
DeFT: Decoding with Flash Tree-Attention for
Efficient Tree-structured LLM Inference

Anonymous Author(s)
Affiliation
Address
email

Abstract

Given the increasing demand for tree-structured interactions with LLMs, we1

introduce DEFT (Decoding with Flash Tree-Attention), an IO-aware tree attention2

algorithm tailored for tree-structured inference. Unlike traditional sequence-based3

decoding, tree-structured decoding better accommodates modern task require-4

ments, including self-consistency, few-shot prompting, multi-step reasoning, and5

multi-model/head coordination. However, existing sequence-based inference6

systems are ill-suited for tree-structured decoding, resulting in redundancy in7

computation, memory footprints, and memory access, thereby undermining8

inference efficiency. To address this challenge, DEFT maintains memory-efficient9

attention calculation with low memory footprints through two key stages: (1)10

QKV Preparation: We propose a KV-Guided Grouping Strategy with Tree Split11

to intelligently group QKV, optimizing GPU resource utilization while minimizing12

memory reads/writes for KV cache between GPU global memory and on-chip13

shared memory; (2) Attention Calculation: We compute partial attention of each14

QKV group in a fused kernel and employ a Tree-topology-aware Global Reduction15

strategy to obtain final attention. By reducing 73-99% KV cache IO and nearly16

100% IO for partial results during attention calculation (e.g., Softmax), DEFT17

achieves up to 2.52/3.82× speedup in the end-to-end/attention latency across three18

practical tree-based workloads: namely, few-shot prompting, multi-step reasoning,19

and speculative decoding, over state-of-the-art attention algorithms.20

1 Introduction21

Large language models (LLMs) [1, 34, 35] are extensively utilized across a range of tasks like22

chatbot [31], code generation [26], reasoning [42, 4, 28], etc. To meet the increasing demand for23

service quality of wide-range applications, the interactions with LLMs are more and more complex:24

moving from simple sequence-structured patterns like multi-turn chats, to tree-structured patterns,25

including self-consistency [37], few-shot prompting [25], multi-step reasoning [42, 11, 41], and26

multi-model/heads coordination [27, 5], etc. Unfortunately, higher service quality is not a free27

lunch: we sacrifice efficiency—more tokens need to be generated to provide large space for tree28

search [10, 23, 21] or selection, as shown in Table 1.29

The mismatch between the existing sequence-based inference systems [20, 29, 16] and tree-structured30

interactions exacerbates the efficiency problem. Most current inference systems are designed for31

sequence-based decoding, which samples a single sequence of tokens every time, while tree-based32

decoding maintains multiple sequences with common prefixes as a tree structure, as shown in33

Figure 1. Since nodes in the forms of the tree can be shared computationally and in memory while34

that of the sequence cannot, applying tree-structured tasks directly to sequence-based decoding causes35

three levels of redundancy: (1) memory storage, especially the KV cache [20, 45]; (2) computation,36

especially the computation for common prompts among sequences in a batch [45]; (3) memory access.37

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

Table 1: Comparison of efficiency in sequence-based
(CoT [38]) and tree-based (ToT [42]) decoding for a
reasoning task. The task is sorting 128 numbers from
[4]. The total generated tokens of CoT is only 525 while
38,315 in ToT, resulting in inefficiency in end-to-end
latency (second) and IO (TB). IO mainly consists of
two parts as follows. (i) KV cache: IO-KV; (ii) Partial
results during attention calculation like QKT and soft-
max: IO-PA; Baselines: (i) Flash-Decoding [7]; (ii) Tree
Attention: tree attention in Medusa [5].

Metrics
Latency IO-KV IO-PA

Flash-Decoding + CoT 21 0.6 0
Flash-Decoding + ToT 429.65 59.96 0
Tree Attention + ToT 380.87 12.40 3.69

DeFT-Flatten(ours) + ToT 94.61 12.40 0
Speed up over best baseline 4.02× - -

Existing work of tree-based inference sys-38

tems [45, 9] focuses on the first two levels while39

largely ignoring the third yet the most impor-40

tant one–memory access, given the nature of41

memory-bounded LLM inference [32, 5, 19].42

As for sequence-based decoding methods opti-43

mize the memory access for the aspects of par-44

tial results (i.e., QK>) during attention calcu-45

lations [6, 7, 15]. However, their effectiveness46

in tree-based decoding is limited. In particular,47

these optimizations are unable to address the48

potential bottleneck posed by the KV cache IO49

when dealing with a large number of tokens, as50

illustrated in Table 1.51

As a remedy, in this paper, we resort to the52

key attention component during the decoding53

process. Orthogonal to the traditional attention54

mechanisms in sequence-based decoding, tree attention [27, 5]—specifically designed to handle55

hierarchical or tree-structured tokens in tasks such as parallel decoding—can reduce the kernel56

launching, computation and KV cache storage overheads for attention calculations. However, this57

line of research does not further leverage the tree topology to reduce IO when calculating attention,58

and thus still not fully IO-aware for both (i) partial result (i.e., QK>) [5] due to the lack of tiling59

and kernel fusion [6]; and (ii) KV cache in a tree structure [27]. These limitations hinder their60

effectiveness in optimizing memory access during tree-based decoding.61

Figure 1: An illustration of Sequence-based de-
coding and Tree-based decoding.

To bridge the above gap, we propose DEFT, an IO-62

aware tree attention algorithm with two key insights.63

First, the IO overhead for queries (Q) is negligible64

compared to that of KV cache, primarily because65

the maximum query length typically corresponds to66

numbers of root-to-leaf paths in the tree, resulting67

in relatively short queries (e.g. dozens of tokens)68

compared with KV cache length in each node (e.g.69

hundreds/thousands of tokens). Second, in sequence-70

based decoding, each KV cache entry corresponds71

to a unique query, whereas in tree-based decoding,72

multiple queries can share their common ancestor’s73

KV cache during attention calculation, benefiting not74

only in reducing KV cache storage but also in IOs.75

Building upon these two insights, in the first phase76

of DEFT–QKV Preparation, we split the KV cache77

of the decoding tree with two choices: (i) split by78

node (DEFT-Node), which is simple with no need79

for causal mask; (ii) flatten the tree KV then split80

evenly (DEFT-Flatten), which ensures more stable81

speedup due to balanced workloads in GPUs, with82

little cost of bit causal mask IO. Then we group the83

KV cache of each node with all queries that share84

it in the decoding tree, to minimize the IO of KV85

cache with negligible IO overhead of queries. In86

the second phase of DEFT–Attention Calculation,87

we adopt a fused kernel to get partial attention with88

LogSumExp of QKV groups calculated in phase 1,89

and conduct tree-topology-aware global reduction90

inspired by Flash-Decoding [7]. We summarize our91

contributions as follows:92

• We propose a simple but hardware-efficient tree attention algorithm–DEFT, which is IO-aware93

for both KV cache in a tree structure and partial results (i.e., QK> and Softmax). We offer two94

specific implementations: DEFT-Node is straightforward without a mask, while DEFT-Flatten95

ensures more stable speedup across various tree topologies, with minimal extra IO cost for masks.96

2

• We implement DEFT on OpenAI Triton [33] to gain precise management over memory access97

and fuse all attention operations into a single GPU kernel.98

• We theoretically justify the superiority of DEFT over the existing attention algorithms [40, 7, 5, 27]99

in terms of IO complexity.100

• We empirically verify its effectiveness on few-shot prompting, multi-step reasoning and101

speculative-decoding tasks. DEFT can achieve a walk-clock time speedup of 1.3× for few-102

shot prompting, 2.5× for speculative decoding, 1.3× for multi-step reasoning, due to an up to103

3.82× faster attention calculation, with the baseline implementations [7, 5, 45].104

2 Related Work105

Tree-based Decoding. Tree-based decoding, exemplified by beam search [10], has been pivotal106

in NLP, handling lexical and logical constraints [2, 30, 13], mitigating gender bias [24], achieving107

communicative goals [14], and improving alignment [21]. Based on the structure feature of queries108

and KV cache, we can classify tree-based decoding into two patterns: (i) tree-structured past KV with109

parallel queries—usually in multi-step reasoning [42, 4, 28], using search trees with parallel hypothe-110

sis generation and selection based on scoring functions. Some score candidates per token [8, 24, 23],111

others per reasoning step [39, 36, 41]. (ii) past KV in sequence with tree-structured queries—usually112

in speculative decoding [5, 27]. A token tree as queries are generated from different draft models [27]113

or heads [5], then these tokens will be verified in parallel via tree-based decoding. Details of these114

two patterns are discussed in Appendix A.2. Efficiency in tree-based decoding remains underexplored115

despite various search algorithms’ application, such as A* [23] and Monte-Carlo Tree Search [21].116

Memory-efficient Attention Algorithms. Existing memory-efficient attention algorithms target117

sequence-based decoding. FlashAttention [6] improves self-attention computation in LLM training118

via tiling and kernel fusion, reducing IOs. Flash-Decoding [7] extends this, enhancing parallelism by119

dividing K and V and introducing global reduction to gather partial attention results, enabling efficient120

decoding for long sequences. Unluckily, applying these memory-efficient algorithms to the tree-based121

decoding overlooks redundancy in IO of tree-structured KV cache, which is the focus of DEFT.122

Tree Attention. Integrated into LLM inference, tree attention reduces computation, storage, and123

kernel launching overheads [27]. Tree-structured token candidates undergo parallel decoding, with124

SpecInfer [27] introducing a topology-aware causal masked tree attention algorithm, dynamically125

updating a causal mask to capture relationships among tokens. Medusa [5] uses a similar mechanism126

with a static causal mask, while other works [44, 22] adopt analogous approaches to enhance attention127

calculation efficiency. However, unlike DEFT, these existing works utilizing tree attention do not128

take memory access into consideration.129

Storage Optimization of Tree-based Decoding. LLM frameworks optimized for tree-based decoding130

[20, 45] focus on memory storage efficiency. vLLM [20] enhances GPU memory utilization, allowing131

sequences from the same parent to share KV cache storage. SGLang [45] supports dynamic KV132

cache management during multi-round interactions with LLMs, improving memory efficiency.133

Discussion on Concurrent Works. Some concurrent works [43, 18, 3] also recognize the importance134

of IO during LLM inference. However, these works have at least one of these flaws: i) they [43, 18, 3]135

cannot be easily extended to situations where the decoding tree has more than two levels—they target136

single-context batch sampling scenarios, a special case of general tree-based decoding with a system137

prompt as prefix and unique suffixes in the first depth; ii) they [18, 3] do not consider the efficiency138

issues caused by the lengths of different nodes in the decoding tree. Details of comparison for DEFT139

and concurrent works are discussed in Appendix A.3.140

3 DeFT141

In this section, we start by introducing the background knowledge of LLM inference, upon which we142

outline the overview of system support for DEFT. We then present DEFT including its algorithm143

and Attention Kernel design, which not only reduces memory access of tree KV but also adopts a144

fused kernel to eliminate the memory access of partial results like QK> and Softmax operations. We145

further theoretically analyze DEFT’s IO with existing attention algorithms to justify its advances.146

3.1 Preliminary147

LLM inference and its bottleneck. LLM inference involves two stages: (1) prefill and (2) decoding.148

During the prefill stage, a prompt is tokenized to initialize LLM. The output of the prefill stage149

becomes the input for the decoding stage. The decoding stage is auto-regressive, with each output150

3

token from the previous step serving as the input token for the next step. Due to the sequential process151

of auto-regressive decoding, LLM inference is memory-bound [32, 19, 5], wherein every forward152

pass requires transferring all model parameters and KV cache from slower but larger High-Bandwidth153

