtual ad-
dress to physical address before issuing a DMA read/write
operation to GPU memory (§2.3.2).

2.3.2 Offloading Data Plane onto the FPGA

FpgaNIC needs to offload the data plane onto the FPGA to
allow the FPGA to directly access the GPU memory. How-
ever, NVIDIA GPUDirect [52] allows direct PCIe P2P data
communication using physical address. For the sake of easy
programming, FpgaNIC needs to work on GPU virtual ad-
dress, rather than physical address (C1). Via a GPU BAR
window, Tesla GPUs expose all of their device memory space,
e.g., 40GB, while Quadro GPUs typically expose 256MB
memory space with 36MB reserved for internal use [52]. In
order to allow the FPGA to access more GPU memory space,
FpgaNIC needs to store all the related virtual to physical
address translation entries. To minimize the overhead of trans-
lation, we intend to keep all the entries on on-chip memory.
However, the 64KB GPU page size becomes the main chal-
lenge, because storing a great number of translation entries on
the FPGA needs a large on-chip memory. For example, 32GB
GPU memory needs 512K entries, far beyond the number
the FPGA implementation can accommodate without hurting
timing.
How to Enable FPGA to Efficiently Work on Virtual Ad-
dress? To this end, we propose a GPU Translation Lookaside
Buffer (GTLB) to perform address translation on the FPGA,
while keeping the on-chip memory consumption reasonably
low. The key motivation behind the design of GTLB is that
even though a single contiguous virtual address space needs
not be physically contiguous on GPU memory, it has high
probability to be physically contiguous, especially at the gran-
ularity of 2MB. Therefore, we manually coalesce 32 consecu-
tive 64KB GPU memory pages into a 2MB page if these 64KB
pages are allocated to a contiguous portion of physical mem-
ory and aligned within the 2MB page. The GTLB consists of
a main TLB and a complementary TLB. The process of popu-
lating the GTLB on the FPGA involves four steps, as shown
in Algorithm 1. First, we pre-malloc GPU memory space us-
ing gpuMemAlloc for staging the GPU memory that will be
accessed by the DMA engines on the FPGA (Line 1). Second,
we pass the initial virtual address and length of this GPU
memory to the GPU kernel function nvidia_p2p_put_pages
to get all the <VA, PA> pairs for all the 64KB pages (Line 2),
where VA refers to virtual address and PA refers to physical
address. Third, we try to coalesce 64KB pages into 2M pages
as aggressive as possible (Line 3). Fourth, we populate main
and complementary TLBs (Lines 4-18) via the control reg-
isters exposed by the control plane offloading (§2.3.1). The
main TLB provides the virtual to physical address translations
for 2MB pages (Lines 7-10). If any 2MB page is not physi-



Algorithm 1: POPULATING GTLB
Input : init_addr: initial GPU virtual address

len: length of GPU memory
Output : T LBmain: main TLB

T LBcomp: complementary TLB
/* Step 1: Malloc GPU memory space. */

1 init_addr = gpuMemAlloc(len);
/* Step 2: Get <VA, PA> pairs of all the 64KB pages. */

2 <VA64KB, PA64KB> pairs = nvidia_p2p_put_pages (init_addr, len);
/* Step 3: Coalescing 64KB pages to 2MB pages if possible */

3 <VA2MB, PA2MB> pairs <– <VA64KB, PA64KB> pairs;
/* Step 4: Populating T LBmain and T LBcomp */

4 index = 0; /* Large page index */
5 comp = 0; /* Base page index */
6 for (pair in <VA2MB, PA2MB> pairs) do
7 if (pair is physically contiguous) then

/* Update the T LBmain */

8 T LBmain[index].pair = pair;
9 T LBmain[index].valid = 1;

10 end
11 else

/* Update the T LBcomp */
12 T LBcomp[32∗ comp+31 : 32∗ comp] = pair’s 32 64KB pages;
13 T LBmain[index].valid = 0;
14 T LBmain[index].comp_o f f set = comp*32;
15 comp++;
16 end
17 index++;
18 end

cally contiguous, we store the corresponding 32 translations
of 32 64KB pages in the complementary TLB, which provides
2048 entires for accommodating 64 such 2M pages (Lines 12-
15).5As such, the total number of required entires for 32GB
memory becomes 16K+2K=18K, significantly smaller than
the previous 512K entries.

Fully-pipelined Translation Lookup. After the population,
FpgaNIC is able to directly access GPU memory using
on-line virtual to physical address translation. Given a vir-
tual address, FpgaNIC first checks the corresponding en-
try in the main TLB to see whether it is continuous or not
(T LBmain.valid == 1). If yes, FpgaNIC fetches the PA and
feeds it into the DMA engine. If no, FpgaNIC will read the
corresponding entry in the complementary TLB using the off-
set T LBmain.comp_o f f set. We can observe that the proposed
GTLB can easily achieve fully-pipelined translation lookup
on the FPGA.

GTLB Miss/Eviction. Currently, we pre-populate TLB en-
tries for each application, assuming that the FPGA only ac-
cesses certain range of GPU memory. When GTLB miss or
eviction happens, we need to re-populate GTLB entries for
successful GPU memory references. However, we suggest to
instantiate multiple GTLBs to provide sufficient number of
GTLB entries to eliminate potential GTLB misses and evic-
tions on the FPGA, because each GTLB entry only occupies
a row of a BRAM, indicating relatively low cost of storing
GTLB entries on the FPGA.

5In our experiment, 2048 entires are far beyond enough.

2.4 100Gbps Hardware Network Transport
In order to address the second challenge (C2), FpgaNIC of-
floads the transport-layer network to the FPGA to provide a
reliable and high-performance hardware network transport
to the local GPUs. Fortunately, there is a growing amount of
open-source FPGA-based 100Gb network stacks such as the
TCP/IP stack of [57, 60] and the RoCEv2 stack used in [62].
Without loss of generality, FpgaNIC is built on the 100Gb
TCP/IP stack [57, 60], which is able to support thousands
of connections with external FPGA memory for buffering.6

We have modified this stack to adapt it to the requirements
of FpgaNIC’s by modifying its interface to improve band-
width utilization and allow local GPUs to directly control the
network transport.

2.4.1 Efficient Decoupled Application Interface

The original application interface [25, 57, 60] requires a con-
trol handshake between the TCP stack and the application
code before sending or receiving a network packet to or from
the TCP stack. A control handshake takes from 10 to 30 cy-
cles while the payload of a packet (up to 1460B) only takes
up to 23 cycles, leading to low network bandwidth utilization.
To reduce the overhead of the handshake, we introduce an
efficient decoupled application interface that does not need
the handshake and further overlaps the control handshake
and the packet transfer, maximizing the network bandwidth
utilization and easing programming.
Decoupled Sending Application Interface. The original
sending interface only allows to send a data chunk at a time
after a control handshake, where the size of a data chunk is up
to 1460B. A data chunk and a TCP header constitute a TCP
segment, which can be encapsulated into an IP packet before
sending over Ethernet. The proposed decoupled interface gets
rid of the handshake, overlapping the control handshakes with
the data transfer. And it further allows to send data streams of
up to 4GB in size by automatically splitting the data stream
into the right size chunks without programmer’s involvement
in packetization.
Decoupled Receiving Application Interface. The original
receiving interface informs the user logic through a valid no-
tification when a TCP segment is available to be consumed,
which then sends out the read request to the receiving in-
terface. After 10 to 30 cycles, the TCP segment’s payload
will be available at the 64B-wide AXI (Advanced eXtensible
Interface)-Stream interface and consumed by the user logic.
Similar to the sending interface, the proposed decoupled inter-
face gets rid of the handshake, and further overlaps handshake

6The TCP stack needs two 64KB fixed-sized buffers per connection, one
buffer for incoming packets and the other for outgoing packets. Therefore,
external FPGA memory is needed to support thousands of concurrent con-
nections. However, if fewer than 10 concurrent connections are needed, the
TCP stack of [57, 60] can implement the buffers using on-chip memory such
that external FPGA memory could be saved for offloaded smart functionality.
In this paper, FpgaNIC uses both versions.



