
DmRPC: Disaggregated Memory-aware Datacenter
RPC for Data-intensive Applications

Jie Zhang†
Zhejiang University
Hangzhou, China

carlzhang4@zju.edu.cn

Xuzheng Chen†
Zhejiang University
Hangzhou, China

chenxuz@zju.edu.cn

Yin Zhang
Zhejiang University
Hangzhou, China

zhangyin98@zju.edu.cn

Zeke Wang∗
Zhejiang University
Hangzhou, China

wangzeke@zju.edu.cn

Abstract—Modern datacenter applications are increasingly be-
ing built using a microservices architecture. These microservices
communicate with each other using datacenter RPCs. RPC’s
pass by value semantics incur redundant data movement along
the network, especially for data-intensive applications. Naively
introducing a shared global address space to datacenter RPC
does not work as it would couple microservices and require mi-
croservices to handle data consistency, significantly complicating
the development and deployment of applications. Fortunately, the
modern datacenter is embracing disaggregated memory (DM). In
a DM-enabled datacenter, servers running the microservices can
be all connected to one global disaggregated memory pool, thus
the pass by value semantics can be replaced by pass by reference.
However, prior work on DM requires complicated synchroniza-
tion primitives to share data across physical machines, so naively
adopting them to datacenter RPC would harm microservices’
agility and modularity.

To this end, we present DmRPC, a DM-aware datacenter
RPC for data-intensive datacenter applications to our knowledge.
First, DmRPC introduces a DM-aware shared global address
space to provide the semantics of pass by reference to dat-
acenter RPC, thus alleviating the redundant data movement
issue. Second, DmRPC adopts a copy-on-write mechanism to
avoid complicating application logic to handle data consistency
while guaranteeing high performance. We have applied DmRPC
to two different implementations of DM, one is network-based
(DmRPC-net) while the other is CXL-based (DmRPC-CXL). Our
evaluations on synthetic 7-tier microservices workloads show
that DmRPC-net (or DmRPC-CXL) achieves 4.2× (or 8.3×)
higher throughput and achieves 1.1× (or 1.7×) lower average
latency than that of the baseline, respectively. On a widely
used microservice benchmark DeathStarBench, DmRPC-net can
achieve 3.1× higher throughput and 2.5× lower average latency
than the baseline.

I. INTRODUCTION

Modern datacenter applications have been using the mi-
croservices programming model to improve their agility, elas-
ticity, and modularity [26], [26], [35], [39], [41], [72]. In
particular, microservices break complex monolithic logic into
many fine-grained and loosely-coupled services, and microser-
vices communicate with each other over Remote Procedure
Calls (RPC) such as eRPC [37], DaRPC [59], gRPC [1].
However, compared with monolithic design, the main issue
of introducing microservices is to bring much additional
network data movement [9]. The underlying reason is that
the pass by value semantic of RPC results in redundant

†Equal contribution

data movement. Many microservices do not even touch the
transferred RPC arguments or only touch a small portion of
them, they just forward the arguments to the next microservice
by calling a new RPC. For example, an application-level load
balancer only forwards the RPC requests to an idle server
without accessing the content in the requests (∼60% traffic
in the data center would go through a load balancer [56]).
The issue of redundant data movement becomes more severe
for large RPC arguments, which is common in the modern
datacenter. For example, the commodity block storage service
uses RPC to transfer large data blocks (tens to hundreds of
KBs) [28], [49].

Introducing a global address space to datacenter RPC can
alleviate the issue of redundant data movement. A global
address space shared by all microservices can provide a
pass by reference semantic, thus the redundant movement
only involves small references (metadata that acts like a
pointer). When a microservice really needs to access the
data, it uses the reference to fetch the pointed data through
the network. However, such a global address space directly
contradicts the semantics of RPC, and couples the RPC caller
and callee. Microservices that share the same memory need
to synchronize with each other to keep data consistent. This
requires additional logic in the microservice to handle the
sharing, complicating the development of the microservices.

Thus, instead of using RPC directly, some domain-specific
applications tend to be built on top of specialized frame-
works [50], [52], [57], such as Apache Spark [73] for data
processing, and Distributed Pytorch [45] for machine learning.
The framework is usually integrated with an in-memory data
store service. Instead of directly transferring large data in RPC,
the caller process copies the data to the data store service and
sends the returned reference. When a remote callee process
needs to access the data, it uses the reference to fetch the
copied data from the caller’s data store to its own data store
through the network. The copied data in the callee’s data store
is unchangeable, it has to copy again from the data store to
the process’s heap space. The two copies eliminate the need
to handle data consistency issues. Wang et al. [65] propose
to introduce this mechanism to general RPC. However, the
two extra copies and inefficient communication with the
data store service result in poor performance. Adopting this
mechanism to datacenter RPC is unacceptable due to the

Fig. 1: Architecture of DmRPC

datacenter microservices’ requirements for high throughput
and low latency [35], [50].

Fortunately, modern datacenters are embracing memory dis-
aggregation. Memory disaggregation allows computing servers
to be paired with different amounts of disaggregated memory
(DM) flexibly according to their demands, thus improving
total memory utilization. Many mainstream datacenters are
developing their memory disaggregation prototype, for exam-
ple, Microsoft Azure [43], Meta [47]. With CXL, memory
disaggregation in production is thought to be coming in
the near future. We observe that a memory disaggregation
datacenter has the potential to enable RPC to enjoy the benefits
of pass by reference without sacrificing programming sim-
plicity and performance. However, prior works [6], [22], [32],
[53], [62], [71] on DM all require complicated synchronization
primitives to support sharing data across physical machines,
thus simply adopting them to datacenter RPC would harm
microservices’ agility and modularity.

To this end, we propose DmRPC, a DM-aware datacen-
ter RPC for data-intensive datacenter applications. First, it
provides a DM-based shared global address space, enabling
pass by reference semantics for large object transfer in RPC,
thus alleviating the problem of redundant data movement in
the nested RPC calls. Meanwhile, it adopts pass by value
semantics for small object transfer like prior RPC systems,
to avoid memory management overhead. Second, DmRPC
adopts a copy-on-write mechanism to delay the copy to
when necessary and reduce the copy amount by copying at
the granularity of pages. The copy-on-write mechanism
eliminates the need to handle data consistency in the microser-
vice logic, thus avoiding complicating the development and
deployment of microservices.

Figure 1 shows the overall architecture of DmRPC. We have
applied DmRPC to two DM implementations, one is network-
based (DmRPC-net) and the other is CXL-based (DmRPC-
CXL). We use a synthetic 7-tier microservices application
and a widely used microservice benchmark (i.e., Death-
StarBench [26]) to evaluate DmRPC. In DeathStarBench,
DmRPC-net achieves 3.1× higher throughput and 2.5× lower
average latency than the baseline. In summary, we make three

key contributions.
1) We present a DM-aware datacenter RPC for data-

intensive datacenter applications.
2) We present DM-based pass by reference semantics to

address the problem of redundant data movement.
3) We present a copy-on-write mechanism along with

DM to provide programming simplicity for RPC without
sacrificing performance.

II. BACKGROUND

A. Datacenter RPC

Modern datacenter applications are decomposed into deep
hierarchies of microservices [19]. Compared with monolithic
design, the microservice-based design provides the benefits of
agility, modularity, and scalability.

Microservices communicate with each other using Remote
Procedure Call (RPC), which has been a key building block
of distributed systems ever since the early 80s [14], [59].
Datacenter RPC has been designed to saturate the network
bandwidth in the datacenter infrastructure (tens or hundreds
of Gbps) and provide low latency (several microseconds) [35],
[37]. Microservices choose RPC as the communication layer
mostly because of its simplicity. There is no shared state
between an RPC caller and an RPC callee. The arguments and
return values in RPC are passed by value, which completely
hides the details among callers and callees. This design greatly
simplifies the development and deployment of datacenter
applications without sacrificing microservices programming
model’s agility and modularity.

B. Disaggregated Memory

Memory disaggregation can be categorized into network-
based and CXL-based types.