Memory (HBM) to the faster but much smaller shared memory of the GPU [17] 1.154

Motivation for DEFT. To improve efficiency, boosting the arithmetic intensity—the ratio of total155

floating-point operations (FLOPs) to total memory access—of the decoding process is essential.156

Parallel decoding frameworks [5, 27] tend to achieve this goal by introducing more calculations to157

generate more tokens in each decoding step, while keeping memory access nearly the same2 in each158

decoding step. A sequence of tokens will be generated as token candidates by draft models [27] or159

fine-tuned heads [5], which is then refined by the LLM for acceptable continuation. This line of160

approach reduces the total number of decoding steps as well as the total amount of memory access.161

In the meanwhile, tree-based decoding, leveraging the decoding tree defined below, enables efficient162

parallel decoding. The tree attention is further introduced to reduce redundant KV storage, calculation,163

and kernel launching overheads when calculating the attention.164

Definition 3.1 (Decoding tree). A decoding tree T is a rooted tree where the root node corresponds165

to the prompt and each non-root node u represents a sequence of generated tokens Su. For each node166

u, Bu is the path from root node to u (without u) and PBu
is the concatenation of tokens in sequences167

of nodes in path Bu by the sequential order. For each token n ∈ u, su,n ∈ Su represents the sequence168

from the first token of node u to n (including n). The last token of each leaf node represents the input169

token for the next decoding iteration.170

Definition 3.2 (Tree-Attention). For each token n ∈ u, where u is any non-root node in the decoding171

tree T , its tree attention is defined as the output of original Transformer-based sequence attention172

(Attention(·)) on Proot→n, where Proot→n is the concatenation of PBu and su,n:173

Tree-Attention(n) = Attention(Proot→n) . (1)

The existing solution of tree attention [5, 27] omits the potential IO optimization brought by the174

tree topology itself, thus motivating the DEFT we will explore in this paper. DEFT optimizes LLM175

efficiency from another perspective: it leverages the characteristics of prefix sharing in decoding176

trees to reduce the redundancy of KV cache IO from HBM to on-chip shared memory, then the177

whole arithmetic intensity will be improved with less memory access and nearly the same FLOPs.178

Figure 2: Overview of DEFT. SMEM means
shared memory of GPUs. Input Metadata con-
sists of 1) Query (tokens), 2) KV (KV cache of
decoding tree), and 3) Tree Topo (the topology of
decoding tree to map Query and KV, which are
prepared by Branch Controller, KV cache Man-
ager, and Sequence Tree Manager in the system
elaborated in Appendix A.1, respectively.

179

3.2 Overview of System Design for DEFT180

We can separate the execution of attention algorithms181

into two main phases: (1) QKV PREPARATION PHASE:182

group Query, Key, and Value (QKV) logically and map183

QKV groups to different streaming multiprocessors184

(SMs) of GPUs; (2) ATTENTION CALCULATION185

PHASE: load QKV groups to different SMs’ shared186

memory and apply attention algorithms to each group187

for final attention results.188

Minimizing memory access between slow HBM and189

fast shared memory for memory-bound computations190

(e.g., attention) is crucial. DEFT aims to be a memory-191

efficient algorithm in both aforementioned phases to get192

attention for tree-based decoding. In detail, as shown193

in Figure 2:194

À In the QKV PREPARATION PHASE, we introduce a KV-guided Grouping strategy with tree-195

topology awareness to minimize the IO of QKV.196

Á During the ATTENTION CALCULATION PHASE, we propose the DEFT ATTENTION KERNEL3.197

This includes (1) a Tree-Topology-Aware Global Reduction strategy and (2) established techniques198

such as Kernel Fusion and Tiling to eliminate the IO of partial results (i.e., QK> and Softmax).199

Apart from efficient DEFT ATTENTION KERNEL, our system for DEFT has other two advantages:200

1) efficient memory management of the KV cache in a tree structure, and 2) flexible control of the201

1A100’s HBM has 1.5-2TB/s bandwidth and 40-80GB; its shared memory has 19TB/s bandwidth and 20MB.
2Medusa [5] only introduces negligible memory access of KV cache for token candidates in the tree.
3GPUs utilize a vast array of threads to execute operations known as kernels

4

tree decoding process with arbitrary user-defined functions, to decide when and how to branch/prune.202

The details of key components and their coordinations in the system refer to Appendix A.1.203

3.3 An Efficient Attention Algorithm with IO-awareness for Tree-structured KV Cache204

Figure 3: Comparison of memory access from HBM to shared memory for different attention algorithms
in QKV Preparation Phase, where the amount of IO required by each is enclosed in red rectangles for each
QKV group. (Left) From top to bottom, there are notations, the composition of the input metadata, and, most
importantly, details of the DEFT-Flatten algorithm: 1) The Depth-first Flatten strategy aims to minimize the
IOs of queries in each block obtained after splitting, as queries corresponding to child KV are a subset of those in
the parent KV (e.g., Q1 and Q2 for KV0 contain Q1 for KV1); 2) The Evenly blockwise strategy ensures equal
lengths of KV in each QKV group for balanced workloads of streaming multiprocessors (SMs) in GPUs; 3) The
Bitmask[27] is a set of 64-bit integers used to record causal information of tokens in the tree, but its IO overhead
(e.g. two 64-bit integers in KV-BCM1) is negligible compared to the dense causal mask[5]; 4) To accommodate
DEFT-Flatten’s KV-guided Tree Split method, we adopt the KV-guided bit causal mask (KV-BCM) instead
of the Q-guided one (Q-BCM)[27]. (Right) Different split and grouping strategies result in different memory
access. Q-guided grouping (e.g. sequence-based attention [7, 45] and Tree Attention-SpecInfer [27]) causes
significant redundancy of KV cache; KV-guided grouping (e.g. DEFT) causes negligible additional IO of queries.
The IO cost of BCM can be ignored, while DCM cannot. See more details in Table 2 and Remark 3.3.

In this section, we delve into the details of the QKV PREPARATION PHASE, which is a key design205

aspect of DEFT, and defer the discussion of the ATTENTION CALCULATION PHASE to Appendix A.4.206

À QKV PREPARATION PHASE of DEFT. In sequence-based decoding, split strategy—namely207

splitting the inputs KV into blocks—is commonly deployed to generate enough QKV groups for208

full utilization of the GPU [7]. This technique is crucial when the parallelism (usually limited by209

the batch size [7]) is much smaller than the number of streaming multiprocessors (SMs) on the GPU210

(108 for an A100), where the operation will only utilize a small portion of the GPU. Similarly, for211

tree-based decoding—where a decoding tree consists of multiple nodes and each node is a sequence212

of tokens—the batch size of trees may also be insufficient to fully utilize the GPU when the number213

of tokens in the tree is large, due to memory capacity limitations.214

Unfortunately, split the tree is not as easy as split the sequence [7]: it may introduce significant IOs215

during the QKV grouping after splits, as shown in Figure 3 and discussed in Remark 3.3.216

Remark 3.3 (The effects of tree split and QKV grouping strategies in the QKV PREPARATION217

PHASE). In the QKV PREPARATION PHASE, how decoding tree is split and QKVs are grouped218

logically results in different memory access of QKV from HBM to shared memory for tree decoding,219

as shown in the right of Figure 3 and Table 2.220

5

Table 2: Comparison of grouping and split strategies of baselines and DEFT. For IO redundancy, these significant
is in red, while these can be ignored is in blue. Detailed of IO complexity in Table 4.

Method Sequence-based [7, 45] Tree Attention-S [27] Tree Attention-M [5] DEFT-Node DEFT-Flatten

Grouping indicator Q-guided Q-guided tree-guided KV-guided KV-guided
Tree KV Split Granularity by branch(query) no split no split by tree node by block

IO redundancy KV KV and BCM DCM Q Q and BCM

• Sequence-based decoding methods [7, 45] split the tree based on Q and group QKV based on221

Q without tree topology awareness, which bring redundant KV cache IO;222

• Tree Attention-Medusa [5] groups the QKV of the entire decoding tree together with a tree223

topology-aware causal mask for tree attention computation based on Pytorch primitives, resulting224

cost of additional IO for the causal mask;225

• Tree Attention-SpecInfer [27] groups each query with the KV of the entire tree with a causal mask226

for tree attention calculation, which has great redundancy in KV cache IO.227

To bridge this gap, we propose KV-Guided Grouping Strategy with Tree Split, offering two levels of228

granularity: it splits the tree by sequence nodes or blocks of the same length, and then groups the KV229

of each node with all queries that share it based on tree topology. This grouping strategy, with KV as230

the indicator for grouping, eliminates redundant IO operations for KV with negligible query IO cost,231

as illustrated in the bottom right of Figure 3.232

Remark 3.4 (Properties of KV-Guided Grouping Strategy with Tree Split). The additional IO cost233

of Q caused by split tree KV in DEFT is negligible because the length of the KV often surpasses234

that of the Q during tree decoding, primarily due the fact that the auto-regressive decoding pattern235

dictates that each query in the decoding stage has a length of 1, which means the maximum query236

length of a decoding tree is determined by the number of branches.237

Remark 3.5 (The effects of different split granularities). We provide two algorithm choices for DEFT238

different splits granularity in KV-Guided Tree Split.239

• DEFT-Node: split by node, which is simple without a need for the causal mask. However, it may240

have potentially unbalanced workloads in different SMs. For example, node A could have the KV241

cache of 1000 tokens, while node B only has that of 2 tokens. When nodes A and B are allocated242

to SM1 and SM2 respectively, SM2 could finish the task much earlier and be idle.243

• DEFT-Flatten: flatten tree KV then evenly split it to blocks. The same length of KV cache in each244

QKV group ensures balanced workloads in IOs and calculations for different SMs, with negligible245

IO cost of Bit Causal Mask, as shown in the right bottom of Figure 3.246

Á ATTENTION CALCULATION PHASE of DEFT. In this phase, we design DEFT Attention kernel247

to load QKV splits in a memory efficient way, which is logically grouped by the QKV PREPARATION248

PHASE, then to perform the attention calculation. Key techniques are as follows, whose details are249

discussed in Appendix A.4: 1) common Kernel Fusion and Tiling strategies avoid significant IO250

operations for partial results (i.e.. QK> and Softmax), which Tree Attention-Medusa [5] lacks; 2) a251

novel Tree-Topology-Aware Global Reduction inspired by Flash-Decoding [15] retrieves the final252

attention of each query based on partial attention results from each QKV group with tree topology.253

Implementation details. We implement the DEFT attention kernel by OpenAI Triton [33], which254

enables us to control memory access from global memory to shared memory and attention calculations255

in a thread block granularity. DEFT-Node and DEFT-Flatten algorithms with two phases in a Python256

style can be found in Appendix A.7 and Appendix A.8, respectively.257

3.4 Analysis: IO Complexity of DEFT258

This section analyzes the IO complexity of DEFT, showing a significant reduction in HBM accesses259

compared to existing attention algorithms. Note that it is non-trivial to summarize the IO cost of the260

entire tree decoding process, thus we only compare IOs based on the decoding tree snapshot in a261

single iteration.262

Consider a decoding tree with the features outlined in Table 3, and we summarize the corresponding263

IO breakdown in Table 4. It can be observed that due to the lack of tree-topology awareness, sequence-264

based decoding methods, such as naive attention and Flash-Decoding, incur Fs times more memory265

access overheads for KV cache compared to DEFT-Node/Flatten and Tree Attention-Medusa [5].266

6

Table 4: IO complexity breakdown for various methods. O(1) denotes the IO cost for a single data in the
tensor across all layers and heads, which is equivalent to #heads ∗#layer ∗ dtype_size. The best among all
methods in the table is in red, while the (potential) worst is in blue. Query IO is omitted as it is O(klndhead)
for all methods. Here, k is the number of QKV groups: for DEFT-Node k = #node; for DEFT-Flatten,
k = Ntree/bs, where bs is the block size of KV; for others, k = 1. M in Tree Attention-M is short for
Medusa [5], while S in Tree Attention-S is short for SpecInfer [27].