Table 2: Resource Usage breakdown of FpgaNIC on U50.

LUTs REGs RAMs DSPs
Available 871K 1743K 232.4Mb 9024

GPU Commu. Stack 79K 103K 5.2Mb 0
100G HW Transport 101.3K 166.5K 23.4Mb 0

ONC: GPU-centric networking 14.5K 20K 24.6Mb 0
ONC: AllReduce 7.3K 10K 12.8Mb 0

ONC: Hyperloglog 19.5K 26K 7.1Mb 1104

and data transfer and assembles the complete data stream for
each TCP connection without programmer’s involvement in
depacketization.

2.5 On-NIC Computing (ONC)
The on-NIC computing module sits between the GPU com-
munication stack module and the 100Gbps network hard-
ware transport module, so ONC can directly manipulate the
other two modules to enable flexible design space exploration
around GPU-centric SmartNICs. The key goal of on-NIC
computing module is to 1) expose high-level programming in-
terface for system programmer, and 2) enable three SmartNIC
models for various GPU-powered distributed applications. In
the following, we discuss the programming interface of ONC
and how to enable three three models.

2.5.1 High-level Manipulation Interfaces of ONC
In order to address the third challenge (C3), FpgaNIC intends
to raises the programming abstraction from HDL to high-level
synthesis (HLS), i.e., C/C++, such that systems programmers
are able to use C/C++ to manipulate FpgaNIC, rather than
cycle-sensitive HDL.7 In the following, we present the con-
crete manipulation interfaces for the GPU communication
stack and hardware network transport modules.
Manipulation Interfaces of GPU Communication Stack.
The GPU communication stack exposes two manipulation in-
terfaces: a slave interface that allows GPUs to access FPGA’s
registers and a master interface that allows the FPGA to di-
rectly access GPU memory, as shown in Table 3.

The slave interface is a 4B-wide AXI-Lite interface
(axilite_control), through which local GPUs directly access
doorbell and status registers within FpgaNIC without CPU
intervention. In FpgaNIC, we instantiate 512 doorbell regis-
ters and 512 status registers, each of which has its own PCIe
address to allow individual access. We correspond a few door-
bell and status registers to each engine from any of three
components within FpgaNIC. The doorbell registers can be
triggered by GPUs to manipulate the engine, and the status
registers can be polled by GPUs to check the status of the
engine.

The master interface consists of two command streams
and two data streams. The two command streams are
96-bit-wide AXI-Stream interfaces (dma_read_cmd and
dma_write_cmd) that provide the GPU virtual address and
length to directly access GPU memory, where the length is

7Nevertheless, ONC can be also programmed in HDL if necessary.

Table 3: Two interfaces of GPU communication stack
Type Interface Content

Slave interface axilite_control AXI-Lite interface for configuration
Master interface dma_read_cmd Dest. GPU virtual address, length

dma_read_data AXI data stream from GPU memory
dma_write_cmd Source GPU virtual address, length
dma_write_data AXI data stream to GPU memory

Table 4: Manipulation interface for the network transport
Type Interface Meaning

Data interface tcp_tx_meta Session ID, length
tcp_tx_data AXI data stream to remote node
tcp_rx_meta Session ID, length, IP, port, etc.
tcp_rx_data AXI data stream from remote node

Control interface server_listen_port A TCP listening port
server_listen_start Staring to listen
client_conn_port Destination port to connect
client_conn_ip Destination ip to connect

client_conn_start Start to connect to server
conn_close_session Destination session to connect

conn_close_start Start to close connection

up to 4G. The data from and to GPU memory is sent over the
dma_read_data and dma_write_data data streams, which
are 64B-wide AXI-Stream interfaces. For either GPU mem-
ory read or write operation, we need to configure the com-
mand stream and then work on the corresponding data stream,
allowing programmers to easily access GPU memory.

Interfaces of Hardware Network Transport. The hardware
network transport exposes two interfaces: data interface and
control interface.

The data interface consists of a sending interface and a re-
ceiving interface. The sending interface consists of a metadata
stream and a data stream. The metadata stream (tcp_tx_meta)
is a 48-bit-wide AXI-Stream that provides a 4B-wide data
length and a 2B-wide session ID that corresponds to a re-
mote node. The data stream (tcp_tx_data) is a 64B-wide
AXI-Stream to send payload stream. The receiving interface
also consists of a metadata stream and a data stream. The
metadata stream (tcp_rx_meta) is an 44B-wide AXI-Stream
that provides session ID, length, IP address, port and close
session flag. The data stream (tcp_rx_data) is a 64B-wide
AXI-Stream to receive payload stream from remote node.

The control interface of the hardware transport is similar
to that of the well-understood socket interface, which allows
GPU programmers to easily leverage the network transport,
with their meanings as shown in Table 4. We instantiate the
corresponding doorbell and status registers, exposed through
the PCIe’s slave interface (§2.3), to allow local GPUs to di-
rectly manipulate or poll the 100Gb hardware network trans-
port.8 In summary, the network transport serves as a network
proxy, through which the ONC module and local GPUs can ac-
cess the network transport directly without CPU intervention,
so as to address the second challenge C2.

8Inside the FPGA, the ONC module (§2.5) can also directly manipulate
the hardware transport via these registers.



Table 5: Lines of code for each component of FpgaNIC

Hardware Software
GPU Commu. Stack 2.9K (Verilog/HLS) 0.7K (C++, CUDA)
100G HW Transport 15.3K (HLS)

ONC: GPU-centric networking 1.0K (HLS) 0.5K (C++, CUDA)
ONC: AllReduce 2.7K (HLS/Verilog) 1.5K (C++)

ONC: Hyperloglog 1.6K (HLS) 0.3K (C++, CUDA)

2.5.2 How to Support Three SmartNIC Models?

In order to address the fourth challenge C4, FpgaNIC’s on-
NIC computing component allows system programmers to
customize data-path engines between the GPU communica-
tion stack and the hardware network transport to accelerate
various distributed applications. Table 2 shows that the pre-
vious GPU communication stack and network transport con-
sume less than 20% FPGA resources on a mid-sized FPGA
U50, so the on-NIC computing component has plenty of re-
sources to realize complex data-path engines to accelerate
various distributed applications. Moreover, the commercial
FPGA board that features DDR4 (even HBM) is able to stage
data from network or GPUs, and perform on-NIC comput-
ing on the data before feeding into GPUs or sending out to
network.