1) Network-based Memory Disaggregation: Network-based
memory disaggregation connects compute servers with mem-
ory servers using network interconnect. The compute server
can access the memory in the remote servers through RDMA,
TCP/IP, or other network protocols. The network latency of
RDMA and user-space networking (powered by DPDK [21])
can be as low as several microseconds. As such, the latency
penalty of accessing remote memory can be greatly amortized
compared with traditional kernel TCP’s milliseconds latency.
According to the granularity of the memory, there are two
types of network-based memory disaggregation.
Page-based memory disaggregation. Page-based memory
disaggregation [8], [10], [31], [32], [42] manages remote
memory at the granularity of page. Part of works [8], [10], [31]
leverage virtual memory systems to intercept paging requests
underneath the kernel swap daemon (kswapd). When there
is a page fault, it evicts recently unused local pages and
fetches remote-needed pages. In this way, the remote memory
is transparent to user applications. Other prior works [11],
[32] use explicit user APIs to write modified local data to the
remote memory node or read remote data to local memory.
Object-based memory disaggregation. Rather than tying
swapping to virtual memory abstraction of pages, AIFM [58]

TABLE I: Comparisons of different data sharing methods

Approaches Sharing Semantics Performance Mutability Programming
Traditional RPC [1], [37], [59] Pass-by-value Low Mutable Simple
DSM Model [6], [16], [22], [32], [44], [53], [54], [62], [71] Pass-by-reference High Mutable Complex
Distributed In-Memory Data Store [50], [73] Pass-by-reference Low Immutable Simple
DmRPC (Ours) Pass-by-reference High Mutable Simple

ties swapping to individual application-level memory objects.
Compared with page-based swapping, object-based swapping
is more fine-grained and does not suffer from IO amplification
when accessing small objects. The disadvantage is that users
have to use provided primitives in their application code to
ensure that evacuation handlers can evacuate unused objects
correctly and efficiently.

2) CXL-based Memory Disaggregation: Both page-based
and object-based memory disaggregation exchange data
through the network, thus the performance could be limited
by network performance. For example, its access latency
through the network usually reaches several to hundreds of
microseconds. Instead, the emerging Compute Express Link
(CXL) provides a completely different approach. With CXL,
hosts and DM are connected through CXL links, which build
upon the physical and electrical interfaces of PCIe 5.0/6.0.
The CXL memory appears like a CPU-less NUMA node,
hosts can access the CXL memory through sheer load/store
instructions, and the access latency can be as low as hundreds
of nanoseconds [43], [47], [60].
CXL memory. There are two types of CXL memory that
can be exposed to multiple hosts. The first is called LD-
FAM (Logical Devices Fabric-Attached Memory). LD-FAM
partitions a physical CXL memory device into up to 16 logical
devices. Each logical device can be exposed to a host with a
separate Device Physical Address (DPA). The second is called
G-FAM (Global Fabric-Attached Memory). G-FAM provides
a highly scalable memory resource accessible by all hosts
(∼100s to ∼1000s) within a CXL fabric. G-FAM has only
one DPA space that is common across all hosts. To create
shared memory, different hosts allocate a contiguous address
range of their physical address space, this address range is
mapped to the DPA of the G-FAM. G-FAM device would be
in charge of the address translation from each host’s physical
address to DPA. In this way, different hosts can access the
same content in G-FAM.

III. MOTIVATION AND TRENDS

A. Issues of Traditional Global Address Space

Introducing a global address space for datacenter RPC can
alleviate the problem of redundant data movement through the
network. The microservices call RPC to send the reference
of the data to a remote microservice. Once the remote mi-
croservice needs the data, it uses the reference to fetch the
local data. The reference is transferred in the nested RPC
calls on behalf of the large data itself, thus alleviating the
problem of redundant data movement across the network.
There are mainly two approaches to implementing a global

address space for datacenter RPC. And Table I summarizes
their characteristics.
Distributed shared memory. Distributed shared memory
(DSM) [12], [16], [38], [44], [54] provides the illusion of
a single globally shared address space across physically dis-
tributed machines [54]. However, introducing DSM to general
RPC has been proven impractical [65], because adopting the
DSM model would greatly harm the agility and modularity of
microservices. In particular, introducing DSM into datacenter
RPCs significantly complicates the microservice logic and
couples the caller and callee. Microservices logic has to
handle shared memory management and complicated data
consistency. And that is why the DSM model has not been
adopted by any datacenter RPC.
Distributed in-memory data store. Ray [50], [66] integrates
a distributed in-memory data store service. When transferring
large data, the caller copies the entire data into the data store
service and a shared reference is returned. Then caller passes
the reference to a remote node through an RPC call. When
needed, the remote node communicates with the caller’s data
store service, using the reference to retrieve the entire copy to
its local data store. Instead of directly using this immutable
copy, this copy must be copied from its local data store
to the user’s heap. Sharing an immutable data copy greatly
simplifies the user logic, each user does not need to handle
data consistency. Wang et al. [65] propose that general RPC
should also be integrated with such a distributed data store to
provide the semantics of pass by reference. However, we
identify that adopting this solution for datacenter RPC incurs
poor performance due to two main reasons. First, the caller
has to copy the data to the data store service. The callee
fetches the data from the caller’s data store service to its
local data store service through the network and then has to
copy the data from the local data store service to the user’s
heap space. The introduced communication and two additional
copies are inefficient. Second, even if the callee only needs to
access a small portion of a shared copy, the entire copy has to
be transferred from the caller to the callee. Our evaluation
result in Section VI-D indicates that DmRPC can provide
21.6×/5.6× than Spark/Ray when transferring 32KB raw data
blocks between two servers (each equipped with a 100 GbE
NIC) using a single thread.

B. DM-based Global Address Space
There is one important trend that motivates this paper. That

is, the modern datacenter is actively embracing disaggregated
memory. With the release of the CXL standard, mainstream
datacenters [43], [47] have started early deployment of DM.
From hardware to software vendors, memory disaggregation

is thought to be a standard facility of the datacenter in the
near future. We argue that DM should help introduce a global
address space for datacenter RPC while addressing the issues
of the DSM model and distributed in-memory data store.
However, directly adopting current DM solutions can not
address these issues.
Limitation of existing DM solutions. Many of the prior
works on DM [8], [10], [31], [58] do not allow memory
sharing across different processes, while others [6], [22],
[32], [53], [62], [71] support sharing memory adopting a
DSM-like model. This requires the process to handle data
consistency, thus greatly complicating the microservice logic.
For example, Remote Region [6] provides barriers, mutexes,
and doorbells. Clio [32] uses rlock, runlock, and rfence
to synchronize data. FaRM [22] uses distributed transactions
to manage data consistency. Adopting these approaches to
microservices significantly complicates user logic, which is
unacceptable for microservices.

IV. OVERVIEW OF DMRPC

To address the problem mentioned in Section III, we pro-
pose DmRPC, a DM-aware datacenter RPC that supports a
global address space without sacrificing programming simplic-
ity or performance.

A. Design Goals

There are three main design goals of DmRPC.
G1: Minimizing redundant data movement along network
when using datacenter RPC. Deeply nested datacenter RPC
incurs redundant data movement along the network, especially
for large RPC arguments. Instead of pass by value, DmRPC
shall provide a pass by reference mechanism to reduce
redundant data movement.
G2: Abstracting complex user logic away from han-
dling data consistency. Traditional distributed shared memory
(DSM) model [12], [38], [44], [54], [65] exposes too many
underlying details such as consistency to users, which hinders
the agility and modularity of microservices. Our design intends
to provide pass by reference semantics while keeping high
programmability.
G3: Introducing a trivial performance overhead. The
performance of datacenter RPC directly determines the overall
application performance [41]. It is unacceptable to sacrifice
nontrivial performance for programming simplicity.

B. Design Overview

Figure 1 shows the architecture overview of DmRPC. Dm-
RPC targets DM-enabled datacenter, it intends to provide a
global address space to accelerate data-intensive RPCs while
abstracting user logic away from handling data consistency
and providing high performance. Microservices running in
different compute servers communicate with each other using
RPC. Each microservice can access the disaggregated memory
through the CXL link or Ethernet, according to the type of
memory disaggregation. To minimize redundant data move-
ment, it adopts a pass by reference mechanism to enable

microservices to share DM region without complicating the
application logic or sacrificing performance.