Method KV cache QK> QK>

sc
Mask(M) M+ QK>

sc
Softmax

Naive Attention O(2dhead
∑ln

i=1 Ni) O(2
∑ln

i=1 Ni) O(2
∑ln

i=1 Ni) 0 0 O(2
∑ln

i=1 Ni)

Flash-Decoding O(2dhead
∑ln

i=1 Ni) 0 0 0 0 0

Tree Attention-M O(2dheadNtree) O(2lnNtree) O(2lnNtree) O(lnNtree) O(2lnNtree) O(2lnNtree)

Tree Attention-S O(2dheadNtreeln) 0 0 O(lnNtree/64) 0 0

DEFT-Node O(2dheadNtree) 0 0 0 0 0

DEFT-Flatten O(2dheadNtree) 0 0 O(Ntree) 0 0

Table 3: Notations.

ln Number of leaf nodes in a decoding
tree, which means how many queries
are in this decoding iteration.

Ni Total token length from the root node
to leaf node i.

Ntree Total token length the entire tree.

#node Total number of nodes in entire tree.

dhead Head dimension of LLM.

sc Scale factor for scaled dot-product at-
tention, typically denoted as

√
dhead.

Fs Shared factor of reusing prefixes in
tree attention, which means to which
extent we can reduce IOs of KV
cache: Fs = (

∑ln
i=1 Ni)/Ntree.

However, Tree Attention-Medusa entails higher267

IO overheads for partial results like QK>268

and Softmax due to the lack of tiling and269

kernel fusion4. What’s more, a dense mask is270

introduced to record the causal information of271

tokens in the tree, with significant IO costs.272

When the number of leaf nodes/queries ln is273

sufficiently large, the IO cost of partial results274

might become comparable to that of the KV275

cache. For instance, in the Llama models [34,276

35], where dhead=128, with ln=29, the total277

IO cost of QKT , M, QK>

sc
, M + QK>

sc
, and278

Softmax matches that of the KV cache.279

Remark 3.6 (KV IO in SpecInfer). Though sim-280

ilar to DEFT, SpecInfer [27] also employs a281

fused kernel for tree attention. No IO is sharing282

for KV cache among queries in SpecInfer: in-283

stead, each query will load the entire KV cache284

of the tree independently, bringing significant IOs of the KV cache as in Table 4.285

Remark 3.7 (Causal mask IO). DEFT-Node splits the decoding tree by nodes without the need286

for causal masks. For more balanced calculations among SMs in GPUs, DEFT-Flatten evenly splits287

the decoding tree into blocks, with minimal IO cost for masks inspired by SpecInfer. This design288

reduces the IO overhead of masks significantly compared to the dense mask design in Medusa, as289

shown in Table 4.290

4 Experiments291

In this section, to demonstrate the effectiveness of DEFT under different tree topologies, we compre-292

hensively conduct experiments on three types of tree-based decoding tasks, including: (1) few-shot293

prompting [25]: a typical case study of tree-structured interactions with two levels–a prefix and294

several suffixes; (2) multi-step reasoning [42, 41, 11]: tasks characterized by tree-structured past KV295

with parallel queries; (3) speculative decoding [5, 27]: tasks involving past KV in sequence with296

tree-structured queries.297

4.1 Experimental Setup298

Baselines. We evaluate the performance of DEFT in NVIDIA A100 (80GB) in Llama3-8B299

model [35] with the SOTA attention algorithms in sequence-based and tree-based decoding, as300

shown in Table 5. Note that we did not include the tree attention operator of SpecInfer [27] to our301

4Note that QKT , QK>

sc
, M+ QK>

sc
and Softmax will load and write, so the IO cost contains a round-trip

of memory access between HBM and shared memory, as shown in Figure 9.

7

Table 5: Comparison of baselines and DEFT. Attention kernels of baselines are implemented to fit its memory
management. Therefore, for a fair comparison with baselines, we implement DEFT-Node and DEFT-Flatten
that fit both paged [20]/unpaged memory management.

Method Flash-Decoding [15] Tree Attention-Medusa [5] Radix Attention [45] DEFT

Memory unpaged unpaged paged unpaged/paged
Implementation Triton Pytorch Triton Triton

Table 6: Workloads generation. ToT-BFS is short for tree-of-thoughts [42] with breath-first-search. See more
details in Table 10.

Task Prompt Dataset Decoding Tree Source Decoding Tree Collection Method Stopping Criteria

Few-shot prompting APPS [12] - - 400 iterations
Multi-step reasoning 4 tasks in [4] ToT-BFS in [4] Reconstruct from interaction records with GPT 3.5 in [4] End of task
Speculative decoding APPS [12] Medusa [5] Record token tree shape and accepted token length per step ∼ 1000 steps(max length=6000)

Table 7: Average attention latency (second) of each tree and its influence in end-to-end latency. b means tree
width. t denotes the token tree size (i.e., the number of tree-structured queries). Attention Speedup over the best
attention means the speedup of DEFT-Flatten over the best baseline (Tree Attention-Medusa in most of cases) in
attention calculation. Speedup over the best wall-clock time means the speedup of DEFT-Flatten over the best
baseline (Radix Attention) in end-to-end latency. Attention Speedup over the best wall-clock means the attention
speedup of DEFT-Flatten over the best baseline (Radix Attention) in end-to-end latency. ? means out of memory
for A100 80GB, while ♠ means not supported/implemented. See details of end-to-end latency in Table 11.

Memory Method Few-shot Prompting Multi-Step Reasoning Speculative Decoding

b=20 b=30 b=50 Sorting Document Keyword Set t=32 t=64 t=128 t=256

Unpaged Flash-Decoding 43.49 66.10 110.09 160.67 105.80 12.14 19.96 340.09 692.88 ? ?
Tree Attention-Medusa 3.93 7.51 9.57 38.64 29.10 2.62 3.96 18.05 26.31 41.10 68.28

Paged
Radix Attention 5.99 7.30 9.96 39.37 24.69 3.11 5.13 32.60 54.57 109.39 212.29

DEFT-Node 10.51 11.41 ♠ 42.96 33.29 6.16 9.58 50.82 ♠ ♠ ♠
DEFT-Flatten . 3.47 4.07 5.87 28.41 21.45 2.57 3.83 12.68 18.18 29.97 55.58

Attention Speedup over the best attention. 1.13× 1.63× 1.70× 1.36× 1.15× 1.02× 1.03× 1.42× 1.45× 1.37× 1.22×
Attention Speedup over the best wall-clock 1.73× 1.63× 1.70× 1.39× 1.15× 1.21× 1.34× 2.57× 3.00× 3.64× 3.82×

Speedup over the best wall-clock 1.24× 1.28× 1.33× 1.10× 1.03× 1.03× 1.05× 1.43× 1.70× 2.22× 2.52×

baselines as its kernel only supports at most 64 tokens in the token tree (the decoding tree except302

for the past seq KV part), which is unsuitable for tree-based decoding with tree-structured KV (c.f.303

details in Appendix A.2).304

Workloads generation. To ensure fairness for workloads of different baselines, we reconstruct305

decoding trees from real multi-step reasoning and speculative decoding tasks, as shown in Table 6.306

For multi-step reasoning, we include these four tasks from [4]: (1) Sorting 128 numbers (Sorting307

in short), (2) Document merging (Document in short), (3) Keyword counting (Keyword in short),308

and (4) Set intersection (Set in short). The tree decoding process would be forced to branch and309

prune the tree in certain iterations to get the same shape of the decoding tree as the original decoding310

tree sources. See workload generation details and analysis in Appendix A.5.311

4.2 Analysis of Memory Management and Bottleneck312

As shown in Table 5, the kernel implementations of different attention algorithms adapt to different313

memory management. To fairly compare their performance of wall-clock time speedup, we need to314

analyze the influence of memory management and the bottleneck of the system.315

A trade-off between memory storage and memory operation. For tree-based decoding, we can316

store the KV cache by each branch of the decoding tree in a sequence, which is quite straightforward317

but no storage sharing of the prefix’s KV cache. Considering the limited capacity of GPU memory,318

ignoring the tree structure when sharing KV storage significantly restricts the number of tokens in319

the decoding tree. Though storing the KV cache according to each node of the decoding tree can320

greatly improve storage efficiency, many existing attention kernels are designed for sequence-based321

decoding [6, 15, 7]. To adapt these kernels, the KV caches of different nodes need to be concatenated322

and materialized into a single sequence tensor, incurring significant data movement costs [20].323

The benefits of paged memory for tree-based decoding. To improve the efficiency of KV cache324

memory management, paged memory [20, 45] is the current mainstream technology. These KV325

cache tensors are stored in a non-contiguous, paged layout to provide token-level reuse. Besides326

higher storage efficiency, we note an additional benefit of paged memory management for tree-based327

decoding: non-contiguous storage in a memory pool is addressed by pointers, ensuring that we do not328

8

need to materialize the tree-structured KV into a single tensor before executing the attention kernel.329

Instead, we only need to record the memory pool addresses of each token’s KV cache.330

Figure 4: Latency breakdown for specula-
tive decoding with a token tree of 32 queries,
whose tree topology is from Medusa [5]. U
means unpaged memory management.

Bottlenecks and trade-offs. We provide support for331

DEFT and baselines with KV cache in memory manage-332

ment (unpaged or paged) according to their designs. We333

visualize the latency breakdown for (1) KV cache man-334

agement, (2) attention, and (3) other operations (including335

MLP calculation) in Figure 13a. We observe that with un-336

paged KV cache management in tree-based decoding, the337

bottleneck (69.5-83.4%) is the data movement required to338

materialize the KV cache. However, when we use paged339

memory management, attention becomes the new bottle-340

neck (50.5-60.0%), especially when the token tree is large.341

4.3 End-to-end Behaviors: Latency and IOs.342

We evaluate DEFT’s performance on various tree-based343

decoding tasks by measuring end-to-end latency (Table 11344

in Appendix A.6), attention latency (Table 7), and IO (Table 12 in Appendix A.6). This assessment345

demonstrates DEFT’s optimization of tree attention and its acceleration of wall-clock time.346

For few-shot prompting tasks, we used a prompt with 4k tokens and performed 400 decoding347

iterations, achieving a 1.33× end-to-end speedup thanks to 1.70× faster attention calculation and an348

approximately 90% reduction in IO.349

For speculative decoding tasks, DEFT-Flatten achieved up to a 2.52× wall-clock time speedup350

due to up to a 3.82× speedup in attention, as the entire token tree (all queries) can share IO of the351

long prefix.352

Figure 5: Comparison of split strategies
DEFT-Node and DEFT-Flatten in sorting
task. Speedup ratio refers to the ratio be-
tween the per iteration latency of DEFT-
Node and DEFT-Flatten. Tree Node Len std
represents the standard deviation of the tree
node lengths for each iteration.