Due to the reconfigurable nature of the FPGA, FpgaNIC
can easily support various SmartNIC models: direct, on-path,
and off-path, to benefit a broad range of distributed applica-
tions. Table 5 shows the lines of code for each component.
The direct model directly exposes the hardware network
transport module to local GPUs via the GPU communication
stack module, such that local GPUs can directly manipulate
the network transport to do reliable network communication.
An an example, we develop a GPU-centric networking to
demonstrate the potentials of the direct model. Due to space
limitation, we describe the detailed design and implementa-
tion of GPU-centric networking to the Appendix §A.1.
The on-path model is similar to the direct model that local
GPUs directly manipulate the hardware network transport,
except that the on-path model allows the network stream also
to enter an on-path engine in the ONC component for the
offloaded computation, where the on-path engine needs to
consume the network stream at line-rate such that the on-path
engine would not impede line-rate network traffic. We use
the HyperLogLog (HLL) application [18, 33] as an example
to demonstrate the power of the on-path model. The detailed
design and implementation of HLL with FpgaNIC can be
found in the Appendix §A.3.
The off-path model enables an off-path engine in the ONC
component to directly manipulate the GPU communication
stack and the hardware network transport such that FpgaNIC
is able to orchestrate the data flow between all the three com-
ponents. Typically, the off-path needs to stage data in on-
board memory. We use the collective communication primi-
tive AllReduce [4, 11, 50] as an example to demonstrate the
power of the off-path model (§A.2). The detailed design and
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Figure 2: Experimental Setup

implementation of AllReduce with FpgaNIC is in the Ap-
pendix §A.2.9

How to Support Multiple Tenants? To support multiple
tenants, we can adopt Coyote [32] to wire the GPU communi-
cation stack and hardware network stack into the static region
of FpgaNIC while exposing the same programming interface
to offloaded tasks, for which we pre-synthesize the FPGA
bitstreams ahead of time. Furthermore, FpgaNIC adopts the
notion of vFPGAs (virtual FPGAs or separate application
regions that are individually reconfigurable) as implemented
in Coyote [32] to smoothly support secure, temporal and spa-
tial multiplexing of GPU communication stack and hardware
network transport between tenants (without pre-emption and
context switching). For each tenant, FpgaNIC provides suffi-
cient FPGA resources in a partial reconfiguration region to
implement an independent ONC engine to guarantee perfor-
mance isolation, and thus we no longer need to reboot the
FPGA to change the functionality of FpgaNIC. We leave this
as future work.

3 Experimental Evaluation

3.1 Experimental Setup
System Architecture. The experiments are run on a clus-
ter consisting of eight 4U AMAX servers, connected with a
Mellanox 100Gbps Ethernet SN2700 switch (Figure 2). Each
server is equipped with two Intel Xeon Silver 4214 CPUs
@2.20GHz, 128GB memory, FpgaNIC (i.e., a Xilinx Ultra-
Scale+ FPGA [72]), and a Nvidia RTX 8000 GPU, where the
FPGA and the GPU have direct PCIe P2P communication, as
shown in Figure 1. Two servers have an additional two A100
GPUs. FpgaNIC is implemented on Xilinx Alveo cards U50
or U280 with Vivado 2020.1.
Methodology. We first benchmark the GPU communication
stack and hardware network transport to demonstrate that Fp-
gaNIC allows easy PCIe P2P communication with local GPUs
and reliable network communication with remote GPUs. We
then evaluate the three FpgaNIC models: direct (§3.3), off-
path (§3.4), and on-path (§3.5), to demonstrate FpgaNIC’s
performance and ability to enable the exploration of a large
SmartNIC design space.

9The off-path model is generic enough such that it would also work well
in other applications that follow a partition/aggregate pattern and require
multiple rounds of communication [38].



3.2 Benchmarking Shared Infrastructure
We benchmark the shared GPU communication stack and
hardware network transport.

3.2.1 GPU Communication Stack

To analyze the effect of control plane and data plane offload-
ing, we measure the latency and throughput of the PCIe P2P
link (§2.3). We use two classes of GPU: Quadro RTX8000
(labelled “R8K") and Tesla A100 (labelled “A100"), since a
different GPU class leads to different latency and throughput.
Effect of Control Plane Offloading. We examine the effect
of control plane offloading by comparing the latency of com-
mands issued from the GPU to the FPGA. Figure 3 shows the
read latency when using various end points: “X_Y" means
that device “X" reads from device “Y". A first important re-
sult is that the latency of interactions between the GPU and
the FPGA is comparable to that of the CPU calling the FPGA
and it is under 1 microsecond. Moreover, the GPU-FPGA’s
latency fluctuation is smaller than that of CPU-FPGA, demon-
strating one of the advantages of FpgaNIC in terms of offering
deterministic latency. The results also show that performance
improves slightly with a better GPU, indicating that the overall
system will improve with future versions of the GPU. Finally,
the latency of “GPU_FPGA" is significantly lower than that
of “GPU_CPU" plus “CPU_FPGA", proving the efficiency
of control plane offloading proposed in FpgaNIC.
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Figure 3: Control plane latency comparison. X_Y refers to
the device “X" accesses the device “Y". R8K refers to RTX
8000 GPU, and A100 refers to A100 GPU. Whiskers show
the 1st and 99th percentile.

Effect of Data Plane Offloading. We examine the effect of
data plane offloading by measuring the throughput when the
FPGA issues a DMA read/write operation to GPUs. Each
operation transfers 4GB of data between the FPGA and the
GPU memory. Figure 4 illustrates the achievable throughput
with varying burst size, which is associated with the length of
a DMA operation. It is interesting to observe that DMA read
and write operations reach peak throughput at different burst
sizes: 512B for read and 8K for write, indicating that we need
to carefully choose the right DMA size to saturate the PCIe
P2P bandwidth between FPGA and GPU. As with latency,
a newer GPU class leads to much higher PCIe throughput.
For example, a DMA read operation to an A100 GPU yields
12.6GB/s, close to the maximum possible PCIe bandwidth.

Figure 4: PCIe P2P throughput between FPGA and GPU

3.2.2 Hardware Network Transport
Next, we measure the throughput and latency of the hardware
network transport (§2.4).
Latency. We measure the the round-trip time (RTT) between
two FPGAs connected via the network switch. Figure 5a
shows the RTT with varying message size. The most striking
result is that the TCP latency is in microseconds, instead of
milliseconds, demonstrating the advantages of offloading to
a SmartNIC instead of using the CPU for communication.
For messages smaller than 1 KB, the RTT latency (roughly
3.1us) is dominated by the physical communication path (the
Ethernet switch introduces an additional hop with roughly
1us latency.
Throughput. We measure as well the throughput between
two network transports with varying packet size and vary-
ing number of connections. Figure 5b shows the observed
throughput by sending out a total of 1GB from one transport to
the other with varying packet size and number of connections.
We observe that the number of connections does not affect the
achievable throughput under the same packet size, indicating
that FpgaNIC is able to efficiently support multi-connection
communication. For small packets, the throughput is low due
to the fixed overhead, i.e., the 40B header, per packet and the
turnaround cycles to process each packet. However, for larger
packets, the achievable throughput is close to the 100Gbps
channel capacity, demonstrating that FpgaNIC efficiently uses
the available network bandwidth.