DmRPC is orthogonal to the prior works on disaggregated
memory. We have applied DmRPC to two different implemen-
tations of DM: DmRPC-net and DmRPC-CXL. DmRPC-net
is based on the network and adopts a non-transparent interface
where applications access disaggregated memory via explicit
API calls (i.e., rread, rwrite). DmRPC-CXL is based on CXL
and applications access disaggregated memory through naive
load and store instructions.

Fig. 2: An example of a high-level view of DmRPC.

To achieve G1, we introduce a DM-aware global address
space to datacenter RPC. When a microservice intends to
share a large data in a DM region, instead of sending the data
in an RPC call, it uses the RPC to send a reference (called
Ref) of the memory region. The Ref object is small (several
bytes), and is transferred along the RPC chain on behalf of
the large data. The pass by reference semantics greatly
reduce redundant data movement. At the time a microservice
needs to access data, it uses the Ref object to map the
shared disaggregated memory to its virtual address space, thus
manipulating the data.

A naive solution to achieve G2 is to copy the entire data,
and then only allow the remote microservice to access the
copy. In this way, there is no need for different microservices
to handle data consistency issues because each of them owns
a different memory region. However, the copy could incur
performance degradation, dissatisfying G3. To resolve this,
we design a copy-on-write layer on top of the DM. The
copy-on-write layer alleviates the performance degra-
dation in two ways. First, it delays the actual copy to the
time when a microservice writes the shared memory region,
avoiding data copy for read-only accesses. Second, the
copy-on-write is at the granularity of pages. Pages that
have not been written would not be copied, further reducing
the copying overhead. In this way, we achieve G2 and G3,
abstracting microservices logic away from handling data con-
sistency, more importantly, without sacrificing performance.

Figure 2 gives a high-level view of DmRPC mechanism to
show how DmRPC works.
(a) Microservice Client calls create ref (1), then a Ref

object pointing to these pages would be returned (2).
(b) Client sends the Ref object to Load balancer using an

RPC call (3). The Load balancer forwards the request
to one unloaded worker, i.e., Worker 1 (4).

(c) Worker 1 calls map ref to map the remote contents
to its virtual address (5). Now pages b and c are shared
between Client and Worker 1, and both of them can
read pages b and c.

(d) When one microservice writes to the shared page (6),
assuming it’s Worker 1, a copy-on-write would be
triggered and the content of the page would be copied
to a new page. The write would be applied to the new
page, and the virtual address of the Worker 1 would
point to the new page. The copy-on-write logically
guarantees each microservice owns a private memory
region.

Size-aware transfer. pass by reference avoids large data
transfer in data-intensive RPCs. However, DmRPC manage
data at the granularity of pages, creating reference for small
data objects may overwhelm the system. As such, DmRPC
only uses pass by reference semantics for large objects,
and uses pass by value semantics for small objects. DmRPC
would automatically choose the appropriate mode based on
the parameter object size, while users are not aware of the
two different modes.

TABLE II: Programming APIs

ralloc(size)
Allocating size bytes disaggregated memory, and return
a remote addr

rfree(remote addr)
Deallocates remote addr.
create ref(remote addr, size)
Return an Ref object pointing to the associated
pages. The memory region would be marked as
read-only, any writes would trigger copy-on-write.
map ref(ref)
Map the pages pointed by Ref to a DM virtual address
and return the remote addr.
rwrite(remote addr, local addr, size)
Write size bytes data of the local memory local addr
to the disaggregated memory remote addr. This function
is specific to DmRPC-net. In DmRPC-CXL, the user
can directly operate on the disaggregated memory.
rread(remote addr, local addr, size)
Read size bytes data from the disaggregated memory
remote addr to local memory local addr. Similar to
rwrite, rread is specific to DmRPC-net.

C. Application Programming Interface

Table II demonstrates the APIs of DmRPC. Both DmRPC-
net and DmRPC-cxl use the same APIs for allocating, freeing,
and sharing disaggregated memory. The difference is how they
read/write the disaggregated memory, through explicit APIs or
naive load/store instructions. rwrite and rread only appear

1 /* @Client microservice */
2 int *r_addr = (int*)ralloc(len*sizeof(int));
3 //Fill the disaggregated memory
4 rwrite(r_addr,local_buf,len*sizeof(int));
5 //Create a reference of r_addr
6 Ref ref = create_ref(r_addr,len*sizeof(int));
7 RPC_LB(ref); //Call load balancer microservice
8 rfree(r_addr);
9

10 /* @Load balancer microservice */
11 //Forwards requests without touching arguments
12 RPC_LB(Ref ref){
13 if(worker_1_is_idle){
14 RPC_Worker_1(ref); //Call Worker 1's microservice
15 }else{
16 RPC_Worker_2(ref); //Call Worker 2's microservice
17 }
18 }
19
20 /* @Worker 1 microservice */
21 RPC_Worker_1(Ref ref){
22 //Map ref to local virtual address that maps to DM
23 int* r_addr = (int*)map_ref(ref);
24 //Read from DM to local buffer
25 rread(r_addr,local_buf,len);
26 //Working on local memory: aggregating the content
27 int sum = 0;
28 for(int i=0;i<len;i++){
29 sum += local_buf[i];
30 }
31 rfree(r_addr);
32 }
33
34 /* @Worker 2 microservice */
35 RPC_Worker_2(Ref ref){
36 ...
37 }

Listing 1: An example of programming with DmRPC

in DmRPC-net, other APIs appear in both DmRPC-net and
DmRPC-CXL.

Listing 1 is a programming example of using DmRPC:

Client. The Client first allocates a disaggregated memory
buffer (Line 2) and fills the buffer (Line 4). Then it calls
create ref (Line 6). This would mark this memory buffer as
a read-only region. It then returns a Ref object pointing
to the read-only region. Instead of sending the actual data
to the remote microservice Load balancer, Client only sends
the Ref object to the Load balancer using an RPC call (Line
7).

Load balancer. Load balancer is in charge of forwarding the
requests to remote workers. If Worker 1 is idle, it forwards
the request to Worker 1 by calling RPC Worker 1 (Lines
13-14). Otherwise, it forwards the request to Worker 2.
Note that Load balancer would not touch the data in the
DM buffer, it simply forwards the Ref object, saving both
network bandwidth and memory bandwidth of the server that
Load balancer runs on.

Workers. Workers simply aggregate the requested data. It first
calls map ref to map the remote buffer to its virtual address
(Line 23). After that, the worker can use the virtual address
to aggregate the DM buffer (Lines 26-29).

Fig. 3: DmRPC-net architecture

V. DESIGN

A. DmRPC-net

Figure 3 shows the architecture of DmRPC-net. Both com-
pute servers and DM servers are regular servers. Each server is
equipped with an Ethernet NIC and connected to a top-of-rack
(ToR) switch.

Generally, microservices processes running at compute
servers communicate with each other through RPC layer, a
modified C/C++ RPC library based on prior work eRPC [37].
Microservices running in the compute servers can manipulate
disaggregated memory in the DM servers through DM layer.
Both RPC layer and DM layer are based on DPDK [21]. Our
networking protocol is founded upon the UDP and the network
reliability is handled in the RPC layer just like eRPC [37].
Apart from the local virtual memory address space, each
process has its own remote virtual address space. Each process
has a unique global PID across all compute servers and the
global PID is assigned by our software running on DM servers.
The combination of the global PID and the per-process remote
virtual address is called DM virtual address, which can be used
to address a unique disaggregated memory region in the DM
servers.

The DM server in DmRPC-net is in charge of serving the
requests from the microservices running at compute servers.
The DM server software runs on top of Linux, the software
architecture of the DM server consists of two components:
Page manager and Address translation. In the following,
we present the design details of each component.