For multi-step reasoning tasks, although DEFT-Flatten353

can have up to 1.36× attention speedup, the end-to-end354

acceleration is less pronounced for two reasons: (1) the355

tree width is too small (only 10), making the benefits of356

reusing KV cache IO less significant; (2) the total number357

of tokens in the tree is too low, resulting in attention’s358

end-to-end latency accounting for only about 30% of the359

total time (compared to approximately 50-80% in specu-360

lative decoding). Our experiments in few-shot prompting361

demonstrate that increasing the tree width (from 10 to 50)362

can result in significant end-to-end acceleration of 100363

iterations from 1.2× to 1.5×, as shown in Appendix A.6).364

4.4 Ablation Study365

The influence of split strategy in DEFT. We visualize the per-iteration latency of DEFT-Node366

and DEFT-Flatten for a tree in the sorting task in Figure 5, as the size and topology of the decoding367

tree change with each iteration. This comparison highlights the sensitivity of these two split strategies368

to changes in tree size. We observe a strong positive correlation between the ratio of per-iteration369

latency of DEFT-Node and DEFT-Flatten (Speedup Ratio) and the dispersion of tree node sizes. This370

correlation arises because the performance of DEFT-Flatten remains relatively stable, whereas the371

performance of DEFT-Node is more strongly influenced by the topology of the tree. DEFT-Flatten372

provides a stable speedup of approximately 1.75× compared to DEFT-Node.373

5 Discussion and Limitations374

Transitioning to complex tree-structured interactions demands efficient systems. DEFT optimizes375

memory access in tree-based decoding by wisely splitting and grouping KV cache entries, showing376

up to 3.82× faster attention calculation. The limitation of DEFT is that the obvious performance377

gain requires a relatively large token tree (e.g. few-shot prompting with a long prompt) or sufficient378

queries (e.g., speculative decoding scenario) to share KV cache IOs of prefixes. In future work, we379

will test DEFT on tasks with larger token trees, such as multi-step reasoning in coding or document380

analysis, to demonstrate its effectiveness in diverse scenarios.381

9

References382

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni383

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4384

technical report. arXiv preprint arXiv:2303.08774, 2023.385

[2] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Guided open vocabu-386

lary image captioning with constrained beam search. In Martha Palmer, Rebecca Hwa, and387

Sebastian Riedel, editors, Proceedings of the 2017 Conference on Empirical Methods in Natural388

Language Processing, pages 936–945, Copenhagen, Denmark, September 2017. Association389

for Computational Linguistics.390

[3] Ben Athiwaratkun, Sujan Kumar Gonugondla, Sanjay Krishna Gouda, Haifeng Qian, Hantian391

Ding, Qing Sun, Jun Wang, Jiacheng Guo, Liangfu Chen, Parminder Bhatia, et al. Bifurcated392

attention for single-context large-batch sampling. arXiv preprint arXiv:2403.08845, 2024.393

[4] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna394

Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al.395

Graph of thoughts: Solving elaborate problems with large language models. arXiv preprint396

arXiv:2308.09687, 2023.397

[5] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri398

Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads.399

arXiv preprint arXiv:2401.10774, 2024.400

[6] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and401

memory-efficient exact attention with io-awareness. Advances in Neural Information Processing402

Systems, 35:16344–16359, 2022.403

[7] Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-decoding for long-context404

inference, 2023. PyTorch Blog.405

[8] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason406

Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled407

text generation. In International Conference on Learning Representations, 2019.408

[9] In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin409

Zhong. Prompt cache: Modular attention reuse for low-latency inference. arXiv preprint410

arXiv:2311.04934, 2023.411

[10] Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint412

arXiv:1211.3711, 2012.413

[11] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhit-414

ing Hu. Reasoning with language model is planning with world model. arXiv preprint415

arXiv:2305.14992, 2023.416

[12] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,417

Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge418

competence with apps. arXiv preprint arXiv:2105.09938, 2021.419

[13] Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence generation using grid420

beam search. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the 55th Annual421

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages422

1535–1546, Vancouver, Canada, July 2017. Association for Computational Linguistics.423

[14] Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi.424

Learning to write with cooperative discriminators. In Proceedings of the 56th Annual Meeting425

of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1638–1649,426

2018.427

[15] Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Hanyu428

Dong, and Yu Wang. Flashdecoding++: Faster large language model inference on gpus. arXiv429

preprint arXiv:2311.01282, 2023.430

10

[16] Hugging Face. Text Generation Inference. https://github.com/huggingface/431

text-generation-inference. Accessed: 2024-05.432

[17] Zhe Jia and Peter Van Sandt. Dissecting the ampere gpu architecture via microbenchmarking.433

In GPU Technology Conference, 2021.434

[18] Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y Fu, Christopher Ré, and Azalia435

Mirhoseini. Hydragen: High-throughput llm inference with shared prefixes. arXiv preprint436

arXiv:2402.05099, 2024.437

[19] Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W438

Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint439

arXiv:2306.07629, 2023.440

[20] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,441

Joseph E Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large442

language model serving with pagedattention. arXiv preprint arXiv:2309.06180, 2023.443

[21] Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli444

Celikyilmaz. Making ppo even better: Value-guided monte-carlo tree search decoding. arXiv445

preprint arXiv:2309.15028, 2023.446

[22] Mingdao Liu, Aohan Zeng, Bowen Wang, Peng Zhang, Jie Tang, and Yuxiao Dong. Apar: Llms447

can do auto-parallel auto-regressive decoding. arXiv preprint arXiv:2401.06761, 2024.448

[23] Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan449

Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, et al. Neurologic a* esque decoding:450

Constrained text generation with lookahead heuristics. In Proceedings of the 2022 Conference451

of the North American Chapter of the Association for Computational Linguistics: Human452

Language Technologies, pages 780–799, 2022.453

[24] Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.454

Neurologic decoding:(un) supervised neural text generation with predicate logic constraints.455

In Proceedings of the 2021 Conference of the North American Chapter of the Association for456

Computational Linguistics: Human Language Technologies, pages 4288–4299, 2021.457

[25] Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam, G Sas-458

try, A Askell, S Agarwal, et al. Language models are few-shot learners. arXiv preprint459

arXiv:2005.14165, 2020.460

[26] Chen Mark, Tworek Jerry, Jun Heewoo, Yuan Qiming, Pinto Henrique Ponde de Oliveira,461

Kaplan Jared, Edwards Harrison, Burda Yuri, Joseph Nicholas, Brockman Greg, et al. Carr462

andrew n. Leike Jan, Achiam Joshua, Misra Vedant, Morikawa Evan, Radford Alec, Knight463

Matthew, Brundage Miles, Murati Mira, Mayer Katie, Welinder Peter, McGrew Bob, Amodei464

Dario, McCandlish Sam, Sutskever Ilya, and Zaremba Wojciech, 2021.465

[27] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,466

Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating467

generative llm serving with speculative inference and token tree verification. arXiv preprint468

arXiv:2305.09781, 2023.469

[28] Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang, and Yu Wang. Skeleton-of-thought:470

Large language models can do parallel decoding. arXiv preprint arXiv:2307.15337, 2023.471

[29] NVIDIA. TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM. Accessed: 2024-472

05.473

[30] Matt Post and David Vilar. Fast lexically constrained decoding with dynamic beam allocation for474

neural machine translation. In Marilyn Walker, Heng Ji, and Amanda Stent, editors, Proceedings475

of the 2018 Conference of the North American Chapter of the Association for Computational476

Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1314–1324, New477

Orleans, Louisiana, June 2018. Association for Computational Linguistics.478

11

https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/NVIDIA/TensorRT-LLM

[31] Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu,479

Myle Ott, Kurt Shuster, Eric M Smith, et al. Recipes for building an open-domain chatbot.480

arXiv preprint arXiv:2004.13637, 2020.481

[32] Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint482

arXiv:1911.02150, 2019.483

[33] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and484

compiler for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN485

International Workshop on Machine Learning and Programming Languages, pages 10–19,486

2019.487

[34] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-488

thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open489

and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.490

[35] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,491

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open492

foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.493

[36] Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang,494

Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with495

process-and outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.496

[37] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha497

Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language498

models. arXiv preprint arXiv:2203.11171, 2022.499

[38] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,500

Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.501

Advances in Neural Information Processing Systems, 35:24824–24837, 2022.502

[39] Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover:503

Grounded mathematical proof generation with language models. Advances in Neural Informa-504

tion Processing Systems, 35:4913–4927, 2022.505

[40] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony506

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-507

ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.508

[41] Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and509

Michael Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information510

Processing Systems, 36, 2024.511

[42] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik512

Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv513

preprint arXiv:2305.10601, 2023.514

[43] Lu Ye, Ze Tao, Yong Huang, and Yang Li. Chunkattention: Efficient self-attention with515

prefix-aware kv cache and two-phase partition. arXiv preprint arXiv:2402.15220, 2024.516

[44] Yao Zhao, Zhitian Xie, Chenyi Zhuang, and Jinjie Gu. Lookahead: An inference accelera-517

tion framework for large language model with lossless generation accuracy. arXiv preprint518

arXiv:2312.12728, 2023.519

[45] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi520

Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Efficiently programming large521

language models using sglang. arXiv preprint arXiv:2312.07104, 2023.522

12

Contents of Appendix523

A Appendix 13524

A.1 Components of System Support for DEFT . 13525

A.2 Discussion of Tree-based Decoding . 14526

A.3 Discussion of Concurrent Works . 15527

A.4 Discussion of Techniques in Efficient Attention Algorithm Design 16528

A.5 Discussion of Workloads Generation . 19529

A.6 Additional Results . 20530

A.7 DeFT-Node Algorithm . 21531

A.8 DEFT-Flatten Algorithm . 23532

A Appendix533

A.1 Components of System Support for DEFT534

The left part of Figure 6 shows the coordinations of different components for efficient and flexible535

tree-based decoding. The details of functions for system components of DEFT are as below:536

1. Branch Controller: It makes the tree decoding process forced by a user-defined function (e.g.537

branch to two children every 3 iterations, as the example shown in the right of Figure 6). Tree-538

search-based algorithms can be applied here using the decoding tree’s topology information.539

2. Sequence Tree Manager: It maintains the topology of the decoding tree based on the tree540

operations and tokens from the Branch Controller. The tree operations like pruning and branching541

will be executed by Tree Handler in this component. Branch Result Storage will record token542

generation results of all branches in the decoding tree, and output when the decoding stops.543

3. KV cache Manager: It will maintain KV cache with a tree structure. A map between sequence IDs544

in the decoding tree and KV cache index is kept, which will be updated based on KV operations5545

from the Sequence Tree Manager. We provide both paged [20] and unpaged memory management546

in this part to fit different attention kernels.547

4. Model Interface: pass input metadata to DeFT Attention kernel and MLP module, then return548

logits and memory pointers of updated KV cache.549

Figure 6: Illustration of DEFT. (Left) System overview. (Right) The data flow using a decoding tree example.

The right part of Figure 6 further showcases the key data flow of the system through a decoding tree550

example: input metadata will be extracted by three components we mentioned above, then loaded551

from HBM to shared memory in a group manner after the QKV PREPARATION PHASE discussed in552

5e.g. when a node is pruned in the decoding tree, its KV space will be evicted using a Remove operation.

13

Section 3.3. Then QKV groups will be processed by DEFT ATTENTION KERNEL in ATTENTION553

CALCULATION PHASE of DEFT. See details of techniques in these two phases in Appendix A.4.554

A.2 Discussion of Tree-based Decoding555

(a) (Left) Sequence KV with queries in a tree for parallel decoding [27, 5],
where a causal mask is applied to record the causal information among queries
in a tree of tokens. (Right) Tree KV with parallel queries for shared prefixes
in multi-step reasoning.

(b) Bit Mask in SpecInfer [27] to record the causal information
between query tokens in a tree structure. The decoding tree is in
the left part of 7a.

Figure 7: Discussion of tree-based decoding with tree queries [27] and tree KV.