3.3 Evaluation of the Direct Model
We evaluate the throughput of FpgaNIC used in direct mode.
The experiment involves sending data from one GPU to a
remote GPU through the corresponding FPGAs using the
direct model path: GPU-PCIe-FPGA-network-FPGA-PCIe-
GPU.
Effect of Slot Size. We examine the effect of the slot size
(W ) of the circular buffer for each connection (§A.1.2). The
slot size determines the size of the DMA operation between
an FPGA and a GPU. Figure 6a illustrates the throughput
with varying slot size. We have two observations. First, a
sufficiently large slot size leads to saturated throughput. A



(a) Round-trip latency with varying message size

(b) Throughput with varying packet size and connections

Figure 5: 100Gb TCP stack: latency and throughput

small slot size (<64KB) leads to lower throughput since it
leads to low DMA engine utilization (Figure 4). Second, the
network bandwidth between A100 GPUs is higher than that
between RTX 8000 GPUs, as the slow PCIe speed between
a RTX 8000 GPU and the FPGA becomes the bottleneck of
network bandwidth (Figure 4).
Effect of Control Plane Offloading on Slot Size. We exam-
ine the effect of control plane offloading on different slot sizes.
Without control plane offloading, we need to use CPU to trig-
ger the DMA operation after executing a CUDA kernel that
copies a chunk in the “GPU user" layer into the send buffer
in the “GPU kernel" layer, leading to one kernel invocation
per chunk. Intuitively, such frequent kernel invocations lead
to significant overhead when the chunk size or the transfer
size is not large. Figure 6b illustrates the throughput compari-
son with and without control plane offloading under different
chunk size, when the data transfer size is 1GB. We observe
that control plane offloading can leads to obviously higher
throughput than the implementation without control plane
offloading. Moreover, a smaller chunk size leads to higher
throughput improvement, because control plane offloading
eliminates more CUDA kernel invocations.
Effect of Control Plane Offloading on Transfer Size. We
examine the effect of control plane offloading on different
transfer sizes. Figure 6c illustrates the throughput compari-
son with and without control plane offloading under different
transfer size, when the chunk size is 64KB. We observe that
when the transfer length is smaller, control plane offloading
leads to significant throughput improvement over the case
without control plane offloading, whose performance is domi-

(a) Effect of DMA size with control plane offloading

(b) Effect of control plane offloading on chunk size

(c) Effect of control plane offloading on transfer size

Figure 6: Throughput of GPU-centric networking

nated by the kernel invocation overhead and context switch. In
contrast, control plane offloading can remove these overheads
by triggering doorbell registers from within a CUDA kernel,
rather other from the host CPU.

3.4 Evaluation of the Off-path Model
In this subsection, we evaluate the performance of FpgaNIC-
enhanced AllReduce on a distributed pool of eight GPUs, as
shown in Figure 2. When accelerating AllReduce, we config-
ure FpgaNIC in an off-path model and offload the AllReduce
engine to the FPGA. In the following, we present the baseline
and the corresponding performance comparison.
Baseline. The experimental platform used as a baseline is
similar to Figure 2, except that FpgaNIC in each server is
replaced with a Mellanox ConnectX-5 100Gbps MT27800
NIC with RoCE and GPUDirect enabled. We use NVIDIA
Collective Communication Library (NCCL) [50] which pro-
vides state-of-the-art collective communication primitives,
e.g., AllReduce, over distributed Nvidia GPUs.



Figure 7: Effect of data size under eight nodes

Figure 8: Effect of node number with 64MB data size

Comparison Metric. To demonstrate the performance of
AllReduce, we introduce the metric bus bandwidth [51],
which is calculated to be algorithm bandwidth times 2∗ (N −
1)/N, where algorithm bandwidth is calculated to be the data
size divided by the elapsed time and N is the number of nodes.
The elapsed time is estimated to be the average time of all the
involved nodes in five rounds [9].
Effect of Data Size. We examine the effect of data size when
performing AllReduce. Intuitively, a large data size easily
leads to a saturated throughput because we hit the bandwidth
limits of the underlying channels. Figure 7 illustrates the bus
bandwidth comparison between FpgaNIC and NCCL in a clus-
ter with 8 nodes. FpgaNIC leads to up to 2.5x speedup over
NCCL, because the AllReduce engine in FpgaNIC efficiently
overlaps the operations of the PCIe DMA, network transport,
and FPGA memory. Moreover, FpgaNIC does not consume
any GPU/CPU cycles, freeing up these precious computing
resources for other important tasks. FpgaNIC reaches the the-
oretical bus bandwidth when the data size is larger than 8MB,
indicating that FpgaNIC’s AllReduce implementation is us-
ing all resources efficiently. Finally, when data size is small
(<1MB), the speedup is up to 2.5x, due to the faster transition
between states in FpgaNIC (Table 8) when compared to the
same operation being implemented on GPUs.
Impact of Systems Size. We examine the effect of number
of nodes on the AllReduce performance under 64MB data
size. Figure 8 shows how both FpgaNIC and NCCL reach
the theoretical bus bandwidth with an increasing number of
nodes. However, NCCL needs a quite amount of CPU/GPU
computing cycles to realize, while FpgaNIC does not.
Discussion. In the context of distributed AI model training,
these results indicate that only offloading the AllReduce en-
gine will not able to fully harvest FpgaNIC’s potential. We
can offload not only the communication functions (i.e., the

AllReduce engine) but also part of the learning engine such
as the compressor (e.g., compression engine) and optimizer
(e.g., Adam engine) to FpgaNIC, such that the entire commu-
nication part of training is offloaded to minimize the commu-
nication overhead for GPUs. Since these engines can easily
achieve line-rate throughput, plenty of interesting trade-offs
in the design of distributed learning, e.g., sync vs. async, can
be revisited by using FpgaNIC. We leave this idea to future
work.

3.5 Evaluation of the On-path Model
We finally evaluate the performance of FpgaNIC-enhanced
HLL, when FpgaNIC is configured in an on-path model. The
cardinality is calculated when the data stream has been trans-
ferred. The goal of this experiment is to verify whether the
HLL module within an FPGA can act as a bump in the wire.

The baseline, labelled “write", is to feed data to a GPU
without processing the data in the FPGA. The GPU receives
the data from the FPGA and stores it in the current block in
GPU memory, while at the same time performing HLL on
the previous block, overlapping data transfer with cardinality
calculation at the block granularity. Table 6 illustrates that at
least 8 SMs, in terms of 8 thread blocks and 512 threads per a
thread block, are required to consume 100Gbps data stream
(packet payload size: 1408 bytes) on an A100 GPU, when
the block size is no smaller than 256K. Moreover, when the
block size is smaller than 128K, an A100 GPU is not able to
consume the data stream, as such a small block size cannot
fully utilize GPU’s processing parallelism.

Table 6: Number of required GPU SMs w.r.t block size

Block size <=128K 256K 512K 1024K
Number of A100 SMs >256 8 8 8

Figure 9: Performance of HLL with and without offloading.
HLL with offloading does not affect the overall throughput,
but saves at least 8 A100 GPU SMs, required by HLL without
offloading, to consume 100 Gbps HLL data stream.

Figure 9 illustrates that FpgaNIC-enhanced HLL is able
to achieve similar throughput as the baseline under various
packet payload size, where the block size is 256K. It indicates
that offloading HLL does not block the incoming data stream
and introduces negligible latency. More important, FpgaNIC-
enhanced HLL does not require any GPU compute power,



Table 7: Comparison of FpgaNIC with existing SmartNICs from industry. X indicates full support,%indicates no support.

Programmable flow processing Targeted applications CPU-centric GPU-centric
Broadcom [7] X Virtualization, storage, NFV X %

Pensando [53] X Storage, security X %

Netronome [49] X SDN-controlled server-based networking X %

Intel IPU [23, 24] X Cloud, storage, security X %

FpgaNIC X AI model training % X

e.g., at least 8 A100 SMs, which can be used in other comput-
ing task. Moreover, Table 2 shows that FpgaNIC-enhanced
HLL takes a small amount of FPGA resources. Therefore, in
the context of FPGA+GPU co-processing, it is clearly more
efficient to offload HLL onto FpgaNIC, rather than processing
HLL on the GPU.