1) Page Manager: Page manager is in charge of manag-
ing the memory in the DM server and the DM virtual address
range. At the initialization time, Page manager allocates
a large memory and pins it. The pinned memory is used
as the disaggregated memory. Page manager manages the
pinned memory at the granularity of pages (the page size is
changeable, 4 KB in our case). It manages the pinned pages in
a FIFO. Page manager uses reference counting to track the
number of processes sharing the page. Each pinned page has a
4-byte integer that records the reference count. These reference
counts are stored linearly in the memory. At the time a page
is mapped to a virtual address, its reference count value is
initialized to one. In the following, we detailedly discuss how
to handle ralloc/rfree/create ref/map ref .
ralloc. For each process leveraging the DM, Page manager
maintains a VA allocation tree that records allocated VA
ranges, similar to the Linux vma tree [51]. When a process

allocates a new DM buffer, Page manager looks up the VA
tree to find an unused virtual memory address and returns it
to the process. When the process first writes to a DM virtual
address, a page fault would be triggered. Then Page manager
would pop an unused page from the FIFO and maps the page
to the DM virtual address that triggers the page fault.
rfree. When a microservice releases the memory by calling
rfree, Page manager notifies Address translator to clear
the translation entries in hash table. Then Page manager
looks up the corresponding reference count. If the value is
one, Page manager pushes the freed page to the FIFO.
Otherwise, it just decrements the reference count by one.
create ref. After receiving the request, Page manager adds
the reference counts of the corresponding pages by one. Then
Page manager generates a unique key and constructs a key-
value tuple, the value stores the pinned virtual addresses of
pages to be shared. The key-value tuple would be stored
in a map. At last, Page manager returns an Ref object,
containing the key and the identifier of the DM server.
map ref. After receiving the request, Page manager uses
the key in the Ref object to look up the map and gets the
pinned virtual addresses of the shared pages. Then it allocates
an unused DM virtual address and maps it to the shared pages,
notifying Address translator to store the translation entries
in the hash table. At last, Page manager returns the DM
virtual address to the microservice.

2) Address Translator: In DmRPC-net, there are two ad-
dress translations for each DM access.
1, Software-based translation. The first translation is han-
dled by Address translator software and it translates DM
virtual address to the virtual address of the pinned memory.
All processes’ translation entries are stored in a single in-
memory hash table. If there is no required translation en-
try in the hash table, Address translator would notify
Page manager to handle the page fault.
2, MMU-based translation. The second translation is im-
plicit and done by the memory management unit (MMU). It
translates the pinned memory’s virtual address to the physical
address.

Since all the DM memory is pinned, OS-level page faults
would not be triggered during the two translations. The
overhead of the software-based address translation is minor
compared with the network transfer time. Our evaluation
shows that the first software-based translation only accounts
for 0.17% of the total DM access time.

It is also possible to skip the software-based translation
by modifying OS and letting MMU translate the DM virtual
address directly to the physical address. We leave this im-
provement for future work.
How to serve a read request. After receiving a read request,
Address translator looks up the hash table to retrieve the
virtual address of the pinned pages. Then it directly returns
the content in the pinned pages without checking the reference
count.
How to serve a write request. After receiving a write
request, Address translator first looks up the hash table
to retrieve the virtual address of the pinned pages. Then
Address translator reads the reference count of the pinned
pages. If the reference count value is larger than one (i.e.,
the page is shared by other processes), a page fault occurs.
Page manager pops a new page from the FIFO and copies
the content of the old page to the new page. The write request
would be applied to the new page. Then Page manager
minus the reference count of the old page by one. At last,
Address translator updates the corresponding entry in the
hash table, mapping the DM virtual address to the new page’s
virtual address.

B. DmRPC-CXL

DmRPC-CXL is based on CXL 3.0 specification [18].
Different from DmRPC-net, processes in DmRPC-CXL can
use naive load/store instructions to access data in the DM
through the CXL link.
Design challenge. Design of DmRPC-CXL raise a new chal-
lenge: CXL memory does not have processing power. In
DmRPC-net, we implement a centralized copy-on-write
layer in the DM server. However, the CXL memory has no
such processing power itself.

Fortunately, CXL 3.0 specification allows each host to
perform arbitrary ISA-supported atomic operations on its
connected CXL memory [18]. We leverage this feature to
implement a distributed copy-on-write layer. Figure 4
shows the architecture of DmRPC-CXL. Each compute server
is connected to an Ethernet switch and a CXL switch. Mi-
croservices communicate with each other through the RPC
layer on top of the Ethernet network. And microservices can
leverage the CXL memory through the CXL switch.

1) CXL Memory Management: DmRPC-CXL is based on
G-FAM (details in Section II-B2). Each computer server
linearly maps a contiguous range of its physical address to
the DPA of the G-FAM device. The majority of the physical
memory of a G-FAM device is used as CXL physical pages,
while the remaining memory records the reference count of
these CXL physical pages. These physical pages and reference
counts are visible to all hosts in the fabric.
Coordinator server. There is a coordinator server in the fab-
ric, which is in charge of managing the ownership of all CXL
physical pages among all compute servers. It communicates
with compute servers using a reliable network protocol. Each
computer server reserves the ownership of some free CXL
physical pages, when the number of free pages is less than a

threshold, the compute server requests more free pages from
the coordinator server. Similarly, when the number of free
pages is larger than a threshold, the compute server gives
back the ownership of free pages to the coordinator server.
Reserving free pages in compute servers significantly reduces
the overhead of coordinating the ownership of CXL physical
pages.

The DM layer in each compute server is in charge of
managing the CXL physical pages it owns, allocating/freeing
CXL memory, handling page faults, translating virtual address
to CXL physical address, and handling copy-on-write.
The DM layer mainly runs in the kernel space.

2) CXL Page Fault Handler and Address Translation: The
CXL page fault handler manages all the free CXL physical
pages it owns using a FIFO.
Memory allocation. When a process allocates a CXL memory
buffer, the DM layer finds an unused virtual address range
from the VMA tree. Then the DM layer sets an unused bit
of vm flags in the vm area struct, indicating that this
virtual address should be mapped to CXL memory (we call
this type of virtual address as CXL virtual address). At last,
the DM layer returns the CXL virtual address to the process.
At this time, no CXL physical pages are mapped to this virtual
address.
Address translation. There are two address translations in
DmRPC-CXL. The first translation translates CXL virtual
address to CXL physical address and is done by the MMU in
the compute server. The page table entries of this translation
relation are written in the same page table storing regular page
table entries. Such that this translation can be offloaded to the
MMU of the compute server. The second translation translates
CXL physical address to the device physical address (DPA)
of the CXL memory device and is done by the CXL device
itself.

3) Copy-on-write: The copy-on-write in DmRPC-
CXL relies on two data structures. The first is the permission
flags of a page [2], stored in each page table entry. The per-
mission flags can indicate whether the page is a read-only
page. The second is the reference count of each CXL physical
page. When a CXL physical page is mapped to a CXL virtual
address, its ref count would be initialized to one. If there
are not enough free CXL physical pages in the FIFO when
handling page faults, the DM layer would request some free
pages from the coordinator server.
create ref. After receiving a request from the process, the
DM layer would add the reference counts of corresponding
CXL physical pages by one using an atomic manner. Then the
DM layer marks these pages as read-only by modifying
corresponding page table entries. After that, the DM layer
returns all physical pages’ addresses as a reference.
map ref. After receiving a request, the DM layer would
find an unused CXL virtual address from the vma tree,
mapping the CXL virtual address to the physical address of the
CXL pages contained in the reference. The DM layer inserts
these mappings into the page table, setting these pages as
read-only. Then the DM layer returns the CXL virtual

Fig. 4: DmRPC-CXL architecture

address to the microservice process. The process can now
access the shared memory using this CXL virtual address.
How to serve a load operation. Serving a load operation on
CXL memory is completely the same as regular memory. First,
the MMU translates the CXL virtual address to CXL physical
address. Second, the physical address is used to retrieve the
data from the cache system, or the memory if there is a cache
miss.
How to serve a store operation. In the beginning, the MMU
would translate the CXL virtual address to CXL physical
address. There are three possible situations.

1) If the virtual address has not been mapped with a CXL
physical page, a page fault occurs. The DM layer then
pops an unused CXL physical page from the FIFO,
mapping it to the CXL virtual address.

2) If the page is read-only, a page fault occurs, the
DM layer would look up the ref count of the CXL
physical page. If the reference count is larger than one,
a copy-on-write would be triggered. The DM layer
allocates a new CXL physical page and copies the content
of the old page to the new page. Then the DM layer
updates the page table entry, pointing the CXL virtual
address to the new CXL physical page and marking
the page as “writable and readable” by modifying the
permission flags in the page table entry. At last, the
DM layer minuses the reference count of the old CXL
physical page by one using an atomic instruction. If the
reference count is one, the DM layer simply modifies
the permission flags of the page table entry to “writable
and readable”. The write would be applied to the CXL
physical page to which the page table entry points.