Tree-based decoding could have tree-structured KV cache for storage with awareness of shared556

prefixes [45], or tree-structured queries in parallel/speculative decoding [27, 5], as shown in Figure 7.557

A general decoding could both do with tree KV and tree queries, which could reduce redundancy558

(e.g. IO, storage, computation, etc) of shared prefixes, as well as increase the generated tokens per559

decoding iteration.560

The existing inference frameworks [45, 9] focused on tree-based decoding efficiency primarily561

aim to: (1) reduce memory footprints [45] to enable larger batch sizes for higher throughput; (2)562

reuse the prompt cache [9] to avoid recomputation of the KV cache for faster time-to-first-token563

(TTFT). However, their designs do not specifically target reducing the wall-clock time of the entire564

decoding process. We observe that the tree-structured feature of LLM inference could provide us565

some advantages to speed up the decoding itself.566

Analysis of speedup potential in tree-based decoding. In tree-based decoding, KV cache and567

queries can be structured in a tree. Not only can we store KV cache in a tree, but also we can568

load QKV with awareness of tree topology during attention calculation, to minimize the expensive569

IO between HBM and on-chip shared memory of GPUs. We explain it in two case studies of570

complex scenarios with tree-structured interactions: (1) multi-step reasoning [42, 41]; (2) speculative571

decoding [5, 27].572

Case study 1: multi-step reasoning. As shown in the left part of Figure 8, we can summarize573

process of multi-step reasoning [11, 42, 4] to three phases: (1) Thought Generation: generate k574

candidates for the next thought step based on a generation prompt Pg and previous steps S; (2)575

Thought Evaluation: When presented with a frontier of various thoughts, a LLM as state evaluator576

measures previous thoughts S based on an evaluation prompt Pe towards resolving the problem. This577

assessment acts as a heuristic for the search algorithm, guiding it on which states to pursue further578

and the sequence in which to explore them; (3) Tree Search-based Expansion: play different search579

algorithms [23, 21, 41] to explore search space, which influences the future tree topology. In both (1)580

and (2), we can share IO of KV cache for Pg/Pe and S during tree attention calculation.581

14

Figure 8: Analysis for two case studies of tree-based decoding. (Left) Multi-step reasoning. (Right) Speculative
decoding. Blue boxes mean shareable past KV cache in storage and memory access during the tree attention
calculation, while yellow boxes means the KV cache of generated context.

Case study 2: speculative decoding. As shown in the right part of Figure 8, we can summarize582

process of speculative decoding [5, 27] to tree phases: (1) Token Tree Generation: multiple small583

draft models [27] or fine-tuned heads [5] generate multiple sequences of tokens based on prompt P ,584

then they are merged to a speculated token tree Tt, which is very fast (e.g. 1% of time overhead in585

SpecInfer [27]); (2) Token Verification: based on these tree-structured token candidates Tt, verify the586

correctness of its tokens against an LLM’s output, where tree-attention calculation is the bottleneck of587

the process [27]. In (2), we can share IO of KV cache for P and S during tree attention calculation.588

Why existing tree-attention algorithms are not enough? The existing tree-attention algorithms589

are either in-efficient in memory access [5, 27] or not suitable for general tree-based decoding [27]590

with more than 64 tokens in the token tree.591

• In SpecInfer[27], as shown in Figure 7b, a bit mask is utilized to record the causal information592

among queries of a token tree. Each token ti in queries will have a 64-bit Int as a bit mask, where593

j-th bit means the causal relationship between query of ti and KV cache of tj . The advantage of594

this mask design is that it greatly reduces IO, but it results in the maximum number of tree tokens595

being only 64, which is not practical for scenarios with tree-structured KV cache. What’s more, it596

is not IO-aware for KV cache as it will load KV cache of the entire tree for each query.597

• Medusa [5] is suitable for general tree-based decoding, but it is not hardware-efficient due598

to significant IOs of a dense causal mask and partial results during attention calculation (e.g.599

Softmax).600

A.3 Discussion of Concurrent Works601

There are some concurrent works [3, 43, 18] in attention algorithm design for single-context large-602

batch sampling, where the goal is to generate multiple sequences from a single context(e.g. system603

prompt or few-shot examples), which is a special case of tree-based decoding with a depth of 1. The604

design of their algorithms are based on this feature, which means they can not suit well in attention605

calculation of a tree with more than two levels of prefixes with efficiency.606

Insights and techniques in common. Both concurrent works and DEFT have the insight that607

memory access is the bottleneck of LLM inference, and decomposing attention across subsequences608

to reduce the memory access of the prefix KV: (1) calculate attention Ap, As over prefix and suffixes,609

15

respectively; (2) get finial attention by online softmax merging [6, 7] based on Ap and As. Here are610

the details of the correctness proof:611

• Let’s say we have key tensor K ∈ R(lkv,d), value tensor V ∈ R(lkv,d), and query tensor Q ∈612

R(lq,d). Consider the general case K and V are partitioned across the sequence (row) dimension613

into two parts for prefix and suffixes, respectively: K = Kp ‖ Ks, and V = Vp ‖ Vs, with ‖614

denoting concatenation along the row axis.615

• We calculate the attention Ap, As over prefix and suffixes, where616

Ap = 〈Q,Kp, Vp〉, As = 〈Q,Ks, Vs〉,

and617

〈q, k, v〉 = Softmax

(
qkT√
d

)
v.

• We calculate LogSumExp (LSE) as a weight of merging Ap and As. We define LSE(q, k) =618

log
(∑(

exp
(

qkT

√
d

)))
.619

• We have620

〈Q,K, V 〉 = Ape
LSE(Q,Kp) +Ase

LSE(Q,Ks)

eLSE(Q,Kp) + eLSE(Q,Ks)
. (2)

Table 8: Comparison among DEFT and concurrent works in single-context large-batch sampling scenarios [3, 43,
18]. More ? means more balanced workloads after tree split, which also shows how insensitive the acceleration
is to the tree topology.

Method Chunk-Attention [43] Hygragen [18] Bifurcated-Attention [3] DEFT-Node DEFT-Flatten

IO-aware levels 2 (depth<=1) 2 (depth<=1) 2 (depth<=1) all(every depth) all(every depth)
Tree KV split granularity by node first, then by block by tree depth by tree depth by tree node flatten tree, then by block

Load-balanced level ?? ? ? ? ? ? ?
Goal metrics throughput throughput latency latency latency

Comparison of differences. The existing works of single-context large-batch sampling are not621

hardware-efficient for general tree-based decoding with two reasons, as shown in Table 8:622

• They are designed for decoding trees with only two levels—prefixes at the root and suffixes at623

depth 1. For decoding trees with multiple levels of prefixes, their algorithm can only reduce the IO624

of the prompt at the root of the tree. However, in scenarios such as multi-step reasoning [42, 4, 11],625

the token length of non-root prefixes can also be very long (e.g., thousands of tokens), and their626

KV cache’s IO is not reused. DEFT can reuse KV IO of all non-leaf prefixes in a general decoding627

tree, providing greater acceleration potential.628

• They have not addressed the unbalanced workload problem in tree-based decoding. Nodes in the629

decoding tree can vary significantly, making it crucial to split the tree and group QKV in a way630

that ensures balanced calculations for each QKV group. Simply dividing based on depth alone is631

insufficient.632

A.4 Discussion of Techniques in Efficient Attention Algorithm Design633

Table 9: Technique list of DEFT. What we propose is in red. The details of the first four techniques are in
Section 3.3, while the details of the following techniques are discussed in this chapter.

Technique Goal

KV-guided Grouping with Tree Split High utilization of GPU and minimal KV cache IO between HBM and shared memory.
DEFT-Node Tree Split High utilization of GPU and simple tree attention calculation.

DEFT-Flatten Tree Split High utilization of GPU and balanced attention calculation.
Bit Causal Mask [27] Record causal information of tokens in the decoding tree with little IO cost.

Kernel Fusion [6, 7] Reduce partial results IO (e.g. QKT , Mask M , and Softmax, etc).
Tiling [6, 7] Enable attention calculation within limited size of GPU’s shared memory.

Tree-topology Aware Global Reduction To get the correct tree attention of the entire decoding tree.

In this subsection, we summarize and discuss the common techniques in existing designs of efficient634

attention algorithms and kernels : (1) Kernel Fusion with Tiling strategy [6, 15, 27]; (2) Tree-topology635

Aware Causal Mask [27, 5]; (3) KV Split with Global Reduction[15]. Then we explain the details of636

design in DEFT Attention Kernel, where the techniques are in Table 9.637

16

Figure 9: Operations of Tree Attention-Medusa [5]. No Kernel Fusion or Tiling strategy is applied, which
introduces significant IO of partial results like QK>, DCM, and Softmax between GPU global memory and
on-chip shared memory.

Kernel Fusion is a common technique of IO reduction: if multiple operations are performed on the638

same input, it is more efficient to load the input once from HBM rather than loading it multiple639

times for each operation; Similarly, the same principle applies when transferring output from shared640

memory to HBM. To fuse all the attention operations into one GPU kernel with the limited size of641

shared memory, we further utilize the commonly employed Tiling strategy [6, 7]: split queries and KV642

cache within each QKV group to small blocks to prevent materialization of attention matrix in HBM643

by computing attention within the limited size of shared memory, then incrementally performing the644

softmax reduction as the formulation in Equation 2 to reconstruct the attention.645

Remark A.1 (Importance of tiling and fused kernel during ATTENTION CALCULATION PHASE).646

Methods in this phase can be roughly divided into two categories: (1) without tiling and kernel fusion:647

Tree Attention in Medusa [5], which introduces significant IO operations for partial results (i.e..648

QK> and Softmax), as shown in Figure 9; (2) with tiling and a fused kernel: Flash Decoding [7],649

Tree Attention in SpecInfer [27] and our DEFT.650

Figure 10: Overview of two stages in DEFT Attention Kernel (DEFT-Node for example). Stage 1–calculate
partial attentions. Based on the QKV grouping results after KV-Guided Grouping Strategy with Tree Split
as mentioned above, each QKV group (Gi) will be allocated to a thread block for Flash Attention [6] calculation
with common Kernel Fusion and Tiling strategy. Similar to Flash-Decoding [7], we not only get partial
attention (PAi) but also return “LogSumExp” (LSEi) as a weight parameter for the next stage’s reduction.
Stage 2–global reduction. Upon receiving PAi and LSEi for each QKV group Gi, DEFT now performs
a Tree-Topology-Aware Global Reduction (DeFT_reduction). Guided by the tree topology among sequence
nodes of KV in the decoding tree, DEFT logically remaps the partial results of attention and LogSumExp to
get the correct final attention for each query after reduction. The decoding tree is the same as the one in the
left of Figure 3. SMi means the streaming multiprocessor i in GPU.

The Tree-topology Aware Causal Mask (Causal Mask for short) is introduced in speculative decoding651

works [27, 5] to facilitate the calculation of attention for all queries within a decoding tree using652

a single GPU kernel. It achieves this by recording the causal relationships among queries and KV653

cache in the decoding tree. As depicted in Figure 7, while originally designed for tree-based decoding654

with KV cache for a sequence of tokens and tree-structured queries, the Causal Mask can also be655

adapted to tree decoding with tree-structured KV cache and parallel queries—a configuration targeted656

by DEFT to enhance efficiency.657

17

Remark A.2 (The effects of introducing a causal mask). Causal mask brings two parts of redundancy:658

• Memory Access. Medusa [5] materializes the dense causal mask (DCM) in HBM to record the659

causal information between nq tokens in queries and nkv tokens in the KV cache, thereby introduc-660

ing a significant IO cost for loading this nq × nkv-sized mask to shared memory. SpecInfer [27]661

introduces a 64-bit integer as a bit causal mask (BCM) to record the causal information among up662

to 64 tokens, which incurs minimal IO cost from HBM to shared memory but is not suitable for663

decoding trees with more than 64 tokens. Details regarding the design of the bit mask in SpecInfer664

are discussed in Appendix A.2.665

• Computation. In addition to the computational cost of generating the causal mask itself, there is666

an additional redundancy in computation: many of the matrix multiplication results of QK> are667

masked out and never utilized. Both Medusa and SpecInfer have this issue.668

DEFT-Node in Appendix A.7 does not require a causal mask and there is no IO and calculation669

redundancy caused by masking. DEFT-Flatten in Appendix A.8 adopts a bit causal mask insipred by670

SpecInfer [27]to minimize the IO of the causal mask. Details of the bit mask design is in the left of671

Figure 3.672

Split is introduced to improve GPU utilization in sequence-based decoding [15], which is necessary673

when the parallelism is limited by a small batch size for long-context scenarios. Flash-Decoding674

splits long KV and group QKV based on Q first, then these groups will be allocated to different675

streaming multi-processors (SMs) in the GPU to get partial attention via Flash Attention [6].676

(a) Left: Illustration of DEFT-Node Attention Kernel with two stages. Right: Global reduction kernel called in
DEFT stage 2 illustrated in Figure 11b. QKV Groups G0,G1 and G2 are from DEFT QKV groups in Figure 3.