4 Related Work
To our knowledge, FpgaNIC is the first FPGA-based GPU-
centric 100Gbps SmartNIC that addresses the bottleneck lim-
itations introduced by the use of conventional CPUs or small
cores (ARM) in SmartNICs.
FPGA-augumented SmartNICs. Several commercial sys-
tems [10, 21, 22, 45, 55, 79] feature an FPGA within a Smart-
NIC. The closest work is from Mellanox Innova [45] that
features an FPGA in its SmartNIC to accelerate offloaded
compute-intensive applications, while PCIe and network in-
terfaces are handled by a NIC ASIC ConnectX-5. The FPGA
is connected with the NIC ASIC via a PCIe interface and
therefore acts as an additional PCIe endpoint. The FPGA
is entirely dedicated to the user’s application logic. In con-
trast, FpgaNIC implements all functionalities, including net-
working and PCIe, within a powerful FPGA, enabling a large
design space exploration of SmartNIC architecture, while In-
nova provides limited architectural flexibility due to how the
FPGA is connected.
GPU-FPGA Communication. Previous work [6,64] has im-
plemented GPUDirect RDMA on an FPGA to directly ac-
cess GPU memory, but not allowing the GPU to trigger door-
bell registers within an FPGA. In contrast, FpgaNIC allows
GPUDirect RDMA and the GPU to trigger registers within
an FPGA, and is an FPGA-based SmartNIC that allows large
design space exploration of SmartNIC architecture.
Acceleration using FPGA-based SmartNICs. Most previ-
ous work [2,3,8,10,13,14,14,17,26,35,36,36,37,59,62,65]
features an FPGA on SmartNICs to offload data processing
to the network from the host CPU. In contrast, FpgaNIC is
an FPGA-based full-stack SmartNIC that mainly targets com-
pute task offloading from local GPUs which require a more
complex system than offloading for CPUs. For example, we
can offload partial G-TADOC [76, 77] that is a novel opti-
mization to perform compressed data direct processing onto
FpgaNIC to maximize the performance of distributed system
under efficient FPGA-GPU co-processing.
Multicore-based SmartNICs. There is also a lot of work

done [12, 16, 29, 41, 42, 44, 47, 48, 54, 56, 63, 66, 70] on Smart-
NIC built upon a wimpy RISC cores plus hardware engines
to accelerate dedicated functionality such as compression.
These RISC cores are used to both process packets as well
as to implement “smart" functions instead of using the host
CPUs. Such an approach inevitably suffers from load inter-
ference since packet processing and the smart functions have
to compete for the shared resources, e.g., the last level cache
and memory bandwidth. In contrast, FpgaNIC implements an
GPU-centric SmartNIC on an FPGA.

On-going SmartNICs in Industry. Besides NVIDIA’s
DPU, we compare FpgaNIC with other SmartNICs from in-
dustry, as shown in Table 7. Broadcom offers the Stingray
SmartNIC [7], which features a ARM 8-core CPU for control-
plane management and P4-like TruFlow packet processing
engine for data-plane processing, targeting various applica-
tions such as virtualization, storage, and NFV. Pensando has
a DPU architecture [53] that features an ARM CPU and a
P4 processor for data-plane packet processing, targeting var-
ious applications such as security and storage. Netronome
provides the NFP4000 Flow Processor architecture [49] that
features a ARM CPU, 48 packet processing cores, and 60
P4-programmable flow processing cores for data-plane pro-
cessing, targeting the SDN-controlled server-based network-
ing application. Intel presents the FPGA-based IPU (Infras-
tructure Processing Unit) that consists of a MAX 10 FPGA
for control-plane management and an Arria 10 FPGA for
data-plane processing [23], and uses an ASIC IPU whose
architecture is not publicly documented [24]. Fungible has
a DPU [15] featuring multiple PCIe endpoints, TrueFabric
for networking, and specialized engines such as compression
and EC/RAID to address inefficient data-centric computa-
tion within a node and inefficient interchange between nodes,
targeting various applications such as virtualization, cloud
storage, and data analytics. All these systems are CPU-centric
in that they are designed to complement the CPU. In several
cases, they suffer from the bottleneck problem pointed out
above that prevents them from being above to operate at line
rate. In contrast, FpgaNIC is an FPGA-based GPU-centric
SmartNIC that targets various applications such as AI model
training and security and specifically designed to operate at
line rate which also means that it might not be suitable for
operations that would significantly impair the flow of net-
work packets (such as blocking operations or computations
generating large amounts of intermediate state).



5 Insights and Implications of FpgaNIC

In this section, we discuss three interesting properties regard-
ing FpgaNIC.
High Performance of On-NIC Computing Module. An
increasing amount of SmartNIC solutions intend to remove
the conventional CPU from the data-path (e.g., Microsoft Cat-
apult). However, they either do not exploit the possibilities
of direct communication between the FPGA and the GPU,
or use small CPUs (ARM cores) that cannot process at line
rate to impose additional hops within the NIC to implement
the smart functionality (e.g., Bluefield-2). Furthermore, com-
mercially available multi-core SmartNICs, such as BlueFiled-
2, fail to process 100Gbps network traffic at line rate with
its embedded CPU, which is capable of doing control-plane
management only. The embedded CPU in Bluefield-2 is over-
whelmed by trying to stage a 100Gbps data stream coming
from the network. In contrast, FpgaNIC provides a 100Gbps
data-path accelerator for distributed computing over GPUs,
and thus enables a large design space exploration around
SmartNIC for GPU-based applications. The key aspect of
FpgaNIC is that it can process data at line rate as it comes
from the network, something that other systems cannot do,
because this requires to insert the accelerator in the data path,
which cannot be done with conventional hardware (running
conventional software) but can be done with FPGAs. To do so,
FpgaNIC only consumes roughly 20% of the FPGA resources
(marked in blue) to implement the NIC architecture (100Gbs
hardware network transport and GPU communication stack)
in a half-length, half-height FPGA board (Alveo U50), as
shown in Table 5. It implies that the majority of the FPGA re-
sources can be dedicated to on-NIC computing for SmartNIC
functionality. Moreover, U50 has High Bandwidth Memory
(HBM) which can be used to implement functionality with
more intermediate states as memory access does not become
the bottleneck. Therefore, FpgaNIC allows the offloading of
compute-bound and memory-intensive tasks from multiple
tenants (e.g., like in [39]) onto a mid-size FPGA.
Performance Guarantee and Isolation. Many multicore-
based SmartNICs use small CPU cores for in-network com-
puting. On these CPUs is really hard to provide performance
guarantee and isolation due to insufficient CPU processing
abilities and interference across tasks. We have shown that
FpgaNIC is able to guarantee performance and isolation from
two perspectives. From a compute’s perspective, FpgaNIC
provides dedicated hardware resources for each offloaded
compute task, leading to a strict performance guarantee and
perfect performance isolation. From a memory’s perspective,
U50 features 2-channel HBMs [71, 75] with 32 independent
memory channels, each of which provides up to 13.6GB/s
of memory throughput [20, 68]. This guarantees that each
offloaded compute task is able to gain exclusive control over
the assigned memory channels, without interfering with other
offloaded compute tasks and the NIC infrastructure, which op-

erates on dedicated hardware resources to guarantee line-rate
network throughput.
Medium Programmability. Programming FPGAs using a
Hardware Description Language (HDL), is error-prone and
difficult to debug, limiting the adoption of FPGAs by system
programmers. When using FpgaNIC, we intentionally ensure
that it can be programmed using C++-based HLS (High Level
Synthesis), to make it easier to use for software programmers,
where HLS is the highest level of abstraction commercially
available for programming FPGAs. To let FpgaNIC support
both HDL and HLS, FpgaNIC’s interface mainly leverages
the stream type in HLS, i.e., AXI stream in HDL, for better
compatibility. In future work, we intend to raise the level of
abstraction further by developing a comprehensive framework
such that users without hardware design experience can easily
leverage FpgaNIC to accelerate distributed GPU-powered ap-
plications by automatically identifying offloaded functionali-
ties via an FPGA-aware performance analysis framework [69]
for maximum performance and high programmability.