3) If the page is “writable and readable”, no page fault
occurs. The write would be applied to the pointed CXL
physical page.

Memory release. When a microservice releases the shared
CXL memory by calling rfree, the DM layer first deletes
the corresponding local page table entry. Then it looks up
the corresponding ref count. If the value is one, the DM
layer pushes the freed physical pages to the FIFO. Otherwise,
the DM layer simply minus the ref count by one using an
atomic manner. In DmRPC-CXL, a shared CXL physical page

is owned by many processes on different compute servers. The
process that frees the page lastly is in charge of the reclamation
of this page. The DM layer would add the freed CXL physical
pages to the FIFO. If the number of free pages in the FIFO
is larger than a threshold, the compute server would return
ownership of some free pages to the coordinator server.

In DmRPC-CXL, most accesses to CXL memory would
not incur additional overhead and can leverage the cache
system in the compute server. Only the first write to a
copy-on-write page would require additional memory ac-
cess (reference count). This merely degrades the performance
of accessing CXL memory.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our experimental platform consists of eight AMAX
XP04A201G servers. Each has two 24-core 2.2 GHz Xeon
Silver 4214 CPUs, 128 GiB (4x32 GiB) 2400 MHz DDR4
memory. Each server is equipped with a 100 GbE Mellanox
ConnectX-5 NIC [48]. They run Ubuntu 18.04 (Linux 4.15.0-
20-generic) with hyper-threading.
eRPC baseline. This baseline employs the state-of-the-art
RPC library eRPC [37] to allow microservices to communicate
with each other in different servers. eRPC is a general-purpose
RPC library that runs on commodity CPUs and traditional
datacenter networks based on either lossy Ethernet or lossless
fabrics. The microservices use pass by value semantics to
send large data to each other.
DmRPC-net. DmRPC-net uses eRPC [37] as the communi-
cation layer, the difference is that microservices can leverage
disaggregated memory in the DM server using our DM lib.
The microservices call RPC to send the Ref object of the large
data instead of the large data itself. We implement the global
disaggregated memory pool using two servers. When each
microservice needs to allocate a remote memory buffer, its
allocation request would be forwarded to one of the memory
servers in a round-robin manner.
DmRPC-CXL. Currently, there is no commodity CXL
switch/retimer to build a CXL-based memory pool. To emulate
a CXL-based memory pooling system, we need to emulate the
higher latency from both the CXL memory’s higher latency
and the CXL switch’s latency. Recent work [60] uses a real

(a) Throughput (b) Latency

Fig. 5: Performance under the different numbers of nested RPC
calls.

experimental FPGA-based CXL memory to measure the CXL
memory access latency, which is about 2.2× higher than the
local socket DDR access, where the local DDR latency is
around 75 nanoseconds [33], [67]. The authors also claim
that future commercial CXL memory access latency would
be lower since their current long access latency can be partly
attributed to its FPGA implementation. However, our CXL
emulation experiment still uses this overestimated 2.2× value
as the expected CXL latency (165 ns).

The next step is to emulate the CXL switch latency. Prior
work [43] designs a CXL external memory controller and
emulates a 32 sockets memory pool, the introduced switching
latency is around 87 nanoseconds. A recent industrial presen-
tation [3] also indicates that the CXL switch would introduce
around 100 nanoseconds of extra latency. As such, we use 165
ns as the CXL memory latency and 100 ns as the CXL switch
latency. The memory latency of the emulated CXL memory
pool should be around 265 ns. We use a two-socket server in
the emulation. To increase the memory access latency, we let
all threads run in the same socket and only allocate memory
from another socket. However, cross-socket memory latency
is around 125 ns, which is still far lower than 265 ns. As such,
we manually reduce the server uncore frequency (from 2400
MHz to 800 MHz) which could increase the memory access
latency to around 265 ns. All the DmRPC-CXL results in this
work are measured under the 265 ns memory latency.

B. Effect of DM-aware Global Address Space

We examine the effect of our proposed DM-aware global
address space, which provides pass by reference semantics
to reduce redundant data movement along the network. we
introduce two applications to validate the benefits of global
address space.
Nested RPC calls. In the nested RPC call application, the
client calls an RPC with a 4 KB size array as the argument,
and the called microservice directly passes the array to the
next microservice without using it. After several repeated RPC
calls, the final microservice aggregates the array and returns
the result. Each microservice uses a single thread.

Figure 5a illustrates the achieved throughput with different
chain lengths. We have three observations. First, DmRPC-
net’s throughput is higher than that of eRPC (except for only
1 RPC call), because eRPC introduces unnecessary redun-
dant memory copies between microservices while DmRPC-net

Fig. 6: Performance of load balancer

does not due to its DM-aware global address space. Second,
DmRPC-CXL achieves higher throughput than the other two
implementations. This is because the last microservice in
DmRPC-CXL accesses the shared data through the CXL link,
instead of fetching data through the network. Compared with
the network link, the CXL link provides much lower latency
and higher throughput. Third, the throughput of DmRPC-
net and DmRPC-CXL merely change over the number of
nested RPC calls because both pass reference between middle
RPC calls due to its DM-aware global address space, while
eRPC’s throughput decreases when the number of nested RPC
calls increases because eRPC uses pass by value semantics
between any two RPC calls.

Figure 5b illustrates the average latency of different ap-
proaches. We observe that DmRPC-CXL and DmRPC-net
have lower latency than eRPC, when the number of nested
RPC calls is larger than 1, indicating the efficiency of DM-
aware global address space that enables pass by reference
semantics.
Application-layer load balancer (LB). Application-layer LB
forwards the requests with arguments to the unloaded server.
We build an LB microservice that simply forwards the incom-
ing requests with arguments to the unloaded remote servers
through RPC calls. We use three servers to generate requests
to the LB server, one server as the LB server that forwards the
requests, and three servers to receive the forwarded requests.
The increased network bandwidth introduces bottlenecks to
the CPU, memory, and PCIe interconnect of machines that
run data mover applications [56].

Figure 6 demonstrates the throughput and memory band-
width occupation on the load balance server. We observe that
DmRPC delivers the highest throughput, and occupies the
lowest memory bandwidth, because DmRPC only forwards
references, rather than data, in the LB server due to its DM-
aware global address space, and eRPC forwards data (4K to
32K) in the LB server. The results indicate that DM-aware
global address space can 1) alleviate the memory bandwidth
pressure on LB servers that run data mover applications; and
2) achieve a higher request rate on these servers.

C. Effect of the Copy-on-write Mechanism

A naive approach to avoid complicating microservice logic
would be sharing a copy of the original data, thus decoupling
the caller and the callee. However, implementations ended
with −copy adopt the unconditional copy approach to bring
much memory bandwidth pressure to DM, because these

(a) Achieved request rate (b) Response time (c) Memory traffic for
each request

Fig. 7: Effect of copy-on-write

implementations copy the original data between microser-
vices. Thus implementations marked without −copy adopt a
copy-on-write mechanism to address the issue of the un-
conditional copy. We examine the effect of copy-on-write
mechanism, in terms of performance of create ref , where
create ref function call would return the Ref object that
represents the original memory region. For DmRPC-net im-
plementations, we use one CPU core in a single memory
server and ensure the client can send requests fast enough
to fully saturate the processing ability of the memory server.
For DmRPC-CXL implementations, we use only one client
thread.

Figure 7a and Figure 7b show the achieved request rate
and response time when calling create ref . We observe that
DmRPC-CXL (or DmRPC-net) achieves up to 22.8× (or
7.3×) higher request rate than that of DmRPC-CXL-copy
(or DmRPC-net-copy), and DmRPC-CXL (or DmRPC-net)
achieves up to 63.6× (or 5.2×) lower response time than that
of DmRPC-CXL-copy (or DmRPC-net-copy), this is because
copy-on-write mechanism avoids the unnecessary copies
between microservices. As evidence, we also use Intel Per-
formance Counter Monitor (PCM) [34] to show the average
disaggregated memory traffic under these implementations.
Figure 7c illustrates the average memory traffic per request
under different request sizes. We observe that DmRPC-CXL
and DmRPC-net have significantly lower memory traffic than
DmRPC-CXL-copy and DmRPC-net-copy, respectively.