(b) Stage 2 of DEFT: Global Reduction. Based on tree topology in Figure 3, we can group LogSumExp and
Partial Attention based on Query, then we call the Global reduction kernel in the right of Figure 11a to get
the final attention.

Figure 11: Detailed attention operations of DEFT kernel (DEFT-Node for example). Based on the same
decoding tree in Figure 3.

To obtain the accurate final attention, partial attentions from QKV groups with identical queries need677

to be grouped for Global Reduction.678

Similarly, DEFT also split the decoding tree to different QKV groups for high utilization of GPUs,679

which is the KV-Guided Grouping Strategy with Tree Split strategy we propose in subsection 3.3,680

as illustrated in the bottom right part of Section 3. To obtain the correct tree attention, DEFT681

18

also requires a global reduction. However, the global reduction in Flash-Decoding is for sequence-682

based decoding, which cannot aware the tree-topology for global reduction in tree-based decoding.683

Therefore, we propose Tree-Topology-Aware Global Reduction, as shown in the Figure 11b.684

Based on the techniques mentioned above, we designed the DEFT Attention Kernel with two stages,685

as shown in Figure 10, to execute the attention operations after the QKV Preparation Phase of686

DEFT, which we elaborated on in Section 3.3. For more details on the DEFT Attention Kernel, see687

Figure 11. The attention operations of DEFT-Flatten are omitted because they are very similar to688

those of DEFT-Node, except for the usage of the bit causal mask for tree attention calculation.689

A.5 Discussion of Workloads Generation690

Figure 12: The detailed procedure of reconstructing tree templates for multi-step reasoning. (Left)
Reconstructing reasoning trees from practical reasoning records as outlined in [4] involves capturing the
following aspects: (1) the structure of trees, characterized by their depth d and width w; (2) the token length
associated with each thought; and (3) the best thought at each depth along with its corresponding score. For the
task of document merging, the tree depth is set to d = 3, with a width of w = 10 at each depth. For sorting
128 numbers, the depth is reduced to d = 10, while maintaining the same width of w = 10. See details of tree
topology for other multi-step reasoning tasks in Table 10. (Right) Utilizing the extracted thought information
from Left, we can generate tree templates for decoding, encompassing branch records and prune records. These
records are instrumental in guiding the tree decoding process to produce decoding trees that faithfully replicate
the structure of the tree-of-thoughts.

The rationality of workload settings. To validate DEFT’s acceleration across various decoding691

tree topologies, we compiled decoding trees from real tasks, covering the following three aspects:692

• Few-shot prompting: This involves a two-level tree with a prompt prefix and multiple branches for693

suffix generation. As a case study, we fixed the prompt length at approximately 4000 tokens and694

varied the number of branches.695

• Multi-step reasoning [42, 11, 4]: We recorded the tree shapes, prompts, and lengths of all thoughts696

from real reasoning task interactions [4], using these as guidance for tree decoding to validate697

DEFT’s acceleration in thought generation of reasoning (the thought evaluation phase follows a698

similar pattern). See details of generation in Figure 12.699

• Speculative decoding [5, 27]: We used the token tree topology from Medusa [5] and recorded real700

interaction data with APPS [12] as prompt dataset, including the length of accepted tokens at each701

step. This served as guidance to simulate the bottleneck of speculative decoding—the attention702

computation during the token verification phase.703

Table 10: Details of generated workloads. For multi-steps reasoning, we include these 4 tasks from [4]: (1)
Sorting 128 numbers (sorting in short); (2) Document merging (document in short); (3) Keyword counting
(keyword in short); (4) Set intersection (set in short). d, w means depth and width of the tree, respectively. t
means the token tree size for speculative decoding, where the tree topology is from Medusa [5].

Task Tree Shape Decoding Tree Source Records Contents

Multi-step reasoning

sorting: d = 10, w = 10

ToT-BFS in [4] Prompt [4],tree shape, thought size, branch records, prune recordsdocument: d = 3, w = 10
keyword:d = 5, w = 10

set:d = 8, w = 10

Few-shot prompting d = 1, w = 10, 20, 30 – –
Speculative decoding t = 32, 64, 128, 256 Medusa [5] APPS [12] Prompt, token tree shape, accepted token length per step

19

Table 11: Average end-to-end latency (second) of each tree. b means tree width. t denotes the token tree size
(i.e., the number of tree-structured queries). Speedup Upper-bound(no attention) means the wall-clock time
speedup we could obtain for the best baseline (Radix Attention) if we remove the attention calculation. ? means
out of memory for A100 80GB, while ♠ means not supported/implemented.

Memory Method Few-shot Prompting Multi-Step Reasoning Speculative Decoding

b=20 b=30 b=50 Sorting Document Keyword Set t=32 t=64 t=128 t=256

Unpaged Flash-Decoding 78.96 131.19 191.09 429.65 241.20 32.75 51.76 574.50 1128.45 ? ?
Tree Attention-Medusa 52.58 103.90 144.07 380.87 236.86 33.52 50.10 263.40 483.35 924.97 1881.51

Paged
Radix Attention 12.37 14.08 16.54 104.79 69.61 11.25 17.03 64.57 86.12 145.88 263.76

DEFT-Node 17.53 21.19 ♠ 114.06 81.87 15.20 22.55 84.72 ♠ ♠ ♠
DEFT-Flatten 9.98 10.99 12.48 94.67 66.95 10.90 16.10 44.94 50.48 65.44 104.65

Speedup of DEFT-Flatten 1.24× 1.28× 1.33× 1.10× 1.03× 1.03× 1.05× 1.43× 1.70× 2.22× 2.52×
Upper-bound(no attention) 1.71× 2.08× 2.51× 1.96× 1.82× 1.70× 1.76× 2.01× 2.72× 3.99× 5.12×

Table 12: Average end-to-end IO (TB). Data format is Left/Right: (Left) KV Cache IO; (Right) partial results
IO, including QKT ,QK>/sc, Mask M , M+QK>/sc and Softmax. b means tree width. t denotes the token
tree size (i.e., the number of tree-structured queries).? means out of memory for A100 80GB, while ♠ means
not supported/implemented.

Method Few-shot Prompting Multi-Step Reasoning Speculative Decoding

b=20 b=30 b=50 Sorting Document Keyword Set t=32 t=64 t=128 t=256

Flash-Decoding 17.62/0.00 26.43/0.00 44.05/0.00 59.96/0.00 39.74/0.00 4.68/0.00 7.01/0.00 128.72/0.00 255.16/0.00 ? ?
Tree Attention-Medusa 1.68/1.05 2.10/1.98 2.94/4.61 12.40/3.69 10.57/3.24 0.58/0.18 1.04/0.27 4.02/4.03 4.15/8.33 4.18/16.77 4.32/34.70

Radix Attention 17.62/0.00 26.43/0.00 44.05/0.00 59.96/0.00 39.74/0.00 4.68/0.00 7.01/0.00 131.45/0.00 256.79/0.00 522.05/0.00 1044.10/0.00
DEFT-Node 1.68/0.00 2.10/0.00 ♠ 12.40/0.00 10.57/0.00 0.58/0.00 1.04/0.00 4.05/0.00 ♠ ♠ ♠

DEFT-Flatten 1.68/0.00 2.10/0.00 2.94/0.00 12.40/0.01 10.57/0.01 0.58/0.00 1.04/0.00 4.10/0.00 4.11/0.00 4.16/0.00 4.35/0.00

IO reduction of DEFT-Flatten(%) 90.47/100.00 92.1/100.00 93.33/100.00 79.32/99.73 73.40/99.70 87.61/100.00 85.16/100.00 96.88/100.00 98.40/100.00 99.20100.00 99.58/100.00

The rationality of our experiment paradigm. Our experimental paradigm involves: first, obtaining704

decoding trees from real tree-based decoding tasks, and second, replicating these decoding trees705

exactly within the same framework by enforcing LLM inference, to investigate the impact of attention706

acceleration on wall clock time performance. This paradigm has two advantages:707

• We can utilize decoding trees from real tasks as a benchmark within a unified system, enabling708

fair comparison of different attention algorithms in terms of wall-clock time performance. This709

comparison is possible despite the algorithms being based on distinct systems, such as variations710

in memory management implementations for their kernels.711

• We consider both the unique characteristics of tasks with diverse tree structures and the broader712

applicability of general tree-based decoding. See details of generated workloads for other multi-713

step reasoning tasks in Table 10.714

A.6 Additional Results715

End-to-end latency and IOs with breakdowns. The details of end-to-end latency and IO com-716

parsion among DEFT and baselines are in Table 11 and Table 12,respectively. We provide IO717

breakdowns of multi-step reasoning tasks, where the attention occupies 27.7-37.6% overhead of718

Radix Attention with a paged memory management. Unpaged memory will introduce about 40-75.6%719

overhead in end-to-end latency, due to the materialization of QKVs for tree-based decoding with a720

sequence-based attention kernel [6, 7].721

The influence of width in decoding trees. We observe that the effectiveness of attention speedup722

varies with different decoding tree topologies. Considering the simplest tree structure, a prompt723

with several suffixes—given a prompt that is not very short, one of the most important factors for724

speedup is the extent to which we can reuse its KV cache IO. This can be measured by the width725

of the tree. More specifically, it is determined by the number of queries per iteration. Therefore,726

we fix the prompt length at 4000 and vary the width of the decoding tree in few-shot prompting727

(which also indicates how many requests share the same prompt). Then, as shown in Figure 14, we728

evaluate DEFT-Flatten with the best baseline in attention calculation– Tree Attention-Medusa [5]729

(Medusa-Attn in the figure), as well as the best baseline in wall-clock time– Radix Attention [45], for730

the per-iteration latency over time.731

We have the following observations:732

1. When the tree width is 10, the attention overhead of DEFT-Flatten is nearly the same as Tree733

Attention-Medusa because the IO overhead of the dense causal mask (DCM) is small compared to734

20

(a) Latency breakdown for task sorting. (b) Latency breakdown for task document.

(c) Latency breakdown for task set. (d) Latency breakdown for task keyword.
Figure 13: Latency breakdown for 4 multi-step reasoning tasks [4].

that of the KV cache, but it is still 2× faster in attention latency than Radix Attention thanks to the735

KV IO reuse.736

2. As the tree width increases, the attention computation overhead of Tree Attention-Medusa grows737

faster because the size of the DCM is directly related to the tree width. A larger tree width means738

the IO of the DCM grows rapidly.739

3. Since the tree topology consists of a fixed prefix with several suffixes, a larger tree width allows740

the prompt prefix’s KV cache to be reused more frequently during IO. This leads to a more741

significant end-to-end speedup—1.24× with a width of w = 20, and 1.33× with a width of742

w = 50—compared to Radix Attention.743

4. As iterations progress, the length of the suffixes gradually approaches the length of the prefix,744

leading to a decrease in the speedup of DEFT-Flatten compared with Radix Attention.745

A.7 DeFT-Node Algorithm746

DEFT-Node has two phases-Phase 1-QKV Preparation and Phase 2-Attention Calculation.747

Phase 2-Attention Calculation of DEFT has two stages.748

1. Stage 1: Calculate Partial Attentions. We will apply Flash Attention of all QKV groups obtained749

after Phase 1-QKV Preparation of DEFT, to get partial attention and LogSumExp.750

21

(a) Tree width is 10. (b) Tree width is 20.