6 Conclusion

Inspired by the fact that there is no SmartNIC designed for
GPUs, we present FpgaNIC, a full-stack FPGA-based GPU-
centric 100Gbps SmartNIC that allows a large design space
exploration around SmartNICs for accelerating applications
running on distributed GPUs. FpgaNIC enables direct data
communication to local GPUs via PCIe P2P communication,
enables local GPUs to directly manipulate the FPGA, pro-
vides reliable network communication with remote nodes, and
enables on-NIC computing module to process the data from
network at line rate. FpgaNIC can be efficiently used in three
SmartNIC modes: direct, off-path, and on-path, to accelerate
a broad range of GPU-powered distributed applications, such
as Deep Learning model training. FpgaNIC is open-source to
encourage further development and research in GPU-centric
applications (Github: https://github.com/RC4ML/FpgaNIC).
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Appendices
A Implementation of FpgaNIC: Three Mod-

els

Due to the reconfigurable nature of FpgaNIC, the on-NIC
computing component has been designed to easily support
three SmartNIC modes for various types of application. We
use an application to map to each of three SmartNIC models
to demonstrate the versatility and efficiency of FpgaNIC.

A.1 Direct Model: GPU-centric Networking
We allow the direct model to support GPU-centric network-
ing (GCN), which enables direct network communication
between GPUs via a socket-like interface similar to that of
GPUnet [30]. The design is based on four goals.
D1: Reliable Communication. FpgaNIC intends to serve
AI and HPC applications which typically rely on reliable
data communication between computing nodes. With the
FPGA acting as a network proxy, this implies extending the
functionality of FpgaNIC on the GPU side to avoid losing
messages due to processing rate mismatches.
D2: Easy to Program. We strive to spare the developer the
need to deal with tedious GPU-related optimization meth-
ods such as the number of thread blocks and the number of
threads within a thread block. However, existing systems like
GPUnet [30] invokes its send/recv calls within a thread block
and requires all threads in a thread block to work in a coa-
lesced manner [30]. As a result, a programmer needs to be
quite familiar with GPU programming to leverage GPUnet.
Moreover, RDMA programming is much more complex than
traditional socket programming because RDMA exposes the
underlying functions and data structures of NIC to allow pro-
grammers to manipulate. Therefore, FpgaNIC implements
instead a simple socket API, making the development of dis-
tributed GPU applications easier.10

D3: Light-weight. Our GCN implementation has to be light-
weight, in terms of low GPU memory footprint and low GPU
core usage, on the GPU side, since the targeted HPC and AI
applications running on GPUs are both compute-intensive

10Nevertheless, FpgaNIC can also implement RDMA APIs with reason-
ably small amount of modifications.

//setup context for socket programming 
context = create_socket_context();  
int sockfd = socket(context); //create an socket  

connect(); //connect to the server 
send(sockfd, send_data, len); //send out an array 
  

FpgaNIC

//setup context for socket programming 
context = create_socket_context(); 
sockfd = socket(context); 
listen(sockfd); 
newsock = accept(sockfd, …); 
recv(newsock, recv_data, len)//recv an array 

(a) Client (b) Server

Figure 10: A typical example between a sender and a receiver

and memory-bound. Thus, the overall design needs to free up
GPU resources to maximize the application’s performance.
D4: Generalization to GPU Classes. Different GPU gen-
erations have different specifications for GPUDirect [52]:
maximum BAR size and PCIe P2P bandwidth. The maximum
BAR size available for GPUDirect is 256MB on Kepler-class
GPUs, while at least 16GB on Tesla-class GPUs. Besides,
the PCIe P2P bandwidth is 10.6GB/s on Quadro GPUs while
12.6GB/s on Tesla GPUs (§3.2). Our goal is to provide a solu-
tion that works on all GPUs regardless of their specifications.

In the following, we describe an example GPU-centric
networking (§A.1.1), followed by the overall architecture
(§A.1.2) and the implementation details (§A.1.3 and §A.1.4).

A.1.1 GCN Example

Figure 10 illustrates a typical example, written with the pro-
posed socket-like APIs, between a client and a server running
on distributed GPUs. After performing a typical socket hand-
shake, the client GPU sends the data of length len, starting
from the GPU memory address send_data, to the server GPU,
starting from the GPU memory address recv_data. This ex-
ample is similar to a typical socket program running on CPUs,
except the need to set up a context for the inter-GPU socket
programming. The resulting code is concise and easy to un-
derstand, satisfying one of the stated goals (D2: Easy of Use).

A.1.2 Overall Architecture of GCN

Figure 11 shows the software/hardware co-design approach
chosen to implement the GPU-centric network model. The
overall architecture consists of three layers: ONC, GPU ker-
nel, and GPU user. The key idea is to aggressively overlap
the operations performed on these three layers such that the
overall performance is maximized.
ONC Layer. The “ONC" layer of FpgaNIC consists of the
control, DMA read, and DMA write modules. The control
module directly accepts control-plane commands from the
GPUs and calls the other modules, e.g., DMA read. The DMA
read module accepts a DMA read command from the control
module and then issues a DMA read operation to the GPU.
Next, the DMA read module forwards the data stream from
PCIe to the 100Gb TCP stack. The DMA write module polls
on the incoming stream interface from the 100Gb TCP stack
and then forwards the received data to the GPU by issuing a
DMA write operation.



FpgaNIC

GPU communication stack            

100Gb HW Transport

DMA read & forward

2

    GPU communication stack

           100Gb HW Transport

Add header & DMA write

Send buffer Receive bufferGPU	kernel

Head

Tail Head

Tail

GPU	user

Control Control

… … … …
1

3

4 5

6

7

8

Trigger DMA read Flow control

9

(a) Sender (b) Receiver

	To-send	array: To-receive	array:

Control plane GPU copy FPGA-GPU DMA TCP transfer  Inter-GPU flow control  

Figure 11: GCN between a sender and a receiver

GPU Kernel Layer. To manage incoming and outgoing traf-
fic, we implement a send buffer and a receive buffer, concep-
tually two circular buffers, for each established connection.
The key role of either buffer is to provide a staging option at
the GPU memory exposed to other PCIe devices, as not all
the memory space is visible to other PCIe devices on Quadro
GPUs. Since the total exposed memory size is 220MB, we
allocate 100MB to the send buffers and 100MB to the receive
buffers, while the remaining 20MB is reserved for internal
use. The number of supported connections is N, so each con-
nection has a circular buffer of size M = 100/N MB. We also
split a circular buffer into F slots, each of which containing
W = M

F MB GPU memory space.11

GPU User Layer. In the GPU user layer, calling a send()
or a receive() function will launch a data-mover kernel that
leverages Streaming Multiprocessing (SM)12 to move data
between the GPU user and kernel layers such that the speed
of the data mover matches the DMA read/write speed.