For DmRPC-net, highly concurrent requests are addressed
through two strategies: 1) Load-balanced distribution across
multiple memory servers, where each microservice’s remote
memory allocation requests are currently routed in a round-
robin fashion. 2) Concurrent requests received in a single
memory server will be dispatched to its different CPU cores,
each responsible for managing a portion of the memory.
Regarding DmRPC-CXL, due to the absence of centralized
computing power, concurrent requests are handled by atomic
operations in the client. Different threads can operate on
different memory addresses concurrently. Different threads can
operate on the same memory address sequentially which is
guaranteed by the CXL-supported atomic operations.

(a) Throughput (b) Latency

Fig. 8: Performance comparison with Ray/Spark

D. Comparison with Ray/Spark
In this section, we compare DmRPC with Ray and Spark,

which integrate a distributed in-memory data store service.
Ray is equipped with an in-memory data store service called
Plasma. In Section III, we discuss the inefficiency of adopting
an in-memory data store service. Spark has a similar data store
service that is part of its BlockTransferService [4].

In this subsection, we compare the performance of Ray
and Spark using a micro-benchmark. The caller microservice
creates a reference of a large raw data block (32 KB), and
then sends the reference to a remote microservice using an
RPC call. The raw data block avoids the influence of data
serialization. The remote microservice writes the shared data
that the reference points to. We let the remote microservice
write different percentages of the shared data. Figure 8a and
Figure 8b show the achieved throughput and latency when
using a single thread. We have two observations.

First, DmRPC-CXL (DmRPC-net) achieves up to 62× (or
5.6×) higher throughput than that of Ray and achieves up to
315× (or 34.2×) lower latency. The performance of Spark
is even worse. The underlying reason is that distributed data
store is inefficient for their two unconditional data copies and
inefficient communication with the data store service. Besides,
Ray and Spark are not specially designed for fine-grained
microservices.

Second, with the increase of the write percentage, the
throughput of DmRPC-CXL and DmRPC-net decreases, and
their latency increases, while Ray’s and Spark’s throughput
and latency merely change, because they unconditionally copy
the original data in the caller process to callee process, while
DmRPC-CXL and DmRPC-net only do one copy when a
process writes to the data thanks to the copy-on-write
mechanism. The results indicate that the DmRPC can take
advantage of avoiding unnecessary data copies.

E. Evaluation on Synthetic Workload

Fig. 9: Cloud image processing microservices architecture

We evaluate DmRPC on a synthetic application built with
microservices. We design 7-tier microservices that implement

(a) Throughput (b) Latency

Fig. 10: End-to-end throughput and latency of different ap-
proaches

a Cloud Image Processing application, shown in Figure 9.
The Client issues image processing requests. The Firewall
microservice checks the permission and blocks unauthorized
requests. The Load balance forwards the requests to one of
the servers that run the Image processing microservice using
a round-robin way. The Image processing microservice
would parse the request and call the Transcoding to transcode
the image or call the Compressing to compress the image.
Finally, Image processing returns back the processing result
to Client.

For the eRPC baseline, we use seven servers, each mi-
croservice runs on a server. For DmRPC-net, there are two
servers used as DM servers. To keep the number of servers
used the same as the eRPC baseline, we allow one server
to run multiple microservices if the server has spare network
bandwidth and CPU cycles. Although these microservices are
running on the same machine, RPC calls between them would
still be forwarded to a network switch for fair comparison. For
DmRPC-CXL, we further deploy the microservices that touch
the image data on the same socket in the same server. To use
the same number of servers as the other baselines, we scale
the results of a single server to simulate the performance of
multiple servers.

Figure 10a illustrates the throughput comparison of dif-
ferent approaches. We have two observations. First, when
increasing the image size, both DmRPC-net and DmRPC-
CXL can significantly increase their throughput while eRPC
cannot, because DmRPC introduces global address space and
copy-on-write mechanism to reduce unnecessary data
copies. Compared with eRPC, DmRPC-net and DmRPC-
CXL increase the achievable throughput by 4.2× and 8.3×,
respectively. Second, DmRPC-CXL reaches peak throughput
(around 300 Gbps) when the image size is larger than 8 KB.

We observe that when increasing the image size, both
DmRPC-net and DmRPC-CXL can significantly increase their
throughput while eRPC cannot, because DmRPC introduces
global address space and copy-on-write mechanism to re-
duce unnecessary data copies. Compared with eRPC, DmRPC-
net and DmRPC-CXL increase the achievable throughput by
4.2× and 8.3×, respectively. When the image size is large
(≥32 KB), the throughput of DmRPC-CXL levels off. Our
further evaluation shows that the system throughput increases
almost linearly with the number of used CPU cores. When
all CPU cores (12 per socket) are used, the UPI [5]/network

Fig. 11: DeathStarBench: average latency and 99th/999th tail
latency under different request rates

throughput in each server is far lower (1.6×/40.1×) than the
available bandwidth. This indicates that the system throughput
is bounded by the number of used CPU cores.

Figure 10b demonstrates the average, 99th, 99.5th, and
99.9th percentile latency of different approaches. The image
size is fixed to 4 KB. We have two observations. First,
DmRPC-CXL shows the lowest latency because large data
is never transferred through the network. Second, DmRPC-
net can slightly reduce the latency compared with eRPC.
The reason is that, compared with DmRPC-net, DmRPC-CXL
not only reduces redundant data movement but also enables
accessing data through the CXL link, instead of the network.
Compared with eRPC, DmRPC-net and DmRPC-CXL reduce
the average latency by 1.1× and 1.7×, respectively.

F. Evaluation on DeathStarBench

DeathStarBench [26] is a widely used open-source bench-
mark suite designed to evaluate the performance of mi-
croservice. DeathStarBench has three open-source applica-
tions, among which the social network framework is the most
widely used [24], [25], [27], [60], [75]. We use the mixed
workloads of social network framework to compare DmRPC-
net to eRPC. Following the setting of prior work [60], we
let the mixed workload to be consists of 60% read-home-
timeline, 30% read-user-timeline, and 10% composing-
post. The workload shows a simulated use case of a real social
network, where overall, most users read the posts composed by
a few users. In DeathStarBench, all requests traverse at least
three data mover services (load balancer, proxy, and php-fpm),
these three services just forward the request without touching
the data. Traffic in read-user-timeline even traverses five
data mover services.

We evaluate eRPC and DmRPC-net on DeathStarBench,
all microservices are deployed on three servers. Figure 11
shows the latency under different request rates. We have two
observations. First, DmRPC-net’s achievable request rate is
3.1× higher than eRPC. Second, under the same request rate,
the average latency, 99th tail latency, and 999th tail latency
of DmRPC-net is much lower than that of eRPC. The main
reason for the performance gain is that two proposed RPCs
allow to simply forward the data without touching the data,
while eRPC needs to touch the data.

G. Discussion on CXL Emulation

As mentioned in VI-A, DmRPC-CXL’s performance is
measured under 265ns cross-socket memory access latency.
To further understand the latency influence on the DmRPC-
CXL’s performance, we re-run two experiments and measure
the DmRPC-CXL performance under different memory access
latency by tuning uncore frequency.

(a) Micro-benchmark throughput

(b) Cloud image processing throughput

Fig. 12: DmRPC-CXL normalized throughput under different
memory access latency.

Figure 12a shows micro-benchmark (the same as experiment
in Section VI-D) throughput of DmRPC-CXL under different
memory access latency. Figure 12b shows the cloud image
processing (the same as the experiment in Section VI-E)
throughput of DmRPC-CXL under different memory latency.

In both experiments, we observe that the throughput slightly
decreases when the memory latency increases. We believe that
our chosen memory access latency (265 ns) can well emulate
the performance of the future CXL memory pool (with CXL
switch). Even if the future CXL switch has slightly longer
access latency, we believe our main conclusion drawn from
our emulation still holds.