(c) Tree width is 30.. (d) Tree width is 50.
Figure 14: Per iteration latency for few-shot prompting tasks with different tree width. e2e means end-to-end
result, while Attn means only the attention overhead.

Algorithm 1 DEFT-Node Algorithm-Phase 1: QKV Preparation.

Input: query Q ∈ R(bq,d), Key cache list KL = (K0, ...KN−1), Value cache list V L =
(V0, ...VN−1) for each sequence node in the tree, where N is the total number of sequences
in a tree, and Tree T with its topology information.
for each q in Q with its global index idx do

/*Get KV indices of all prefixes’ for a query.*/
QMapKV [idx]=GetPrefixKVIndices(q,KL, V L, T)

end for
for each seq’s KV cache Ki, Vi in KL, V L with its KV indice i do

/*Group each sequence’s KV with all queries that share it.*/
Qi= GroupQueryToKV(Q,Ki, Vi, T) ∈ Rbi,d ⊂ Q
KVMapQ[i] = Qi

end for
Return QMapKV, KVMapQ

2. Stage 2: Global Reduction. We will remap partial attention and LogSumExp based on each751

query, and get final attention based on global reduction similar to Flash-Decoding [7].752

22

Algorithm 2 DEFT-Node Algorithm-Phase 2: Attention Calculation.

Input: query Q ∈ R(bq,d), Key cache list KL = (K0, ...KN−1), Value cache list V L =
(V0, ...VN−1) for each sequence node in the tree, where N is the total number of sequences in a
tree, and Tree T with its topology information. QKV group information QMapKV , KVMapQ
from QKV Preparation Phase.
for each q in Q with its global index idx do

/*Allocate to store LogSumExp of Q@KT grouped by query.*/
LogSumExp[idx] = {}
/*Allocate to store partial results of SoftMax(Q@KT)V for each query.*/
O[idx] = {}

end for
/*Allocate space for output after reduction.*/
FO = (0)bq×d ∈ R(bq,d)

for each seq’s KV cache Ki, Vi ∈ R(bkv,d), R(bkv,d) in KL, V L with its KV indice i do
Unroll for loop to SMs
Qi= KVMapQ[i] ∈ R(bi,d)

/*Get partial attention oi for each QKV group, LogSumExp lsei of Q@KT in row for
reduction.*/
oi, lsei = FlashAttention(Qi,Ki, Vi)
∈ R(bi,d), Rbi

/*Map the partial results back to each query for reduction.*/
for each query q in Qi with its group index gp_idx and global index idx in Q do

if i ∈ QMapKV [idx] then
LogSumExp[idx].append(lsei[gp_idx])

end if
end for

end for
for each q in Q with its global index idx do

Unroll for loop to SMs
if len(O[idx])==len(QMapKV [idx]) then

/*Global reduction after collecting all partial results from QKV groups that contains
q.*/
LSEcat= CatTensor(LogSumExp[idx])
LSEmax=RowMax(LSEcat)
Mid_L = 0,Mid_O = 0(1,d)

for each lsej in LogSumExp[idx] do
new_exp = elsej−LSEmax

Mid_L = Mid_L+ new_exp
end for
for each lsej , oj in LogSumExp[idx], O[idx] do
new_exp = elsej−LSEmax

Mid_O = Mid_O + new_exp@oj/Mid_L
end for
FO[idx] = Mid_O

end if
end for
Return FO

A.8 DEFT-Flatten Algorithm753

The algorithm (noted as DEFT-Node) in Appendix A.7 adopts a node-granularity split strategy,754

which is quite simple. However, when the token lengths of different nodes in a decoding tree are very755

unbalanced, it might introduce inefficient calculation due to the unbalanced workload in on-chip SMs756

of GPUs.757

Therefore, we can split the decoding tree in a more balanced way– in subtree-granularity. We show758

the DEFT-Flatten algorithm as follows, which also consists of two stages similar to DEFT-Node.759

23

Algorithm 3 DEFT-Flatten Algorithm-Phase 1: QKV Preparation.

Input: query Q ∈ R(bq,d), Key cache list KL = (K0, ...KN−1), Value cache list V L =
(V0, ...VN−1) for each sequence node in the tree, where N is the total number of sequences
in a tree, and Tree T with its topology information. Subtree size St, which means each subtree
after tiling contains at most St tokens.
/*Evenly slice/blockwise the Tree KV cache (with nT tokens in the tree) to subtrees.*/
SubInfo, KSub, VSub =Slice(KL, VL, St, T)
/*Notes: (1) subtree number m = Ceil(nT /St);
(2) subtrees’ KV cache KSub = (Kb0, ...,Kbm−1), V Sub = (V b0, ..., V bm−1);
(3) subtree information SubInfo = (Sb0, ..., Sbm−1), where each subtree i has Sbi =
(ofs0, ...ofsnbi

−1) to record the offset of each node in the subtree KV cache, with nbi as the
total number of nodes in subtree i. */
for each subtree’s KV cache Kbi, V bi in KSub, V Sub with its subtree ID i do

/*Group each subtree’s KV with all queries that share it.*/
Qi= GroupQueryToKV(Q,Kbi, V bi, T) ∈ Rbi,d ⊂ Q
KVMapQ[i] = Qi

for each query q in Qi with a global index idx in Q do
QMapKV [idx].append(i)

end for
/*Add a causal mask as different nodes in a subtree could be shared by different queries.*/
CausalMask[i] = GetBitMask(Qi,Kbi, V bi, T)=(CM0, ...CMnbi

−1)
where nbi is the total number of nodes in the subtree, and CMi is a 64-bit int bit mask for node
i.
/*E.g, 100....00 with 1 in bit 0, means the Qi[0] does not share KV cache of node i in the
subtree.*/

end for
Return QMapKV, KVMapQ, CausalMask,SubInfo

24

Algorithm 4 DEFT-Flatten Algorithm-Phase 2: Attention Calculation.

Input: query Q ∈ R(bq,d), Key cache list in subtree-granularity KSub=(Kb0,...,Kbm−1), Value
cache list in subtree VSub = (V b0,...,V bm−1 for m subtrees after tiling based on Tree T
with its topology information. QKV group information QMapKV , KVMapQ, causal mask
CausalMask and subtree information SubInfo from QKV Preparation Phase.
for each q in Q with its global index idx do

/*Allocate to store LogSumExp of Q@KT grouped by query.*/
LogSumExp[idx] = {}
/*Allocate to store partial results of SoftMax(Q@KT)V for each query.*/
O[idx] = {}

end for
/*Allocate space for output after reduction.*/
FO = (0)bq×d ∈ R(bq,d)

for each subtree’s KV cache Kbi, V bi ∈ R(bkv,d), R(bkv,d) in KSub, V Sub with subtree ID i do
Unroll for loop to SMs
Qi= KVMapQ[i] ∈ R(bi,d)

/*Reconstruct mask for attention calculation based on CausalMask and SubInfo*/
bitmask = CausalMask[i] ∈ Rnbi ,where nbi is the total number of nodes for subtree i.
SubOfst = SubInfo[i] ∈ Rnbi

mask = ReconstructMask(bitmask, SubOfst) ∈ R(bi,bkv)

/*Get partial attention oi for each QKV group, LogSumExp lsei of Q@KT in row for
reduction.*/
oi, lsei = FlashAttention(Qi,Kbi, V bi,mask)
∈ R(bi,d), Rbi

/*Map the partial results back to each query for reduction.*/
for each query q in Qi with its group index gp_idx and global index idx in Q do

if i ∈ QMapKV [idx] then
LogSumExp[idx].append(lsei[gp_idx])

end if
end for

end for
for each q in Q with its global index idx do

Unroll for loop to SMs
if len(O[idx])==len(QMapKV [idx]) then

/*Global reduction after collecting all partial results from QKV groups that contains
q.*/
LSEcat= CatTensor(LogSumExp[idx])
LSEmax=RowMax(LSEcat)
Mid_L = 0,Mid_O = 0(1,d)

for each lsej in LogSumExp[idx] do
new_exp = elsej−LSEmax

Mid_L = Mid_L+ new_exp
end for
for each lsej , oj in LogSumExp[idx], O[idx] do
new_exp = elsej−LSEmax

Mid_O = Mid_O + new_exp@oj/Mid_L
end for
FO[idx] = Mid_O

end if
end for
Return FO

25

NeurIPS Paper Checklist760

1. Claims761

Question: Do the main claims made in the abstract and introduction accurately reflect the762

paper’s contributions and scope?763

Answer: [Yes]764

Justification: Abstract and introduction accurately reflect the paper’s contributions and765

scope.766

Guidelines:767

• The answer NA means that the abstract and introduction do not include the claims768

made in the paper.769

• The abstract and/or introduction should clearly state the claims made, including the770

contributions made in the paper and important assumptions and limitations. A No or771

NA answer to this question will not be perceived well by the reviewers.772

• The claims made should match theoretical and experimental results, and reflect how773

much the results can be expected to generalize to other settings.774

• It is fine to include aspirational goals as motivation as long as it is clear that these goals775

are not attained by the paper.776

2. Limitations777

Question: Does the paper discuss the limitations of the work performed by the authors?778

Answer: [Yes]779

Justification: See section 5.780

Guidelines:781

• The answer NA means that the paper has no limitation while the answer No means that782

the paper has limitations, but those are not discussed in the paper.783

• The authors are encouraged to create a separate "Limitations" section in their paper.784

• The paper should point out any strong assumptions and how robust the results are to785

violations of these assumptions (e.g., independence assumptions, noiseless settings,786

model well-specification, asymptotic approximations only holding locally). The authors787

should reflect on how these assumptions might be violated in practice and what the788

implications would be.789

• The authors should reflect on the scope of the claims made, e.g., if the approach was790

only tested on a few datasets or with a few runs. In general, empirical results often791

depend on implicit assumptions, which should be articulated.792

• The authors should reflect on the factors that influence the performance of the approach.793

For example, a facial recognition algorithm may perform poorly when image resolution794

is low or images are taken in low lighting. Or a speech-to-text system might not be795

used reliably to provide closed captions for online lectures because it fails to handle796

technical jargon.797

• The authors should discuss the computational efficiency of the proposed algorithms798

and how they scale with dataset size.799

• If applicable, the authors should discuss possible limitations of their approach to800

address problems of privacy and fairness.801

• While the authors might fear that complete honesty about limitations might be used by802

reviewers as grounds for rejection, a worse outcome might be that reviewers discover803

limitations that aren’t acknowledged in the paper. The authors should use their best804

judgment and recognize that individual actions in favor of transparency play an impor-805

tant role in developing norms that preserve the integrity of the community. Reviewers806

will be specifically instructed to not penalize honesty concerning limitations.807

3. Theory Assumptions and Proofs808

Question: For each theoretical result, does the paper provide the full set of assumptions and809

a complete (and correct) proof?810

Answer: [Yes]811

26

Justification: We have IO complexity analysis in section 3.4, but it is easy and straightfor-812

ward. Technique correctness proof of softmax merging in Equation 2.813

Guidelines:814

• The answer NA means that the paper does not include theoretical results.815

• All the theorems, formulas, and proofs in the paper should be numbered and cross-816

referenced.817

• All assumptions should be clearly stated or referenced in the statement of any theorems.818