A.1.3 Handshake Protocol of GCN

We demonstrate how the handshake protocol works in GCN.
The key idea is to directly leverage the TCP stack on the
FPGA (§2.4) via the control plane offloaded to GPUs. The
handshake process consists of the following three steps.

First, each side creates a GPU-aware context by calling
create_socket_context, which specifies the number N of sup-
ported TCP connections (e.g., 8), the GPU send/recv buffer
size of each connection (e.g., 12.5MB), the initial address of
control plane.

11Nevertheless, FpgaNIC can be easily extended to support dynamic buffer
size with slight modifications in the GPU kernel layer.

12In our experiment, a Streaming Multiprocessing (SM) provides more
than enough throughput on both Quadro and Tesla GPUs. Each SM consists
of 64 GPU cores. RTX8000 has 72 SMs while A100 has 108.

Second, each side creates a socket (sockfd) using the func-
tion socket, which launches a GPU kernel with only one thread
that will apply for one free TCP connection slot in the FPGA
100Gb TCP stack.

Third, the server will listen to the socket sockfd by set-
ting the listen-port register listen_port and then triggering the
doorbell register listen_start (Table 4). Then, the server initi-
ates the function accept to wait for an incoming connection
from a client. The client calls the function connect with two
parameters conn_port and conn_ip to specify the destination
IP address and port. Once a connection is established, a client
and a server can proceed to exchange data.

A.1.4 Send/Recv Functions of GCN

We now describe the implementation details of the two-sided
communication between distributed GPUs by explaining the
overall data and control flow shown in Figure 11.
Data Flow. The sender splits the “to-send array" into chunks,
each of which has the size of W MB. For each chunk, we per-
form the following five steps. First, we employ a data-mover
kernel that occupies a GPU SM, in terms of a thread block
with 1024 threads, to copy a chunk in the “GPU user" layer
into the “tail" slot in the send buffer in the “GPU kernel" layer
( 1 ). Second, the sender kernel triggers a doorbell register
within an FPGA to start a DMA read operation ( 2 ). Third,
the DMA read module reads the data stream from the “head"
slot in the send buffer ( 3 ), and then forwards to the 100Gb
TCP stack ( 4 ). Fourth, the receiver accepts the data stream
from its 100Gb TCP stack ( 5 ), and then adds a header and a
trailer to the data stream and forwards it to the “tail" slot in
the receive buffer in the “GPU kernel" layer ( 6 ). Fifth, the
receiving GPU kernel monitors the “head" slot and leverages
a data-mover kernel that also occupies a GPU SM to copy the
data in the “tail" slot to the destination chunk in the to-receive
array in the “GPU user" layer ( 7 ).
Flow Control. Reliable communication (goal D1) is achieved
through a simple credit-based flow control [34] over each TCP
connection, so as to avoid potential congestion at a slow re-
ceiving GPU receiving a heavy traffic load. At the beginning,
the sender has a full credit of M MB to leverage. If we send
data from the to-send array to the tail slot in the send buffer
( 1 ), the corresponding credits are consumed, and the data in
the send buffer will be safely delivered to the receive buffer
on the other side. When the receiver copies the data from
the head slot to the to-receive array in the “GPU user" layer,
and then accumulates the amount Mr of correctly received
data, where Mr is initialized to be 0. Once the ratio of Mr to
M is over a threshold (T h), the receiver sends back a credit
with T h×M bytes to the sender, indicating T h×M bytes
of data have been correctly received. To do so, the receiver
triggers a doorbell register (consumed_bytes) specified in the
“control" module ( 8 ), and then forms a flow-control packet
to the sender ( 9 ). After the sender receives the credits, the
sender can proceed to send T h×M additional bytes.



Table 8: State transition of AllReduce within FpgaNIC. “x/y" means that x is input and y is output, where G refers to the
communication with a GPU, E refers to the communication with the 100Gb TCP stack. “(G+E)" means that we perform the
reduction on the data from GPUs (G) and the data from the 100Gb TCP stack (E), and store the reduced result in on-board
memory. “(E,G)" means that the data is read from on-board memory and forwarded to the next GPU via 100Gb TCP stack (E)
and GPUs (G). E j

i indicates the subarray[i] has already been accumulated j times, where 1 ≤ j ≤ 4. When j is 4, E4 and G4 are
the final reduced result sent to the next GPU via 100Gb TCP stack and to local GPU, respectively.
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Discussion. The design matches the goals we established the
beginning, which dictate many of the architectural decisions.
To ensure reliable communication (goal D1), we implement
a credit-based flow control (§A.1.4) on the GPU side. To
simplify programming (goal D2), the GPU-aware socket-like
functions are executed sequentially by leveraging the default
CUDA stream, which is transparent to programmers. Never-
theless, our APIs also allow programmers to explicitly specify
CUDA streams to maximize execution overlap between ker-
nels. To minimize overhead (goal D3), GCN uses at most
220MB of the GPU memory for the communication, and a
GPU SM only when a send() or a receive() function is active.
Moreover, each handshake function launches a GPU kernel
with only one active thread. Finally, to support a wide range
of GPU classes (goal D4), GCN only exposes 220MB GPU
memory, which is allowed in all supported Nvidia GPUs.

A.2 Off-path SmartNIC: AllReduce
To illustrate the the off-path model of FpgaNIC, we imple-
ment a use case from HPC and AI applications: a collective
communication primitive AllReduce [4, 11, 50] operating on
the data residing in a distributed pool of GPUs. In particular,
we implement a ring-based AllReduce algorithm [4, 50] as it
provides high performance while having a simple communica-
tion flow that fits well within an FPGA. The communication
pattern is as follows. Assume there are P GPUs and each
GPU divides its own array for AllReduce into P subarrays.
The p-th GPU receives subarray[i] from the (p−1)-th GPU,
performs a reduction operation on the received subarray[i]
and its local subarray[i], and then sends the reduced result to
the (p+1)-th GPU, where 0 ≤ i, p < P.

A.2.1 Overall Architecture of AllReduce

The AllReduce [5, 67] engine implements the entire logic
in the ONC component, which is configured in an off-path
model, as show in Figure 12. The engine concurrently op-
erates on three components on the FPGA: the PCIe DMA
operation (§2.3), the network stack (§2.4), and the on-board
memory. The overall execution under FpgaNIC allows to over-
lap the access to these components to maximize throughput.

PCIe DMA Operation. The PCIe DMA operation is used
transfer data between the FPGA and its local GPU by issuing
a DMA operation within an FPGA directly to the GPU and
without CPU intervention.
Network Stack. The network stack is used to communicate
with remote GPUs through their corresponding FPGAs. In
our ring implementation, data arrives the previous GPU and
it is sent to the next GPU in the ring.
On-board Memory. The FPGA on-board memory is used
to store intermediate results. The current reduced result is
accumulated in on-board memory before being forwarded to
the next GPU. While it is being forwarded, the next result is
being calculated. Thus, the memory needs to provide suffi-
cient bandwidth for simultaneously writing partial results and
reading the previous result as it is being sent.
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Figure 12: Architecture of AllReduce on the off-path model

A.2.2 Execution Flow of AllReduce on FpgaNIC

Table 8 illustrates the detailed execution flow of FpgaNIC-
enhanced AllReduce with a concrete example over 4 dis-
tributed nodes, labelled FPGA i, where i is from 1 to 4. The
execution is divided into eight steps (t0 ∼ t7).