VII. RELATED WORK

To our knowledge, DmRPC is the first work digging into
the potential benefits that disaggregated memory can bring to
datacenter microservices. We contrast DmRPC and existing
works in the following aspects.
Disaggregated memory. Memory disaggregation decouples
computing and memory, improving the total memory uti-
lization rate. There are mainly two categories of memory
disaggregation. The first category [6], [8], [10], [13], [17],
[22], [23], [31], [32], [36], [42], [53], [55], [58], [61], [62],
[64], [68], [71] is designed for Ethernet networks. The second
category [29], [43], [47], [63] aims at CXL-memory. These
works focus on alleviating the performance degradation of
using disaggregated memory since it offers higher latency
than local DRAM. In contrast, DmRPC is orthogonal to these
works. We focus on exploring the benefit of introducing disag-
gregated memory to datacenter RPC. And DmRPC can be ap-
plied to both network-based disaggregated memory and CXL-

based disaggregated memory. [46] reduces memory occupation
by detecting pages that have the same content. In contrast,
DmRPC aims at reducing unnecessary data movements.
Datacenter RPC. The optimization of small RPC wire
protocol originates with Birrell and Nelson [15], who introduce
implicit-ACK. Sprite RPC [70] and eRPC [37] directly use raw
datagrams and performance re-transmissions only at clients.
The Direct Access File System [20], [74] uses RDMA in
RPCs. In contrast, DmRPC focuses on optimizing RPC for
DM-enable datacenter.
Global shared address space. Distributed shared memory
(DSM) [12], [38], [44], [54], [65] provides a logical global
shared address space across physically distributed processes.
FaRM [22] and Anna [71] impose a consistency model to man-
age shared memory. Adopting these approaches to datacenter
RPC significantly complicates the user logic, coupling the
caller and the callee. In DmRPC, the microservices don’t need
to handle data consistency, each microservice that shares the
same memory region is decoupled with each other. Ray [50],
[66] leverages an in-memory data store service to share an im-
mutable copy, avoiding complicating user logic at the cost of
performance loss. In contrast, DmRPC is specific to the DM-
enabled datacenter, it leverages copy-on-write to avoid
complicating microservices logic while keeping performance.
Remote fork with copy-on-write. The remote fork
mechanism has been widely used in virtual machine fork and
migrations to reduce unnecessary copy [7], [30], [40], [69].
For example, MITOSIS [69] maps a child container’s virtual
memory to its parent container’s physical memory without
checkpointing the memory. The copy-on-write semantics
in the remote fork avoid copying the entire memory when
forking new containers, instead, the copy only occurs when
a write happens. In contrast, DmRPC uses fork semantics to
avoid unnecessary data movement when invoking RPCs.

VIII. CONCLUSION

Modern datacenter services are decomposed into deep hier-
archies of microservices, which introduces much redundant
data movement along the network. Motivated by the trend
that the modern datacenter is actively embracing disaggregated
memory, we propose DmRPC. First, it introduces a DM-
based global shared space, thus providing pass by reference
semantics to microservices to minimize redundant data move-
ment. Second, it adopts a copy-on-write mechanism,
providing programming simplicity while keeping high perfor-
mance. The experimental results show that in DeathStarBench,
DmRPC-net can achieve 3.1× higher throughput than eRPC
while achieving 2.5× lower average latency.
Acknowledgement. We would like to thank Yizhou Shan and
Jialin Li for their valuable feedback on our work. The work
is supported by the following grants: the National Key R&D
Program of China (NO.2022ZD0119301), the Program of Zhe-
jiang Province Science and Technology (2022C01044), Starry
Night Science Fund of Zhejiang University Shanghai Institute
for Advanced Study (SN-ZJU-SIAS-0010). Zeke Wang is the
corresponding author.

REFERENCES

[1] grpc. https://grpc.io/, 2022.
[2] Paging permission flags. https://wiki.osdev.org/Paging, 2022.
[3] CXL Memory Disaggregation and Tiering. In SDC, 2023.
[4] Spark BlockTransferService. https://books.japila.pl/

apache-spark-internals/storage/BlockTransferService/, 2023.
[5] Intel® xeon® processor scalable family technical overview.

https://www.intel.com/content/www/us/en/developer/articles/technical/
xeon-processor-scalable-family-technical-overview.html/, 2024.

[6] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap Subrah-
manyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. Remote regions: a simple abstraction for remote memory.
In ATC, 2018.

[7] Samer Al-Kiswany, Dinesh Subhraveti, Prasenjit Sarkar, and Matei
Ripeanu. Vmflock: Virtual machine co-migration for the cloud. In
HPDC, 2011.

[8] Hasan Al Maruf and Mosharaf Chowdhury. Effectively prefetching
remote memory with leap. In ATC, 2020.

[9] Nuha Alshuqayran, Nour Ali, and Roger Evans. A systematic mapping
study in microservice architecture. In SOCA, 2016.

[10] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. Can far memory improve job throughput? In EuroSys,
2020.

[11] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. Disaggregation
and the application. In HotCloud, 2020.

[12] John K Bennett, John B Carter, and Willy Zwaenepoel. Munin:
Distributed shared memory based on type-specific memory coherence.
In PPoPP, 1990.

[13] Shai Bergman, Priyank Faldu, Boris Grot, Lluı́s Vilanova, and Mark
Silberstein. Reconsidering os memory optimizations in the presence of
disaggregated memory. In ISMM, 2022.

[14] Andrew D Birrell and Bruce Jay Nelson. Implementing remote proce-
dure calls. TOCS, 2(1):39–59, 1984.

[15] Andrew D Birrell and Bruce Jay Nelson. Implementing remote proce-
dure calls. ACM Transactions on Computer Systems (TOCS), 2(1):39–59,
1984.

[16] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang
Chen, Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng
Wang. Efficient distributed memory management with rdma and caching.
VLDB, 2018.

[17] Irina Calciu, M Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. Rethinking software runtimes
for disaggregated memory. In ASPLOS, 2021.

[18] Compute Express Link. CXL™ 3.0 Specification. https://www.
computeexpresslink.org/download-the-specification, 2022.

[19] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. Rpcvalet: Ni-
driven tail-aware balancing of µs-scale rpcs. In ASPLOS, 2019.

[20] Matt DeBergalis, Peter F Corbett, Steven Kleiman, Arthur Lent, Dave
Noveck, Thomas Talpey, and Mark Wittle. The direct access file system.
In FAST, 2003.

[21] DPDK. Data Plane Development Kit. https://www.dpdk.org, 2024.
[22] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and

Orion Hodson. Farm: Fast remote memory. In NSDI, 2014.
[23] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B Nightingale,

Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. No compromises: distributed transactions with consistency,
availability, and performance. In SOSP, 2015.

[24] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup
for serverless computing with initialization-less booting. In ASPLOS,
2020.

[25] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delim-
itrou. Sage: practical and scalable ml-driven performance debugging in
microservices. In ASPLOS, 2021.

[26] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. An open-source benchmark suite for microservices and

their hardware-software implications for cloud & edge systems. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 3–
18, 2019.

[27] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. Seer: Leveraging big data to navi-
gate the complexity of performance debugging in cloud microservices.
In ASPLOS, 2019.

[28] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang,
Wenwen Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, Fei Feng,
Yan Zhuang, Fan Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu,
Zheng Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang, Dennis Cai,
and Jiesheng Wu. When cloud storage meets rdma. In NSDI, 2021.

[29] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung.
Direct access, high-performance memory disaggregation with directcxl.
In ATC, 2022.

[30] Jinyu Gu, Zhichao Hua, Yubin Xia, Haibo Chen, Binyu Zang, Haibing
Guan, and Jinming Li. Secure live migration of sgx enclaves on
untrusted cloud. In DSN. IEEE, 2017.

[31] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G Shin. Efficient memory disaggregation with infiniswap. In
NSDI, 2017.

[32] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. Clio: A hardware-software co-designed disaggregated memory
system. In ASPLOS, 2022.

[33] Hongjing Huang, Zeke Wang, Jie Zhang, Zhenhao He, Chao Wu, Jun
Xiao, and Gustavo Alonso. Shuhai: A tool for benchmarking high
bandwidth memory on fpgas. TC, 2022.

[34] Intel. Intel® performance counter monitor. https://github.com/intel/pcm,
2022.

[35] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan,
Todd Pfleiger, Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell,
Vipul Modi, Mansoor Mohsin, Ray Kong, Anmol Ahuja, Oana Pla-
ton, Alex Wun, Matthew Snider, Chacko Daniel, Dan Mastrian, Yang
Li, Aprameya Rao, Vaishnav Kidambi, Randy Wang, Abhishek Ram,
Sumukh Shivaprakash, Rajeet Nair, Alan Warwick, Bharat S. Narasim-
man, Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre, Preetha Sub-
barayalu, Mert Coskun, and Indranil Gupta. Service fabric: a distributed
platform for building microservices in the cloud. In EuroSys, 2018.