• The proofs can either appear in the main paper or the supplemental material, but if819

they appear in the supplemental material, the authors are encouraged to provide a short820

proof sketch to provide intuition.821

• Inversely, any informal proof provided in the core of the paper should be complemented822

by formal proofs provided in appendix or supplemental material.823

• Theorems and Lemmas that the proof relies upon should be properly referenced.824

4. Experimental Result Reproducibility825

Question: Does the paper fully disclose all the information needed to reproduce the main ex-826

perimental results of the paper to the extent that it affects the main claims and/or conclusions827

of the paper (regardless of whether the code and data are provided or not)?828

Answer: [Yes]829

Justification: See workload generation and datasets in Appendix A.5. See algorithm in830

Appendix A.8.831

Guidelines:832

• The answer NA means that the paper does not include experiments.833

• If the paper includes experiments, a No answer to this question will not be perceived834

well by the reviewers: Making the paper reproducible is important, regardless of835

whether the code and data are provided or not.836

• If the contribution is a dataset and/or model, the authors should describe the steps taken837

to make their results reproducible or verifiable.838

• Depending on the contribution, reproducibility can be accomplished in various ways.839

For example, if the contribution is a novel architecture, describing the architecture fully840

might suffice, or if the contribution is a specific model and empirical evaluation, it may841

be necessary to either make it possible for others to replicate the model with the same842

dataset, or provide access to the model. In general. releasing code and data is often843

one good way to accomplish this, but reproducibility can also be provided via detailed844

instructions for how to replicate the results, access to a hosted model (e.g., in the case845

of a large language model), releasing of a model checkpoint, or other means that are846

appropriate to the research performed.847

• While NeurIPS does not require releasing code, the conference does require all submis-848

sions to provide some reasonable avenue for reproducibility, which may depend on the849

nature of the contribution. For example850

(a) If the contribution is primarily a new algorithm, the paper should make it clear how851

to reproduce that algorithm.852

(b) If the contribution is primarily a new model architecture, the paper should describe853

the architecture clearly and fully.854

(c) If the contribution is a new model (e.g., a large language model), then there should855

either be a way to access this model for reproducing the results or a way to reproduce856

the model (e.g., with an open-source dataset or instructions for how to construct857

the dataset).858

(d) We recognize that reproducibility may be tricky in some cases, in which case859

authors are welcome to describe the particular way they provide for reproducibility.860

In the case of closed-source models, it may be that access to the model is limited in861

some way (e.g., to registered users), but it should be possible for other researchers862

to have some path to reproducing or verifying the results.863

5. Open access to data and code864

27

Question: Does the paper provide open access to the data and code, with sufficient instruc-865

tions to faithfully reproduce the main experimental results, as described in supplemental866

material?867

Answer: [NA]868

Justification: Datasets are open-sourced. See workload generation and datasets in Appendix869

A.5. See algorithm in Appendix A.8. We will release code soon.870

Guidelines:871

• The answer NA means that paper does not include experiments requiring code.872

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/873

public/guides/CodeSubmissionPolicy) for more details.874

• While we encourage the release of code and data, we understand that this might not be875

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not876

including code, unless this is central to the contribution (e.g., for a new open-source877

benchmark).878

• The instructions should contain the exact command and environment needed to run to879

reproduce the results. See the NeurIPS code and data submission guidelines (https:880

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.881

• The authors should provide instructions on data access and preparation, including how882

to access the raw data, preprocessed data, intermediate data, and generated data, etc.883

• The authors should provide scripts to reproduce all experimental results for the new884

proposed method and baselines. If only a subset of experiments are reproducible, they885

should state which ones are omitted from the script and why.886

• At submission time, to preserve anonymity, the authors should release anonymized887

versions (if applicable).888

• Providing as much information as possible in supplemental material (appended to the889

paper) is recommended, but including URLs to data and code is permitted.890

6. Experimental Setting/Details891

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-892

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the893

results?894

Answer: [Yes]895

Justification: Datasets are open-sourced. See workload generation and datasets in Appendix896

A.5.897

Guidelines:898

• The answer NA means that the paper does not include experiments.899

• The experimental setting should be presented in the core of the paper to a level of detail900

that is necessary to appreciate the results and make sense of them.901

• The full details can be provided either with the code, in appendix, or as supplemental902

material.903

7. Experiment Statistical Significance904

Question: Does the paper report error bars suitably and correctly defined or other appropriate905

information about the statistical significance of the experiments?906

Answer: [No]907

Justification: We verify our experiments based on more than 100 traces in datasets and show908

average results. See workload generation and datasets in Appendix A.5.909

Guidelines:910

• The answer NA means that the paper does not include experiments.911

• The authors should answer "Yes" if the results are accompanied by error bars, confi-912

dence intervals, or statistical significance tests, at least for the experiments that support913

the main claims of the paper.914

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for915

example, train/test split, initialization, random drawing of some parameter, or overall916

run with given experimental conditions).917

• The method for calculating the error bars should be explained (closed form formula,918

call to a library function, bootstrap, etc.)919

• The assumptions made should be given (e.g., Normally distributed errors).920

• It should be clear whether the error bar is the standard deviation or the standard error921

of the mean.922

• It is OK to report 1-sigma error bars, but one should state it. The authors should923

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis924

of Normality of errors is not verified.925

• For asymmetric distributions, the authors should be careful not to show in tables or926

figures symmetric error bars that would yield results that are out of range (e.g. negative927

error rates).928

• If error bars are reported in tables or plots, The authors should explain in the text how929

they were calculated and reference the corresponding figures or tables in the text.930

8. Experiments Compute Resources931

Question: For each experiment, does the paper provide sufficient information on the com-932

puter resources (type of compute workers, memory, time of execution) needed to reproduce933

the experiments?934

Answer: [Yes]935

Justification: See section 4.936

Guidelines:937

• The answer NA means that the paper does not include experiments.938

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,939

or cloud provider, including relevant memory and storage.940

• The paper should provide the amount of compute required for each of the individual941

experimental runs as well as estimate the total compute.942

• The paper should disclose whether the full research project required more compute943

than the experiments reported in the paper (e.g., preliminary or failed experiments that944

didn’t make it into the paper).945

9. Code Of Ethics946

Question: Does the research conducted in the paper conform, in every respect, with the947

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?948

Answer: [Yes]949

Justification: I promise.950

Guidelines:951

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.952

• If the authors answer No, they should explain the special circumstances that require a953

deviation from the Code of Ethics.954

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-955

eration due to laws or regulations in their jurisdiction).956

10. Broader Impacts957

Question: Does the paper discuss both potential positive societal impacts and negative958

societal impacts of the work performed?959

Answer: [Yes]960

Justification: This work can accelerate LLM inference.961

Guidelines:962

• The answer NA means that there is no societal impact of the work performed.963

• If the authors answer NA or No, they should explain why their work has no societal964

impact or why the paper does not address societal impact.965

29

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses966

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations967

(e.g., deployment of technologies that could make decisions that unfairly impact specific968

groups), privacy considerations, and security considerations.969

• The conference expects that many papers will be foundational research and not tied970

to particular applications, let alone deployments. However, if there is a direct path to971

any negative applications, the authors should point it out. For example, it is legitimate972

to point out that an improvement in the quality of generative models could be used to973

generate deepfakes for disinformation. On the other hand, it is not needed to point out974

that a generic algorithm for optimizing neural networks could enable people to train975

models that generate Deepfakes faster.976

• The authors should consider possible harms that could arise when the technology is977

being used as intended and functioning correctly, harms that could arise when the978

technology is being used as intended but gives incorrect results, and harms following979

from (intentional or unintentional) misuse of the technology.980

• If there are negative societal impacts, the authors could also discuss possible mitigation981

strategies (e.g., gated release of models, providing defenses in addition to attacks,982

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from983

feedback over time, improving the efficiency and accessibility of ML).984

11. Safeguards985

Question: Does the paper describe safeguards that have been put in place for responsible986

release of data or models that have a high risk for misuse (e.g., pretrained language models,987

image generators, or scraped datasets)?988

Answer: [NA]989

Justification: The paper poses no such risks.990

Guidelines:991

• The answer NA means that the paper poses no such risks.992

• Released models that have a high risk for misuse or dual-use should be released with993

necessary safeguards to allow for controlled use of the model, for example by requiring994

that users adhere to usage guidelines or restrictions to access the model or implementing995

safety filters.996

• Datasets that have been scraped from the Internet could pose safety risks. The authors997

should describe how they avoided releasing unsafe images.998

• We recognize that providing effective safeguards is challenging, and many papers do999

not require this, but we encourage authors to take this into account and make a best1000

faith effort.1001

12. Licenses for existing assets1002

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1003

the paper, properly credited and are the license and terms of use explicitly mentioned and1004

properly respected?1005

Answer: [Yes]1006

Justification: We do it properly.1007

Guidelines:1008

• The answer NA means that the paper does not use existing assets.1009

• The authors should cite the original paper that produced the code package or dataset.1010

• The authors should state which version of the asset is used and, if possible, include a1011

URL.1012

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1013

• For scraped data from a particular source (e.g., website), the copyright and terms of1014

service of that source should be provided.1015

• If assets are released, the license, copyright information, and terms of use in the1016

package should be provided. For popular datasets, paperswithcode.com/datasets1017

has curated licenses for some datasets. Their licensing guide can help determine the1018

license of a dataset.1019

30

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of1020

the derived asset (if it has changed) should be provided.1021

• If this information is not available online, the authors are encouraged to reach out to1022

the asset’s creators.1023

13. New Assets1024

Question: Are new assets introduced in the paper well documented and is the documentation1025

provided alongside the assets?1026

Answer: [NA]1027

Justification: This paper does not release new assets.1028

Guidelines:1029

• The answer NA means that the paper does not release new assets.1030

• Researchers should communicate the details of the dataset/code/model as part of their1031

submissions via structured templates. This includes details about training, license,1032

limitations, etc.1033

• The paper should discuss whether and how consent was obtained from people whose1034

asset is used.1035

• At submission time, remember to anonymize your assets (if applicable). You can either1036

create an anonymized URL or include an anonymized zip file.1037

14. Crowdsourcing and Research with Human Subjects1038

Question: For crowdsourcing experiments and research with human subjects, does the paper1039

include the full text of instructions given to participants and screenshots, if applicable, as1040

well as details about compensation (if any)?1041

Answer: [NA]1042

Justification: Does not involve crowdsourcing nor research with human subjects.1043

Guidelines:1044

• The answer NA means that the paper does not involve crowdsourcing nor research with1045

human subjects.1046

• Including this information in the supplemental material is fine, but if the main contribu-1047

tion of the paper involves human subjects, then as much detail as possible should be1048

included in the main paper.1049

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1050

or other labor should be paid at least the minimum wage in the country of the data1051

collector.1052

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1053

Subjects1054

Question: Does the paper describe potential risks incurred by study participants, whether1055

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1056

approvals (or an equivalent approval/review based on the requirements of your country or1057

institution) were obtained?1058

Answer: [NA]1059

Justification: This paper does not involve crowdsourcing nor research with human subjects.1060

Guidelines:1061

• The answer NA means that the paper does not involve crowdsourcing nor research with1062

human subjects.1063

• Depending on the country in which research is conducted, IRB approval (or equivalent)1064

may be required for any human subjects research. If you obtained IRB approval, you1065

should clearly state this in the paper.1066

• We recognize that the procedures for this may vary significantly between institutions1067

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1068

guidelines for their institution.1069

• For initial submissions, do not include any information that would break anonymity (if1070

applicable), such as the institution conducting the review.1071

31

	Appendix
	Components of System Support for DeFT
	Discussion of Tree-based Decoding
	Discussion of Concurrent Works
	Discussion of Techniques in Efficient Attention Algorithm Design
	Discussion of Workloads Generation
	Additional Results
	DeFT-Node Algorithm
	DeFT-Flatten Algorithm