At step t0, FPGA i issues a DMA read operation to transfer
its local subarray[i] in GPU memory to the FPGA’s memory
(labelled G1

i ). At step t1, FPGA i issues a DMA read operation
to read from its local subarray[i-1] (G1

i−1) in GPU memory,
receives E1

i−1 from the previous GPU in the ring (i.e., arriving
via the network), and then accumulates these two on-the-
fly and finally stores the accumulated result in the FPGA
memory (labelled (G1

i−1 +E1
i−1)). At the same time, FPGA i



forwards its local subarray[i] in FPGA memory to the next
GPU, labelled E1

i . Figure 12(a) illustrates the data flow of
FPGA 0. At step t2, FPGA i performs the reduction operation
on its local G1

i−2 in GPU memory and E2
i−2 from the previous

GPU, and then stores the accumulated result in FPGA memory
(labelled (G1

i−2 +E2
i−2)). At the same time, FPGA i forwards

its local E2
i−1 from the FPGA memory to the next GPU. At

step t3, FPGA i performs the reduction operation on G1
i−3

from its local GPU memory and E3
i−3 from the previous GPU,

and then stores the accumulated result in FPGA memory,
labelled (G1

i−3 +E3
i−3). At the same time, FPGA i sends its

local E3
i−2 from FPGA memory to the next GPU in the ring.

At step t4, FPGA i receives E4
i from the previous GPU and

copies it to FPGA memory. At the same time, FPGA i sends
(G1

i−3 +E3
i−3) from the FPGA memory to the next GPU E4

i−3
and writes it to its local GPU memory G4

i−3. At step t5, FPGA
i receives E4

i−3 from the previous GPU and copies into the
FPGA memory. At the same time, FPGA i sends E4

i in the
FPGA memory to both the next GPU E4

i and writes it to its
local GPU memory G4

i . Figure 12(b) illustrates the data flow
of FPGA 1. At step t6, FPGA i receives E4

i−2 from the previous
GPU and copies it to on-board memory. At the same time,
FPGA i sends E4

i−3 to the next GPU E4
i−3 and writes it to its

GPU memory G4
i−3. At the final step t7, FPGA i writes E4

i−2
from the FPGA memory into its GPU memory G4

i−2 which
now has the final aggregated result.
Comparison with AllReduce on Innova. To illustrate the
advantages of FpgaNIC’s design over existing commercial
solutions, consider how the same AllReduce operation would
work on Mellanox Innova. In Innova, the PCIe link connect-
ing the FPGA to the rest of the system limits the overall
throughput because the AllReduce engine on the FPGA is
forced to interact with both the local GPU and the network
through its PCIe X8 Gen4 endpoint. In such a design, the
FPGA can consume data either from the GPU or from the
network but not from both at the same time. We estimate
that the overall throughput would be halved. Both Innova and
FpgaNIC approaches do not involve any GPU cores during
execution, freeing up GPU cores for other computing tasks.

A.3 On-path SmartNIC: HyperLoglog
To illustrate the on-path model of FpgaNIC, we use Hyper-
LogLog (HLL) [18, 33] as an example application. HLL is
widely used in data analytic applications to estimate the car-
dinality of data streams or of large data sets. In our case, HLL
will work on the data as it flows from the network transport
towards the GPU. The basic scenario is transferring data to
be processed to the GPU and using the FPGA to compute the
cardinality on the fly without adding any overhead.

The on-path model is similar to the direct model (labelled
“direct"), except that the incoming data stream is forwarded to
both the GPU and to the on-path module (HLL in this case)
via the “op_in" port. We use an open source implementa-
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Figure 13: On-path model of FpgaNIC

tion of HLL [33] that is embedded into the ONC component
(Figure 13). After the data stream has been consumed, the
cardinality of the data set can be forwarded to the local GPU
via the “op_out" port. The on-path model also allows the re-
sult to be sent back to the network through the “op_return"
port. In such a case, FpgaNIC can be used as an independent,
network attached accelerator that uses the on-path module to
process data on behalf of a remote client.

7 Artifact

7.1 Abstract

This artifact provides the source code of FpgaNIC and scripts
to reproduce the main experimental results. The experiments
are run on a cluster consisting of eight 4U AMAX servers,
connected with a Mellanox 100Gbps Ethernet SN2700 switch.
Each server is equipped with two Intel Xeon Silver 4214
CPUs@2.20GHz, 128GB memory, FpgaNIC (i.e., a Xilinx
Ultra-Scale+ FPGA), and a Nvidia RTX 8000 GPU, where
the FPGA and the GPU have direct PCIe P2P communication.
Two servers have an additional two A100 GPUs. FpgaNIC is
implemented on Xilinx Alveo cards U50 or U280 with Vivado
2020.1.

7.2 Check-list

1. At least two nodes, each has a GPU that supports
NVIDIA GPUDirect and the Xilinx U280 or U50 card.

2. Each FPGA card is connected to a 100Gbps Ethernet
switch.

3. FPGA card and GPU are connected to the same PCIe
switch.

4. Host OS: Linux 4.15.0-20-generic

5. Nvidia Driver Version: 450.51.05

6. CUDA Version: 11.0



Hugepages Setting. Make sure that each server has enabled
Hugepages. If not, run the following commands.

1. $ sudo apt install libboost-program-options-dev cmake

2. $ sudo groupadd hugetlbfs

3. $ sudo getent group hugetlbfs

4. $ sudo adduser xxx hugetlbfs
xxx is the user name you are using

5. Edit “/etc/sysctl.conf" and specify the number of pages
you want to reserve.

6. $ mkdir /media/huge

7. Add this line “hugetlbfs /media/huge hugetlbfs
mode=1770,gid=1001 0 0" to “/etc/fstab".

8. $ reboot

7.3 Thee Steps to Run Experiments
There are three steps to run each experiment. Before running
FpgaNIC, please clone the source code:

$ git clone https://github.com/RC4ML/FpgaNIC

7.3.1 Hardware: FPGA Bitstream

1. $ mkdir build && cd build

2. $ cmake ..

3. Make HLS IP core
$ make installip

4. Create vivado project, add the hardware project option
after make, as shown in Table 9.
$ make pcie_benchmark

5. Now the hardware project is produced, generate bit-
stream using vivado and flush it to every FPGA card.

6. Every time you download the bitstream to the FPGA,
you have to reboot the machine, do not forget to reinstall
xdma driver and GDR driver (See Subsection 7.3.2).

Table 9: The options of hardware project

Project Description
direct To create direct model project

pcie_benchmark To create PCIe benchmark project
tcp_latency To create TCP latency benchmark project

tcp_benchmark To create TCP throughput benchmark project
allreduce To create off-path model project

hyperloglog To create on-path model project

7.3.2 Software: Driver Installation

1. $ cd FpgaNIC/driver

2. $ make && sudo insmod xdma_driver.ko

3. $ cd FpgaNIC/gdrcopy

4. $ sudo ./insmod.sh

5. Note that you need to reinstall xdma driver and gdr driver
every time you reboot your machine.

7.3.3 Software: Running Application Code

1. $ cd FpgaNIC/sw && mkdir build && cd build

2. $ cmake ../src

3. $ make

4. $ sudo ./dma-example -b 0

5. $ Above command would report GPU read CPU
memory latency, for more details, please refer to
sw/README.md
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