[36] Anuj Kalia, Michael Kaminsky, and David G Andersen. Using rdma
efficiently for key-value services. In SIGCOMM, 2014.

[37] Anuj Kalia, Michael Kaminsky, and David G Andersen. Datacenter rpcs
can be general and fast. NSDI, 2019.

[38] Pete Keleher, Alan L Cox, Sandhya Dwarkadas, and Willy Zwaenepoel.
Treadmarks: Distributed shared memory on standard workstations and
operating systems. Distributed Shared Memory: Concepts and Systems,
1994.

[39] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2p2: Making rpcs first-class datacenter citizens. In ATC,
2019.

[40] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew
Scannell, Philip Patchin, Stephen M Rumble, Eyal De Lara, Michael
Brudno, and Mahadev Satyanarayanan. Snowflock: rapid virtual machine
cloning for cloud computing. In EuroSys, 2009.

[41] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina
Delimitrou. Dagger: Efficient and fast rpcs in cloud microservices with
near-memory reconfigurable nics. In ASPLOS, 2021.

[42] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin
Zhong, and Abhishek Bhattacharjee. Mind: In-network memory man-
agement for disaggregated data centers. In SOSP, 2021.

[43] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini.
Pond: Cxl-based memory pooling systems for cloud platforms. In
ASPLOS, 2023.

[44] Kai Li. Ivy: A shared virtual memory system for parallel computing.
ICPP, 1988.

[45] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis,
Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania,
and Soumith Chintala. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704, 2020.

[46] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan
Chang, Parthasarathy Ranganathan, and Thomas F Wenisch. System-
level implications of disaggregated memory. In IEEE International

https://grpc.io/
https://wiki.osdev.org/Paging
https://books.japila.pl/apache-spark-internals/storage/BlockTransferService/
https://books.japila.pl/apache-spark-internals/storage/BlockTransferService/
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html/
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html/
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.dpdk.org
https://github.com/intel/pcm

Symposium on High-Performance Comp Architecture, pages 1–12. IEEE,
2012.

[47] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. Tpp: Transparent page
placement for cxl-enabled tiered-memory. In ASPLOS, 2023.

[48] Mellanox. ConnectX®-5 En Card Product Brief. https:
//www.mellanox.com/sites/default/files/relateddocs/prod adapter
cards/PB ConnectX-5 EN Card.pdf, 2017.

[49] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li,
Shuguang Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, Rong
Liu, Chao Shi, Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and
Hongqiang Harry Liu. From luna to solar: the evolutions of the compute-
to-storage networks in alibaba cloud. In SIGCOMM, 2022.

[50] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, and Ion Stoica. Ray: A distributed framework for
emerging ai applications. In OSDI, 2018.

[51] Paul Movall, Ward Nelson, and Shaun Wetzstein. Linux physical
memory analysis. In USENIX Annual Technical Conference, FREENIX
Track, pages 23–32, 2005.

[52] Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven
Smith, Anil Madhavapeddy, and Steven Hand. Ciel: A universal
execution engine for distributed data-flow computing. In NSDI, 2011.

[53] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze,
Simon Kahan, and Mark Oskin. Latency-tolerant software distributed
shared memory. In ATC, 2015.

[54] Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey of
issues and algorithms. Computer, 24(8):52–60, 1991.

[55] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutso-
vasilis, Andrea Reale, Kostas Katrinis, and H Peter Hofstee. Thymesis-
flow: a software-defined, hw/sw co-designed interconnect stack for rack-
scale memory disaggregation. In MICRO, 2020.

[56] Boris Pismenny, Liran Liss, Adam Morrison, and Dan Tsafrir. The
benefits of general-purpose on-nic memory. In ASPLOS, 2022.

[57] Matthew Rocklin. Dask: Parallel computation with blocked algorithms
and task scheduling. In SciPy, 2015.

[58] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam
Belay. Aifm:high-performance, application-integrated far memory. In
OSDI, 2020.

[59] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfefferle.
Darpc: Data center rpc. In SoCC, 2014.

[60] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan
Huang, Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, Ren
Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim. Demystifying
cxl memory with genuine cxl-ready systems and devices. In MICRO,
2023.

[61] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Disaggregating persis-
tent memory and controlling them remotely: An exploration of passive
disaggregated key-value stores. In ATC, 2020.

[62] Shin-Yeh Tsai and Yiying Zhang. Lite kernel rdma support for datacenter
applications. In SOSP, 2017.

[63] Jacob Wahlgren, Maya Gokhale, and Ivy B Peng. Evaluating emerg-
ing cxl-enabled memory pooling for hpc systems. arXiv preprint
arXiv:2211.02682, 2022.

[64] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. Semeru: A memory-disaggregated managed runtime.
In OSDI, 2020.

[65] Stephanie Wang, Benjamin Hindman, and Ion Stoica. In reference to
rpc: it’s time to add distributed memory. In HotOS, 2021.

[66] Stephanie Wang, Eric Liang, Edward Oakes, Ben Hindman, Frank Sifei
Luan, Audrey Cheng, and Ion Stoica. Ownership: A distributed futures
system for fine-grained tasks. In NSDI, 2021.

[67] Zeke Wang, Hongjing Huang, Jie Zhang, and Gustavo Alonso. Shuhai:
Benchmarking high bandwidth memory on fpgas. In FCCM, 2020.

[68] Zeke Wang, Hongjing Huang, Jie Zhang, Fei Wu, and Gustavo Alonso.
Fpganic: An fpga-based versatile 100gb smartnic for gpus. In ATC,
2022.

[69] Xingda Wei, Fangming Lu, Tianxia Wang, Jinyu Gu, Yuhan Yang,
Rong Chen, and Haibo Chen. No provisioned concurrency: Fast rdma-
codesigned remote fork for serverless computing. 2023.

[70] Brent B Welch. The sprite remote procedure call system. Technical
report, 1986.

[71] Chenggang Wu, Jose M Faleiro, Yihan Lin, and Joseph M Hellerstein.
Anna: A kvs for any scale. TKDE, 33(2):344–358, 2019.

[72] Yifan Yuan, Jinghan Huang, Yan Sun, Tianchen Wang, Jacob Nelson,
Dan RK Ports, Yipeng Wang, Ren Wang, Charlie Tai, and Nam Sung
Kim. Orca: A network and architecture co-design for offloading us-scale
datacenter applications. arXiv preprint arXiv:2203.08906, 2022.

[73] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. In
HotCloud, 2010.

[74] Jie Zhang, Hongjing Huang, Lingjun Zhu, Shu Ma, Dazhong Rong,
Yijun Hou, Mo Sun, Chaojie Gu, Peng Cheng, Chao Shi, and Zeke
Wang. Smartds: Middle-tier-centric smartnic enabling application-aware
message split for disaggregated block storage. In ISCA, 2023.

[75] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G Edward Suh, and
Christina Delimitrou. Sinan: Ml-based and qos-aware resource manage-
ment for cloud microservices. In ASPLOS, 2021.

https://www.mellanox.com/sites/default/files/relateddocs/ prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf
https://www.mellanox.com/sites/default/files/relateddocs/ prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf
https://www.mellanox.com/sites/default/files/relateddocs/ prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf

	Introduction
	Background
	Datacenter RPC
	Disaggregated Memory
	Network-based Memory Disaggregation
	CXL-based Memory Disaggregation

	Motivation and Trends
	Issues of Traditional Global Address Space
	DM-based Global Address Space

	Overview of DmRPC
	Design Goals
	Design Overview
	Application Programming Interface

	Design
	DmRPC-net
	Page Manager
	Address Translator

	DmRPC-CXL
	CXL Memory Management
	CXL Page Fault Handler and Address Translation
	Copy-on-write

	Experimental Evaluation
	Experimental Setup
	Effect of DM-aware Global Address Space
	Effect of the Copy-on-write Mechanism
	Comparison with Ray/Spark
	Evaluation on Synthetic Workload
	Evaluation on DeathStarBench
	Discussion on CXL Emulation

	Related Work
	Conclusion
	References

